Skip to main content
Erschienen in:

11.07.2024 | Original Research

Illegal Online Gambling Site Detection using Multiple Resource-Oriented Machine Learning

verfasst von: Moohong Min, Donggi Augustine Lee

Erschienen in: Journal of Gambling Studies | Ausgabe 4/2024

Einloggen, um Zugang zu erhalten

Abstract

The COVID-19 pandemic has led to faster digitalization and illegal online gambling has become popular. As illegal online gambling brings not only financial threats but also breaches in overall cyber security, this study defines the concept of absolute illegal online gambling (AIOG) using a machine-learning-driven approach with information gathered from public webpages. By analysing 11,172 sites to detect illegal online gambling, the proposed model classifies key features such as URLs (Uniform Resource Locator), WHOIS, INDEX, and landing page information. With a combination of text and image analyses with machine learning-driven approach, the proposed model offers the ensemble combination of attributes for high detection performance with the verification of common attributes from metadata in online gambling. This study suggests a strategy for dynamic resource utilization to increase the classification accuracy of the current environment. As a result, this research expands the scope of hybrid web mining through constant updating of data to achieve content-based filtering.
Literatur
Zurück zum Zitat Min, M., Lee, J. J., & Lee, K. (2022). Detecting illegal online gambling (IOG) services in the mobile environment. Security and Communication Networks, 2022(1), 3286623. Min, M., Lee, J. J., & Lee, K. (2022). Detecting illegal online gambling (IOG) services in the mobile environment. Security and Communication Networks, 2022(1), 3286623.
Zurück zum Zitat Wang, J.-L., Sheng, J.-R., & Wang, H.-Z. (2019). The association between mobile game addiction and depression, social anxiety, and loneliness. Frontiers in public health, 7, 247.CrossRefPubMedPubMedCentral Wang, J.-L., Sheng, J.-R., & Wang, H.-Z. (2019). The association between mobile game addiction and depression, social anxiety, and loneliness. Frontiers in public health, 7, 247.CrossRefPubMedPubMedCentral
Zurück zum Zitat Song, C., Ning, N., Zhang, Y., & Wu, B. (2021). A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks. Information Processing & Management, 58(1), 102437.CrossRef Song, C., Ning, N., Zhang, Y., & Wu, B. (2021). A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks. Information Processing & Management, 58(1), 102437.CrossRef
Zurück zum Zitat Granizo, S. L., Caraguay, Á. L. V., López, L. I. B., & Hernández-Álvarez, M. (2020). Detection of possible illicit messages using natural language processing and computer vision on twitter and linked websites. IEEE Access, 8, 44534–44546.CrossRef Granizo, S. L., Caraguay, Á. L. V., López, L. I. B., & Hernández-Álvarez, M. (2020). Detection of possible illicit messages using natural language processing and computer vision on twitter and linked websites. IEEE Access, 8, 44534–44546.CrossRef
Zurück zum Zitat Albanese, J. S. (2018). Illegal gambling businesses & organized crime: an analysis of federal convictions. Trends in Organized Crime, 21, 262–277.CrossRef Albanese, J. S. (2018). Illegal gambling businesses & organized crime: an analysis of federal convictions. Trends in Organized Crime, 21, 262–277.CrossRef
Zurück zum Zitat Hatch, P. (2020). Illegal online casinos boom during covid-19 lockdown. The Sydney Morning Herald 17 Hatch, P. (2020). Illegal online casinos boom during covid-19 lockdown. The Sydney Morning Herald 17
Zurück zum Zitat Håkansson, A. (2020). Impact of covid-19 on online gambling-a general population survey during the pandemic. Frontiers in Psychology, 11, 568543.CrossRefPubMedPubMedCentral Håkansson, A. (2020). Impact of covid-19 on online gambling-a general population survey during the pandemic. Frontiers in Psychology, 11, 568543.CrossRefPubMedPubMedCentral
Zurück zum Zitat Håkansson, A., Fernández-Aranda, F., Menchón, J. M., Potenza, M. N., & Jiménez-Murcia, S. (2020). Gambling during the covid-19 crisis-a cause for concern. Journal of addiction medicine, 14(4), 10.CrossRef Håkansson, A., Fernández-Aranda, F., Menchón, J. M., Potenza, M. N., & Jiménez-Murcia, S. (2020). Gambling during the covid-19 crisis-a cause for concern. Journal of addiction medicine, 14(4), 10.CrossRef
Zurück zum Zitat Yang, H., Du, K., Zhang, Y., Hao, S., Li, Z., Liu, M., Wang, H., Duan, H., Shi, Y., Su, X., et al. (2019). Casino royale: a deep exploration of illegal online gambling. In Proceedings of the 35th Annual Computer Security Applications Conference, pp. 500–513 Yang, H., Du, K., Zhang, Y., Hao, S., Li, Z., Liu, M., Wang, H., Duan, H., Shi, Y., Su, X., et al. (2019). Casino royale: a deep exploration of illegal online gambling. In Proceedings of the 35th Annual Computer Security Applications Conference, pp. 500–513
Zurück zum Zitat Schmidt-Kessen, M. J., Hornle, J., & Littler, A. (2019). Preventing risks from illegal online gambling using effective legal design on landing pages. J. Open Access L., 7, 1. Schmidt-Kessen, M. J., Hornle, J., & Littler, A. (2019). Preventing risks from illegal online gambling using effective legal design on landing pages. J. Open Access L., 7, 1.
Zurück zum Zitat Han, X., Wang, L., Xu, S., Zhao, D., & Liu, G. (2019). Recognizing roles of online illegal gambling participants: An ensemble learning approach. Computers & Security, 87, 101588.CrossRef Han, X., Wang, L., Xu, S., Zhao, D., & Liu, G. (2019). Recognizing roles of online illegal gambling participants: An ensemble learning approach. Computers & Security, 87, 101588.CrossRef
Zurück zum Zitat Wang, P., & Antonopoulos, G. A. (2016). Organized crime and illegal gambling: How do illegal gambling enterprises respond to the challenges posed by their illegality in china? Australian & New Zealand Journal of Criminology, 49(2), 258–280.CrossRef Wang, P., & Antonopoulos, G. A. (2016). Organized crime and illegal gambling: How do illegal gambling enterprises respond to the challenges posed by their illegality in china? Australian & New Zealand Journal of Criminology, 49(2), 258–280.CrossRef
Zurück zum Zitat Gainsbury, S. M., Russell, A. M., Hing, N., & Blaszczynski, A. (2018). Consumer engagement with and perceptions of offshore online gambling sites. New Media & Society, 20(8), 2990–3010.CrossRef Gainsbury, S. M., Russell, A. M., Hing, N., & Blaszczynski, A. (2018). Consumer engagement with and perceptions of offshore online gambling sites. New Media & Society, 20(8), 2990–3010.CrossRef
Zurück zum Zitat Armstrong, T., Rockloff, M., Browne, M., & Li, E. (2018). An exploration of how simulated gambling games may promote gambling with money. Journal of Gambling Studies, 34, 1165–1184.CrossRefPubMed Armstrong, T., Rockloff, M., Browne, M., & Li, E. (2018). An exploration of how simulated gambling games may promote gambling with money. Journal of Gambling Studies, 34, 1165–1184.CrossRefPubMed
Zurück zum Zitat Ferentzy, P., & Turner, N. (2009). Gambling and organized crime-a review of the literature. Journal of gambling Issues, 23, 111–155.CrossRef Ferentzy, P., & Turner, N. (2009). Gambling and organized crime-a review of the literature. Journal of gambling Issues, 23, 111–155.CrossRef
Zurück zum Zitat Tong, S., Zhang, H., Shen, B., Zhong, H., Wang, Y., & Jin, B. (2016). Detecting gambling sites from post behaviors. In 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp. 2495–2500. IEEE Tong, S., Zhang, H., Shen, B., Zhong, H., Wang, Y., & Jin, B. (2016). Detecting gambling sites from post behaviors. In 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp. 2495–2500. IEEE
Zurück zum Zitat Sönmez, Y.Ü., & Varol, A. (2018). Review of illegal betting as financial crime in web forensics. In 2018 6th International Symposium on Digital Forensic and Security (ISDFS), pp. 1–5. IEEE Sönmez, Y.Ü., & Varol, A. (2018). Review of illegal betting as financial crime in web forensics. In 2018 6th International Symposium on Digital Forensic and Security (ISDFS), pp. 1–5. IEEE
Zurück zum Zitat Chen, Y., Zheng, R., Zhou, A., Liao, S., & Liu, L. (2020). Automatic detection of pornographic and gambling websites based on visual and textual content using a decision mechanism. Sensors, 20(14), 3989.CrossRefPubMedPubMedCentral Chen, Y., Zheng, R., Zhou, A., Liao, S., & Liu, L. (2020). Automatic detection of pornographic and gambling websites based on visual and textual content using a decision mechanism. Sensors, 20(14), 3989.CrossRefPubMedPubMedCentral
Zurück zum Zitat Gao, Y., Wang, H., Li, L., Luo, X., Xu, G., & Liu, X. (2021). Demystifying illegal mobile gambling apps. In Proceedings of the Web Conference 2021, pp. 1447–1458 Gao, Y., Wang, H., Li, L., Luo, X., Xu, G., & Liu, X. (2021). Demystifying illegal mobile gambling apps. In Proceedings of the Web Conference 2021, pp. 1447–1458
Zurück zum Zitat Hong, G., Yang, Z., Yang, S., Liaoy, X., Du, X., Yang, M., & Duan, H. (2022). Analyzing ground-truth data of mobile gambling scams. In 2022 IEEE Symposium on Security and Privacy (SP), pp. 2176–2193. IEEE Hong, G., Yang, Z., Yang, S., Liaoy, X., Du, X., Yang, M., & Duan, H. (2022). Analyzing ground-truth data of mobile gambling scams. In 2022 IEEE Symposium on Security and Privacy (SP), pp. 2176–2193. IEEE
Zurück zum Zitat Alsariera, Y. A., Adeyemo, V. E., Balogun, A. O., & Alazzawi, A. K. (2020). Ai meta-learners and extra-trees algorithm for the detection of phishing websites. IEEE access, 8, 142532–142542.CrossRef Alsariera, Y. A., Adeyemo, V. E., Balogun, A. O., & Alazzawi, A. K. (2020). Ai meta-learners and extra-trees algorithm for the detection of phishing websites. IEEE access, 8, 142532–142542.CrossRef
Zurück zum Zitat Zhu, E., Chen, Y., Ye, C., Li, X., & Liu, F. (2019). OFS-NN: An effective phishing websites detection model based on optimal feature selection and neural network. Ieee Access, 7, 73271–73284.CrossRef Zhu, E., Chen, Y., Ye, C., Li, X., & Liu, F. (2019). OFS-NN: An effective phishing websites detection model based on optimal feature selection and neural network. Ieee Access, 7, 73271–73284.CrossRef
Zurück zum Zitat Hasan, M., Orgun, M. A., & Schwitter, R. (2019). Real-time event detection from the twitter data stream using the twitternews+ framework. Information Processing & Management, 56(3), 1146–1165.CrossRef Hasan, M., Orgun, M. A., & Schwitter, R. (2019). Real-time event detection from the twitter data stream using the twitternews+ framework. Information Processing & Management, 56(3), 1146–1165.CrossRef
Zurück zum Zitat Prieto, J. C., Fernández-Isabel, A., De Diego, I. M., Ortega, F., & Moguerza, J. M. (2021). Knowledge-based approach to detect potentially risky websites. IEEE Access, 9, 11633–11643.CrossRef Prieto, J. C., Fernández-Isabel, A., De Diego, I. M., Ortega, F., & Moguerza, J. M. (2021). Knowledge-based approach to detect potentially risky websites. IEEE Access, 9, 11633–11643.CrossRef
Zurück zum Zitat Kim, E.-J., & Kwak, J. (2021). Intelligent piracy site detection technique with high accuracy. KSII Transactions on Internet and Information Systems (TIIS), 15(1), 285–301. Kim, E.-J., & Kwak, J. (2021). Intelligent piracy site detection technique with high accuracy. KSII Transactions on Internet and Information Systems (TIIS), 15(1), 285–301.
Zurück zum Zitat Roitero, K., Brunello, A., Serra, G., & Mizzaro, S. (2020). Effectiveness evaluation without human relevance judgments: A systematic analysis of existing methods and of their combinations. Information Processing & Management, 57(2), 102149.CrossRef Roitero, K., Brunello, A., Serra, G., & Mizzaro, S. (2020). Effectiveness evaluation without human relevance judgments: A systematic analysis of existing methods and of their combinations. Information Processing & Management, 57(2), 102149.CrossRef
Zurück zum Zitat Khalid, F., Ali, H., Hanif, M.A., Rehman, S., Ahmed, R., & Shafique, M. (2019). Red-attack: Resource efficient decision based attack for machine learning. arXiv preprint arXiv:1901.10258 Khalid, F., Ali, H., Hanif, M.A., Rehman, S., Ahmed, R., & Shafique, M. (2019). Red-attack: Resource efficient decision based attack for machine learning. arXiv preprint arXiv:​1901.​10258
Zurück zum Zitat Sivic, J., & Zisserman, A. (2003). Video google: A text retrieval approach to object matching in videos. In Computer Vision, IEEE International Conference On, vol. 3, pp. 1470–1470. IEEE Computer Society Sivic, J., & Zisserman, A. (2003). Video google: A text retrieval approach to object matching in videos. In Computer Vision, IEEE International Conference On, vol. 3, pp. 1470–1470. IEEE Computer Society
Zurück zum Zitat Csurka, G., Dance, C., Fan, L., Willamowski, J., & Bray, C. (2004). Visual categorization with bags of keypoints. In Workshop on Statistical Learning in Computer Vision, ECCV, vol. 1, pp. 1–2. Prague Csurka, G., Dance, C., Fan, L., Willamowski, J., & Bray, C. (2004). Visual categorization with bags of keypoints. In Workshop on Statistical Learning in Computer Vision, ECCV, vol. 1, pp. 1–2. Prague
Metadaten
Titel
Illegal Online Gambling Site Detection using Multiple Resource-Oriented Machine Learning
verfasst von
Moohong Min
Donggi Augustine Lee
Publikationsdatum
11.07.2024
Verlag
Springer US
Erschienen in
Journal of Gambling Studies / Ausgabe 4/2024
Elektronische ISSN: 1573-3602
DOI
https://doi.org/10.1007/s10899-024-10337-z

Neu im Fachgebiet Psychiatrie

Digitale Therapie lindert Borderline-Persönlichkeitsstörung

Eine rein digitale Therapie ohne therapeutische Unterstützung kann die Symptomatik bei Borderline-Persönlichkeitsstörung bereits etwas lindern, auch scheint sie das Suizidrisiko zu mindern. Darauf deuten Ergebnisse einer großen kontrollierten Studie. Die Effekte sind aber eher gering.

Schadet Schichtarbeit dem Gehirn?

Eine große Registerstudie bestätigt, dass Schichtarbeit mit einem erhöhten Risiko für psychische und neurologische Erkrankungen einhergeht, sowie mit einer Volumenabnahme in Gehirnarealen, die für Depression, Angst und kognitive Funktionen relevant sind.

Starke Menopausensymptome: ein Hinweis auf kognitive Veränderungen?

Stärkere Beschwerden in der Perimenopause sind mit einer reduzierten kognitiven Funktion in den mittleren und späteren Lebensjahren assoziiert. Auch das Verhalten kann sich ändern, wie eine Studie zeigt. Beides steht womöglich für erhöhte Demenzgefährdung.

Was tun, wenn pneumologische Medikamente Psyche und Blutbild verändern?

Arzneimittel für Patienten mit Mukoviszidose oder pulmonaler arterieller Hypertonie wirken offenbar nicht nur auf die Lunge. Was es in der Praxis zu beachten gilt, wurde beim Pneumologie-Kongress erläutert.