Skip to main content
Erschienen in:

01.06.2019 | Review

Illuminating the Activated Brain: Emerging Activity-Dependent Tools to Capture and Control Functional Neural Circuits

verfasst von: Qiye He, Jihua Wang, Hailan Hu

Erschienen in: Neuroscience Bulletin | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Immediate-early genes (IEGs) have long been used to visualize neural activations induced by sensory and behavioral stimuli. Recent advances in imaging techniques have made it possible to use endogenous IEG signals to visualize and discriminate neural ensembles activated by multiple stimuli, and to map whole-brain-scale neural activation at single-neuron resolution. In addition, a collection of IEG-dependent molecular tools has been developed that can be used to complement the labeling of endogenous IEG genes and, especially, to manipulate activated neural ensembles in order to reveal the circuits and mechanisms underlying different behaviors. Here, we review these techniques and tools in terms of their utility in studying functional neural circuits. In addition, we provide an experimental strategy to measure the signal-to-noise ratio of IEG-dependent molecular tools, for evaluating their suitability for investigating relevant circuits and behaviors.
Literatur
3.
Zurück zum Zitat Cole AJ, Saffen DW, Baraban JM, Worley PF. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 1989, 340: 474–476.CrossRefPubMed Cole AJ, Saffen DW, Baraban JM, Worley PF. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 1989, 340: 474–476.CrossRefPubMed
4.
Zurück zum Zitat Bartel DP, Sheng M, Lau LF, Greenberg ME. Growth factors and membrane depolarization activate distinct programs of early response gene expression: dissociation of fos and jun induction. Genes Dev 1989, 3: 304–313.CrossRefPubMed Bartel DP, Sheng M, Lau LF, Greenberg ME. Growth factors and membrane depolarization activate distinct programs of early response gene expression: dissociation of fos and jun induction. Genes Dev 1989, 3: 304–313.CrossRefPubMed
5.
Zurück zum Zitat Morgan JI, Cohen DR, Hempstead JL, Curran T. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 1987, 237: 192–197.CrossRefPubMed Morgan JI, Cohen DR, Hempstead JL, Curran T. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 1987, 237: 192–197.CrossRefPubMed
6.
Zurück zum Zitat Moratalla R, Robertson HA, Graybiel AM. Dynamic regulation of NGFI-A (zif268, egr1) gene expression in the striatum. J Neurosci 1992, 12: 2609–2622.CrossRefPubMedPubMedCentral Moratalla R, Robertson HA, Graybiel AM. Dynamic regulation of NGFI-A (zif268, egr1) gene expression in the striatum. J Neurosci 1992, 12: 2609–2622.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Hope B, Kosofsky B, Hyman SE, Nestler EJ. Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc Natl Acad Sci U S A 1992, 89: 5764–5768.CrossRefPubMedPubMedCentral Hope B, Kosofsky B, Hyman SE, Nestler EJ. Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc Natl Acad Sci U S A 1992, 89: 5764–5768.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Johnson ZV, Revis AA, Burdick MA, Rhodes JS. A similar pattern of neuronal Fos activation in 10 brain regions following exposure to reward- or aversion-associated contextual cues in mice. Physiol Behav 2010, 99: 412–418.CrossRefPubMed Johnson ZV, Revis AA, Burdick MA, Rhodes JS. A similar pattern of neuronal Fos activation in 10 brain regions following exposure to reward- or aversion-associated contextual cues in mice. Physiol Behav 2010, 99: 412–418.CrossRefPubMed
9.
Zurück zum Zitat Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 2012, 491: 212–217.CrossRefPubMedPubMedCentral Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 2012, 491: 212–217.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Ye L, Allen WE, Thompson KR, Tian Q, Hsueh B, Ramakrishnan C, et al. Wiring and molecular features of prefrontal ensembles representing distinct experiences. Cell 2016, 165: 1776–1788.CrossRefPubMedPubMedCentral Ye L, Allen WE, Thompson KR, Tian Q, Hsueh B, Ramakrishnan C, et al. Wiring and molecular features of prefrontal ensembles representing distinct experiences. Cell 2016, 165: 1776–1788.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Beyeler A, Namburi P, Glober GF, Simonnet C, Calhoon GG, Conyers GF, et al. Divergent routing of positive and negative information from the amygdala during memory retrieval. Neuron 2016, 90: 348–361.CrossRefPubMedPubMedCentral Beyeler A, Namburi P, Glober GF, Simonnet C, Calhoon GG, Conyers GF, et al. Divergent routing of positive and negative information from the amygdala during memory retrieval. Neuron 2016, 90: 348–361.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Namburi P, Beyeler A, Yorozu S, Calhoon GG, Halbert SA, Wichmann R, et al. A circuit mechanism for differentiating positive and negative associations. Nature 2015, 520: 675–678.CrossRefPubMedPubMedCentral Namburi P, Beyeler A, Yorozu S, Calhoon GG, Halbert SA, Wichmann R, et al. A circuit mechanism for differentiating positive and negative associations. Nature 2015, 520: 675–678.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S. Antagonistic negative and positive neurons of the basolateral amygdala. Nat Neurosci 2016, 19: 1636–1646.CrossRefPubMedPubMedCentral Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S. Antagonistic negative and positive neurons of the basolateral amygdala. Nat Neurosci 2016, 19: 1636–1646.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Guzowski JF, Setlow B, Wagner EK, McGaugh JL. Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 2001, 21: 5089–5098.CrossRefPubMedPubMedCentral Guzowski JF, Setlow B, Wagner EK, McGaugh JL. Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 2001, 21: 5089–5098.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Guzowski JF, Worley PF. Cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH). Curr Protoc Neurosci 2001, 15: 1–8.CrossRef Guzowski JF, Worley PF. Cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH). Curr Protoc Neurosci 2001, 15: 1–8.CrossRef
16.
Zurück zum Zitat Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 2011, 470: 221–226.CrossRefPubMedPubMedCentral Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 2011, 470: 221–226.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Chaudhuri A, Nissanov J, Larocque S, Rioux L. Dual activity maps in primate visual cortex produced by different temporal patterns of zif268 mRNA and protein expression. Proc Natl Acad Sci U S A 1997, 94: 2671–2675.CrossRefPubMedPubMedCentral Chaudhuri A, Nissanov J, Larocque S, Rioux L. Dual activity maps in primate visual cortex produced by different temporal patterns of zif268 mRNA and protein expression. Proc Natl Acad Sci U S A 1997, 94: 2671–2675.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Zangenehpour S, Chaudhuri A. Neural activity profiles of the neocortex and superior colliculus after bimodal sensory stimulation. Cereb Cortex 2001, 11: 924–935.CrossRefPubMed Zangenehpour S, Chaudhuri A. Neural activity profiles of the neocortex and superior colliculus after bimodal sensory stimulation. Cereb Cortex 2001, 11: 924–935.CrossRefPubMed
19.
Zurück zum Zitat Xiu J, Zhang Q, Zhou T, Zhou TT, Chen Y, Hu H. Visualizing an emotional valence map in the limbic forebrain by TAI–FISH. Nat Neurosci 2014, 17: 1552–1559.CrossRefPubMed Xiu J, Zhang Q, Zhou T, Zhou TT, Chen Y, Hu H. Visualizing an emotional valence map in the limbic forebrain by TAI–FISH. Nat Neurosci 2014, 17: 1552–1559.CrossRefPubMed
20.
Zurück zum Zitat Zhang Q, He Q, Wang J, Fu C, Hu H. Use of TAI-FISH to visualize neural ensembles activated by multiple stimuli. Nat Protoc 2018, 13: 118–133.CrossRefPubMed Zhang Q, He Q, Wang J, Fu C, Hu H. Use of TAI-FISH to visualize neural ensembles activated by multiple stimuli. Nat Protoc 2018, 13: 118–133.CrossRefPubMed
21.
22.
Zurück zum Zitat Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 2011, 14: 1481–1488.CrossRefPubMed Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 2011, 14: 1481–1488.CrossRefPubMed
23.
Zurück zum Zitat Erturk A, Becker K, Jahrling N, Mauch CP, Hojer CD, Egen JG, et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 2012, 7: 1983–1995.CrossRefPubMed Erturk A, Becker K, Jahrling N, Mauch CP, Hojer CD, Egen JG, et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 2012, 7: 1983–1995.CrossRefPubMed
24.
Zurück zum Zitat Erturk A, Mauch CP, Hellal F, Forstner F, Keck T, Becker K, et al. Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat Med 2011, 18: 166–171.CrossRefPubMed Erturk A, Mauch CP, Hellal F, Forstner F, Keck T, Becker K, et al. Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat Med 2011, 18: 166–171.CrossRefPubMed
25.
Zurück zum Zitat Kuwajima T, Sitko AA, Bhansali P, Jurgens C, Guido W, Mason C. ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 2013, 140: 1364–1368.CrossRefPubMedPubMedCentral Kuwajima T, Sitko AA, Bhansali P, Jurgens C, Guido W, Mason C. ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 2013, 140: 1364–1368.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Ke MT, Fujimoto S, Imai T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 2013, 16: 1154–1161.CrossRefPubMed Ke MT, Fujimoto S, Imai T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 2013, 16: 1154–1161.CrossRefPubMed
27.
28.
Zurück zum Zitat Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, et al. Structural and molecular interrogation of intact biological systems. Nature 2013, 497: 332–337.CrossRefPubMedPubMedCentral Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, et al. Structural and molecular interrogation of intact biological systems. Nature 2013, 497: 332–337.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 2014, 157: 726–739.CrossRefPubMed Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 2014, 157: 726–739.CrossRefPubMed
30.
Zurück zum Zitat Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 2014, 159: 896–910.CrossRefPubMed Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 2014, 159: 896–910.CrossRefPubMed
31.
Zurück zum Zitat Renier N, Adams EL, Kirst C, Wu Z, Azevedo R, Kohl J, et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 2016, 165: 1789–1802.CrossRefPubMedPubMedCentral Renier N, Adams EL, Kirst C, Wu Z, Azevedo R, Kohl J, et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 2016, 165: 1789–1802.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK, Lubeck E, et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 2014, 158: 945–958.CrossRefPubMedPubMedCentral Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK, Lubeck E, et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 2014, 158: 945–958.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Theer P, Denk W. On the fundamental imaging-depth limit in two-photon microscopy. J Opt Soc Am A Opt Image Sci Vis 2006, 23: 3139–3149.CrossRefPubMed Theer P, Denk W. On the fundamental imaging-depth limit in two-photon microscopy. J Opt Soc Am A Opt Image Sci Vis 2006, 23: 3139–3149.CrossRefPubMed
34.
Zurück zum Zitat Li A, Gong H, Zhang B, Wang Q, Yan C, Wu J, et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 2010, 330: 1404–1408.CrossRefPubMed Li A, Gong H, Zhang B, Wang Q, Yan C, Wu J, et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 2010, 330: 1404–1408.CrossRefPubMed
35.
Zurück zum Zitat Zheng T, Yang Z, Li A, Lv X, Zhou Z, Wang X, et al. Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography. Opt Express 2013, 21: 9839–9850.CrossRefPubMed Zheng T, Yang Z, Li A, Lv X, Zhou Z, Wang X, et al. Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography. Opt Express 2013, 21: 9839–9850.CrossRefPubMed
36.
Zurück zum Zitat Gong H, Zeng S, Yan C, Lv X, Yang Z, Xu T, et al. Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. Neuroimage 2013, 74: 87–98.CrossRefPubMed Gong H, Zeng S, Yan C, Lv X, Yang Z, Xu T, et al. Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. Neuroimage 2013, 74: 87–98.CrossRefPubMed
37.
Zurück zum Zitat Xiong H, Zhou Z, Zhu M, Lv X, Li A, Li S, et al. Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging. Nat Commun 2014, 5: 3992.CrossRefPubMed Xiong H, Zhou Z, Zhu M, Lv X, Li A, Li S, et al. Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging. Nat Commun 2014, 5: 3992.CrossRefPubMed
38.
Zurück zum Zitat Gore F, Schwartz EC, Salzman CD. Manipulating neural activity in physiologically classified neurons: triumphs and challenges. Philos Trans R Soc Lond B Biol Sci 2015, 370: 20140216.CrossRefPubMedPubMedCentral Gore F, Schwartz EC, Salzman CD. Manipulating neural activity in physiologically classified neurons: triumphs and challenges. Philos Trans R Soc Lond B Biol Sci 2015, 370: 20140216.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Kasof GM, Mandelzys A, Maika SD, Hammer RE, Curran T, Morgan JI. Kainic acid-induced neuronal death is associated with DNA damage and a unique immediate-early gene response in c-fos-lacZ transgenic rats. J Neurosci 1995, 15: 4238–4249.CrossRefPubMedPubMedCentral Kasof GM, Mandelzys A, Maika SD, Hammer RE, Curran T, Morgan JI. Kainic acid-induced neuronal death is associated with DNA damage and a unique immediate-early gene response in c-fos-lacZ transgenic rats. J Neurosci 1995, 15: 4238–4249.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Wilson Y, Nag N, Davern P, Oldfield BJ, McKinley MJ, Greferath U, et al. Visualization of functionally activated circuitry in the brain. Proc Natl Acad Sci U S A 2002, 99: 3252–3257.CrossRefPubMedPubMedCentral Wilson Y, Nag N, Davern P, Oldfield BJ, McKinley MJ, Greferath U, et al. Visualization of functionally activated circuitry in the brain. Proc Natl Acad Sci U S A 2002, 99: 3252–3257.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Barth AL, Gerkin RC, Dean KL. Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J Neurosci 2004, 24: 6466–6475.CrossRefPubMedPubMedCentral Barth AL, Gerkin RC, Dean KL. Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J Neurosci 2004, 24: 6466–6475.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Knapska E, Macias M, Mikosz M, Nowak A, Owczarek D, Wawrzyniak M, et al. Functional anatomy of neural circuits regulating fear and extinction. Proc Natl Acad Sci U S A 2012, 109: 17093–17098.CrossRefPubMedPubMedCentral Knapska E, Macias M, Mikosz M, Nowak A, Owczarek D, Wawrzyniak M, et al. Functional anatomy of neural circuits regulating fear and extinction. Proc Natl Acad Sci U S A 2012, 109: 17093–17098.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Mikuni T, Uesaka N, Okuno H, Hirai H, Deisseroth K, Bito H, et al. Arc/Arg3.1 is a postsynaptic mediator of activity-dependent synapse elimination in the developing cerebellum. Neuron 2013, 78: 1024–1035.CrossRefPubMedPubMedCentral Mikuni T, Uesaka N, Okuno H, Hirai H, Deisseroth K, Bito H, et al. Arc/Arg3.1 is a postsynaptic mediator of activity-dependent synapse elimination in the developing cerebellum. Neuron 2013, 78: 1024–1035.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Wang KH, Majewska A, Schummers J, Farley B, Hu C, Sur M, et al. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell 2006, 126: 389–402.CrossRefPubMed Wang KH, Majewska A, Schummers J, Farley B, Hu C, Sur M, et al. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell 2006, 126: 389–402.CrossRefPubMed
45.
Zurück zum Zitat Kim Y, Perova Z, Mirrione MM, Pradhan K, Henn FA, Shea S, et al. Whole-brain mapping of neuronal activity in the learned helplessness model of depression. Front Neural Circuits 2016, 10: 3.CrossRefPubMedPubMedCentral Kim Y, Perova Z, Mirrione MM, Pradhan K, Henn FA, Shea S, et al. Whole-brain mapping of neuronal activity in the learned helplessness model of depression. Front Neural Circuits 2016, 10: 3.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Koya E, Golden SA, Harvey BK, Guez-Barber DH, Berkow A, Simmons DE, et al. Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nat Neurosci 2009, 12: 1069–1073.CrossRefPubMedPubMedCentral Koya E, Golden SA, Harvey BK, Guez-Barber DH, Berkow A, Simmons DE, et al. Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nat Neurosci 2009, 12: 1069–1073.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Boer U, Alejel T, Beimesche S, Cierny I, Krause D, Knepel W, et al. CRE/CREB-driven up-regulation of gene expression by chronic social stress in CRE-luciferase transgenic mice: reversal by antidepressant treatment. PLoS One 2007, 2: e431.CrossRefPubMedPubMedCentral Boer U, Alejel T, Beimesche S, Cierny I, Krause D, Knepel W, et al. CRE/CREB-driven up-regulation of gene expression by chronic social stress in CRE-luciferase transgenic mice: reversal by antidepressant treatment. PLoS One 2007, 2: e431.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Geusz ME, Fletcher C, Block GD, Straume M, Copeland NG, Jenkins NA, et al. Long-term monitoring of circadian rhythms in c-fos gene expression from suprachiasmatic nucleus cultures. Curr Biol 1997, 7: 758–766.CrossRefPubMed Geusz ME, Fletcher C, Block GD, Straume M, Copeland NG, Jenkins NA, et al. Long-term monitoring of circadian rhythms in c-fos gene expression from suprachiasmatic nucleus cultures. Curr Biol 1997, 7: 758–766.CrossRefPubMed
49.
Zurück zum Zitat Subach FV, Subach OM, Gundorov IS, Morozova KS, Piatkevich KD, Cuervo AM, et al. Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nat Chem Biol 2009, 5: 118–126.CrossRefPubMedPubMedCentral Subach FV, Subach OM, Gundorov IS, Morozova KS, Piatkevich KD, Cuervo AM, et al. Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nat Chem Biol 2009, 5: 118–126.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Kawashima T, Kitamura K, Suzuki K, Nonaka M, Kamijo S, Takemoto-Kimura S, et al. Functional labeling of neurons and their projections using the synthetic activity-dependent promoter E-SARE. Nat Methods 2013, 10: 889–895.CrossRefPubMed Kawashima T, Kitamura K, Suzuki K, Nonaka M, Kamijo S, Takemoto-Kimura S, et al. Functional labeling of neurons and their projections using the synthetic activity-dependent promoter E-SARE. Nat Methods 2013, 10: 889–895.CrossRefPubMed
51.
Zurück zum Zitat Eguchi M, Yamaguchi S. In vivo and in vitro visualization of gene expression dynamics over extensive areas of the brain. Neuroimage 2009, 44: 1274–1283.CrossRefPubMed Eguchi M, Yamaguchi S. In vivo and in vitro visualization of gene expression dynamics over extensive areas of the brain. Neuroimage 2009, 44: 1274–1283.CrossRefPubMed
52.
Zurück zum Zitat Kawashima T, Okuno H, Nonaka M, Adachi-Morishima A, Kyo N, Okamura M, et al. Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc Natl Acad Sci U S A 2009, 106: 316–321.CrossRefPubMed Kawashima T, Okuno H, Nonaka M, Adachi-Morishima A, Kyo N, Okamura M, et al. Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc Natl Acad Sci U S A 2009, 106: 316–321.CrossRefPubMed
54.
Zurück zum Zitat Cruz FC, Babin KR, Leao RM, Goldart EM, Bossert JM, Shaham Y, et al. Role of nucleus accumbens shell neuronal ensembles in context-induced reinstatement of cocaine-seeking. J Neurosci 2014, 34: 7437–7446.CrossRefPubMedPubMedCentral Cruz FC, Babin KR, Leao RM, Goldart EM, Bossert JM, Shaham Y, et al. Role of nucleus accumbens shell neuronal ensembles in context-induced reinstatement of cocaine-seeking. J Neurosci 2014, 34: 7437–7446.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Bossert JM, Stern AL, Theberge FR, Cifani C, Koya E, Hope BT, et al. Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin. Nat Neurosci 2011, 14: 420–422.CrossRefPubMedPubMedCentral Bossert JM, Stern AL, Theberge FR, Cifani C, Koya E, Hope BT, et al. Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin. Nat Neurosci 2011, 14: 420–422.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Xue YX, Chen YY, Zhang LB, Zhang LQ, Huang GD, Sun SC, et al. Selective inhibition of amygdala neuronal ensembles encoding nicotine-associated memories inhibits nicotine preference and relapse. Biol Psychiatry 2017, 82: 781–793. .CrossRefPubMedPubMedCentral Xue YX, Chen YY, Zhang LB, Zhang LQ, Huang GD, Sun SC, et al. Selective inhibition of amygdala neuronal ensembles encoding nicotine-associated memories inhibits nicotine preference and relapse. Biol Psychiatry 2017, 82: 781–793. .CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Warren BL, Mendoza MP, Cruz FC, Leao RM, Caprioli D, Rubio FJ, et al. Distinct Fos-expressing neuronal ensembles in the ventromedial prefrontal cortex mediate food reward and extinction memories. J Neurosci 2016, 36: 6691–6703.CrossRefPubMedPubMedCentral Warren BL, Mendoza MP, Cruz FC, Leao RM, Caprioli D, Rubio FJ, et al. Distinct Fos-expressing neuronal ensembles in the ventromedial prefrontal cortex mediate food reward and extinction memories. J Neurosci 2016, 36: 6691–6703.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005, 8: 1263-1268.CrossRefPubMed Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005, 8: 1263-1268.CrossRefPubMed
59.
Zurück zum Zitat Zhang F, Wang LP, Boyden ES, Deisseroth K. Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 2006, 3: 785–792.CrossRefPubMed Zhang F, Wang LP, Boyden ES, Deisseroth K. Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 2006, 3: 785–792.CrossRefPubMed
60.
Zurück zum Zitat Zhao S, Cunha C, Zhang F, Liu Q, Gloss B, Deisseroth K, et al. Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol 2008, 36: 141–154.CrossRefPubMedPubMedCentral Zhao S, Cunha C, Zhang F, Liu Q, Gloss B, Deisseroth K, et al. Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol 2008, 36: 141–154.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A, Rajimehr R, et al. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 2011, 5: 18.CrossRefPubMedPubMedCentral Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A, Rajimehr R, et al. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 2011, 5: 18.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Redondo RL, Kim J, Arons AL, Ramirez S, Liu X, Tonegawa S. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 2014, 513: 426–430.CrossRefPubMedPubMedCentral Redondo RL, Kim J, Arons AL, Ramirez S, Liu X, Tonegawa S. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 2014, 513: 426–430.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Ramirez S, Liu X, MacDonald CJ, Moffa A, Zhou J, Redondo RL, et al. Activating positive memory engrams suppresses depression–like behaviour. Nature 2015, 522: 335–339.CrossRefPubMedPubMedCentral Ramirez S, Liu X, MacDonald CJ, Moffa A, Zhou J, Redondo RL, et al. Activating positive memory engrams suppresses depression–like behaviour. Nature 2015, 522: 335–339.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 2012, 484: 381–385.CrossRefPubMedPubMedCentral Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 2012, 484: 381–385.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Ramirez S, Liu X, Lin PA, Suh J, Pignatelli M, Redondo RL, et al. Creating a false memory in the hippocampus. Science 2013, 341: 387–391.CrossRefPubMed Ramirez S, Liu X, Lin PA, Suh J, Pignatelli M, Redondo RL, et al. Creating a false memory in the hippocampus. Science 2013, 341: 387–391.CrossRefPubMed
66.
Zurück zum Zitat Gore F, Schwartz EC, Brangers BC, Aladi S, Stujenske JM, Likhtik E, et al. Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell 2015, 162: 134–145.CrossRefPubMedPubMedCentral Gore F, Schwartz EC, Brangers BC, Aladi S, Stujenske JM, Likhtik E, et al. Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell 2015, 162: 134–145.CrossRefPubMedPubMedCentral
67.
68.
Zurück zum Zitat Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 2007, 104: 5163–5168.CrossRefPubMedPubMedCentral Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 2007, 104: 5163–5168.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Dong S, Rogan SC, Roth BL. Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat Protoc 2010, 5: 561–573.CrossRefPubMed Dong S, Rogan SC, Roth BL. Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat Protoc 2010, 5: 561–573.CrossRefPubMed
70.
Zurück zum Zitat Garner AR, Rowland DC, Hwang SY, Baumgaertel K, Roth BL, Kentros C, et al. Generation of a synthetic memory trace. Science 2012, 335: 1513–1516.CrossRefPubMedPubMedCentral Garner AR, Rowland DC, Hwang SY, Baumgaertel K, Roth BL, Kentros C, et al. Generation of a synthetic memory trace. Science 2012, 335: 1513–1516.CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Man PS, Wells T, Carter DA. Egr-1-d2EGFP transgenic rats identify transient populations of neurons and glial cells during postnatal brain development. Gene Expr Patterns 2007, 7: 872–883.CrossRefPubMed Man PS, Wells T, Carter DA. Egr-1-d2EGFP transgenic rats identify transient populations of neurons and glial cells during postnatal brain development. Gene Expr Patterns 2007, 7: 872–883.CrossRefPubMed
72.
Zurück zum Zitat Xie H, Liu Y, Zhu Y, Ding X, Yang Y, Guan JS. In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain. Proc Natl Acad Sci U S A 2014, 111: 2788–2793.CrossRefPubMedPubMedCentral Xie H, Liu Y, Zhu Y, Ding X, Yang Y, Guan JS. In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain. Proc Natl Acad Sci U S A 2014, 111: 2788–2793.CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI, Loshbaugh AL, et al. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 2015, 525: 333–338.CrossRefPubMedPubMedCentral Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI, Loshbaugh AL, et al. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 2015, 525: 333–338.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Sorensen AT, Cooper YA, Baratta MV, Weng FJ, Zhang Y, Ramamoorthi K, et al. A robust activity marking system for exploring active neuronal ensembles. Elife 2016, 5: e13918.CrossRefPubMedPubMedCentral Sorensen AT, Cooper YA, Baratta MV, Weng FJ, Zhang Y, Ramamoorthi K, et al. A robust activity marking system for exploring active neuronal ensembles. Elife 2016, 5: e13918.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Matsuo N, Reijmers L, Mayford M. Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science 2008, 319: 1104–1107.CrossRefPubMedPubMedCentral Matsuo N, Reijmers L, Mayford M. Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science 2008, 319: 1104–1107.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Reijmers LG, Perkins BL, Matsuo N, Mayford M. Localization of a stable neural correlate of associative memory. Science 2007, 317: 1230–1233.CrossRefPubMed Reijmers LG, Perkins BL, Matsuo N, Mayford M. Localization of a stable neural correlate of associative memory. Science 2007, 317: 1230–1233.CrossRefPubMed
77.
Zurück zum Zitat Kitamura T, Ogawa SK, Roy DS, Okuyama T, Morrissey MD, Smith LM, et al. Engrams and circuits crucial for systems consolidation of a memory. Science 2017, 356: 73–78.CrossRefPubMedPubMedCentral Kitamura T, Ogawa SK, Roy DS, Okuyama T, Morrissey MD, Smith LM, et al. Engrams and circuits crucial for systems consolidation of a memory. Science 2017, 356: 73–78.CrossRefPubMedPubMedCentral
78.
Zurück zum Zitat Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 1992, 89: 5547–5551.CrossRefPubMedPubMedCentral Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 1992, 89: 5547–5551.CrossRefPubMedPubMedCentral
79.
Zurück zum Zitat Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P. Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 1996, 93: 10887–10890.CrossRefPubMedPubMedCentral Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P. Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 1996, 93: 10887–10890.CrossRefPubMedPubMedCentral
80.
Zurück zum Zitat Metzger D, Clifford J, Chiba H, Chambon P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 1995, 92: 6991–6995.CrossRefPubMedPubMedCentral Metzger D, Clifford J, Chiba H, Chambon P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 1995, 92: 6991–6995.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Feil R, Wagner J, Metzger D, Chambon P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 1997, 237: 752–757.CrossRefPubMed Feil R, Wagner J, Metzger D, Chambon P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 1997, 237: 752–757.CrossRefPubMed
82.
Zurück zum Zitat Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009, 459: 698–702.CrossRefPubMedPubMedCentral Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009, 459: 698–702.CrossRefPubMedPubMedCentral
83.
Zurück zum Zitat Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A, Fujisawa S, et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 2012, 15: 793–802.CrossRefPubMedPubMedCentral Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A, Fujisawa S, et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 2012, 15: 793–802.CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 2010, 13: 133–140.CrossRefPubMed Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 2010, 13: 133–140.CrossRefPubMed
85.
Zurück zum Zitat Guenthner CJ, Miyamichi K, Yang HH, Heller HC, Luo L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron 2013, 78: 773–784.CrossRefPubMedPubMedCentral Guenthner CJ, Miyamichi K, Yang HH, Heller HC, Luo L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron 2013, 78: 773–784.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Allen WE, DeNardo LA, Chen MZ, Liu CD, Loh KM, Fenno LE, et al. Thirst-associated preoptic neurons encode an aversive motivational drive. Science 2017, 357: 1149–1155.CrossRefPubMedPubMedCentral Allen WE, DeNardo LA, Chen MZ, Liu CD, Loh KM, Fenno LE, et al. Thirst-associated preoptic neurons encode an aversive motivational drive. Science 2017, 357: 1149–1155.CrossRefPubMedPubMedCentral
87.
Zurück zum Zitat Denny CA, Kheirbek MA, Alba EL, Tanaka KF, Brachman RA, Laughman KB, et al. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 2014, 83: 189–201.CrossRefPubMedPubMedCentral Denny CA, Kheirbek MA, Alba EL, Tanaka KF, Brachman RA, Laughman KB, et al. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 2014, 83: 189–201.CrossRefPubMedPubMedCentral
88.
Zurück zum Zitat Sakurai K, Zhao S, Takatoh J, Rodriguez E, Lu J, Leavitt AD, et al. Capturing and manipulating activated neuronal ensembles with CANE delineates a hypothalamic social-fear circuit. Neuron 2016, 92: 739–753.CrossRefPubMedPubMedCentral Sakurai K, Zhao S, Takatoh J, Rodriguez E, Lu J, Leavitt AD, et al. Capturing and manipulating activated neuronal ensembles with CANE delineates a hypothalamic social-fear circuit. Neuron 2016, 92: 739–753.CrossRefPubMedPubMedCentral
89.
Zurück zum Zitat Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 2008, 135: 738–748.CrossRefPubMedPubMedCentral Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 2008, 135: 738–748.CrossRefPubMedPubMedCentral
90.
Zurück zum Zitat Li K, Nakajima M, Ibanez-Tallon I, Heintz N. A cortical circuit for sexually dimorphic oxytocin-dependent anxiety behaviors. Cell 2016, 167: 60–72 e11. Li K, Nakajima M, Ibanez-Tallon I, Heintz N. A cortical circuit for sexually dimorphic oxytocin-dependent anxiety behaviors. Cell 2016, 167: 60–72 e11.
91.
Zurück zum Zitat Guez-Barber D, Fanous S, Golden SA, Schrama R, Koya E, Stern AL, et al. FACS identifies unique cocaine-induced gene regulation in selectively activated adult striatal neurons. J Neurosci 2011, 31: 4251–4259.CrossRefPubMedPubMedCentral Guez-Barber D, Fanous S, Golden SA, Schrama R, Koya E, Stern AL, et al. FACS identifies unique cocaine-induced gene regulation in selectively activated adult striatal neurons. J Neurosci 2011, 31: 4251–4259.CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Knight ZA, Tan K, Birsoy K, Schmidt S, Garrison JL, Wysocki RW, et al. Molecular profiling of activated neurons by phosphorylated ribosome capture. Cell 2012, 151: 1126–1137.CrossRefPubMed Knight ZA, Tan K, Birsoy K, Schmidt S, Garrison JL, Wysocki RW, et al. Molecular profiling of activated neurons by phosphorylated ribosome capture. Cell 2012, 151: 1126–1137.CrossRefPubMed
93.
Zurück zum Zitat Lee D, Hyun JH, Jung K, Hannan P, Kwon HB. A calcium- and light-gated switch to induce gene expression in activated neurons. Nat Biotechnol 2017. Lee D, Hyun JH, Jung K, Hannan P, Kwon HB. A calcium- and light-gated switch to induce gene expression in activated neurons. Nat Biotechnol 2017.
94.
Zurück zum Zitat Wang W, Wildes CP, Pattarabanjird T, Sanchez MI, Glober GF, Matthews GA, et al. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. Nat Biotechnol 2017, 35: 864–871.CrossRefPubMedPubMedCentral Wang W, Wildes CP, Pattarabanjird T, Sanchez MI, Glober GF, Matthews GA, et al. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. Nat Biotechnol 2017, 35: 864–871.CrossRefPubMedPubMedCentral
95.
Zurück zum Zitat Harper SM, Neil LC, Gardner KH. Structural basis of a phototropin light switch. Science 2003, 301: 1541–1544.CrossRefPubMed Harper SM, Neil LC, Gardner KH. Structural basis of a phototropin light switch. Science 2003, 301: 1541–1544.CrossRefPubMed
96.
Zurück zum Zitat Barnea G, Strapps W, Herrada G, Berman Y, Ong J, Kloss B, et al. The genetic design of signaling cascades to record receptor activation. Proc Natl Acad Sci U S A 2008, 105: 64–69.CrossRefPubMed Barnea G, Strapps W, Herrada G, Berman Y, Ong J, Kloss B, et al. The genetic design of signaling cascades to record receptor activation. Proc Natl Acad Sci U S A 2008, 105: 64–69.CrossRefPubMed
97.
Zurück zum Zitat Glazewski S, Bejar R, Mayford M, Fox K. The effect of autonomous alpha-CaMKII expression on sensory responses and experience-dependent plasticity in mouse barrel cortex. Neuropharmacology 2001, 41: 771–778.CrossRefPubMed Glazewski S, Bejar R, Mayford M, Fox K. The effect of autonomous alpha-CaMKII expression on sensory responses and experience-dependent plasticity in mouse barrel cortex. Neuropharmacology 2001, 41: 771–778.CrossRefPubMed
98.
Zurück zum Zitat Dragunow M, Faull R. The use of c-Fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 1989, 29: 261–265.CrossRefPubMed Dragunow M, Faull R. The use of c-Fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 1989, 29: 261–265.CrossRefPubMed
99.
Zurück zum Zitat Labiner DM, Butler LS, Cao Z, Hosford DA, Shin C, McNamara JO. Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing. J Neurosci 1993, 13: 744–751.CrossRefPubMedPubMedCentral Labiner DM, Butler LS, Cao Z, Hosford DA, Shin C, McNamara JO. Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing. J Neurosci 1993, 13: 744–751.CrossRefPubMedPubMedCentral
100.
Zurück zum Zitat Kovacs KJ. c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int 1998, 33: 287–297.CrossRefPubMed Kovacs KJ. c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int 1998, 33: 287–297.CrossRefPubMed
101.
Zurück zum Zitat Kleim JA, Lussnig E, Schwarz ER, Comery TA, Greenough WT. Synaptogenesis and FOS expression in the motor cortex of the adult rat after motor skill learning. J Neurosci 1996, 16: 4529–4535.CrossRefPubMedPubMedCentral Kleim JA, Lussnig E, Schwarz ER, Comery TA, Greenough WT. Synaptogenesis and FOS expression in the motor cortex of the adult rat after motor skill learning. J Neurosci 1996, 16: 4529–4535.CrossRefPubMedPubMedCentral
102.
Zurück zum Zitat Bhat RV, Baraban JM. High basal expression of Zif268 in cortex is dependent on intact noradrenergic system. Eur J Pharmacol 1992, 227: 447–448.CrossRefPubMed Bhat RV, Baraban JM. High basal expression of Zif268 in cortex is dependent on intact noradrenergic system. Eur J Pharmacol 1992, 227: 447–448.CrossRefPubMed
105.
Metadaten
Titel
Illuminating the Activated Brain: Emerging Activity-Dependent Tools to Capture and Control Functional Neural Circuits
verfasst von
Qiye He
Jihua Wang
Hailan Hu
Publikationsdatum
01.06.2019
Verlag
Springer Singapore
Erschienen in
Neuroscience Bulletin / Ausgabe 3/2019
Print ISSN: 1673-7067
Elektronische ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-018-0291-x

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Kaum Vorteile durch intraarterielle Lyse während Thrombektomie

Nach der Thrombektomie kleinere Fragmente über eine intraarterielle Lyse auflösen – dies könnte die Schlaganfalltherapie verbessern. Zwei aktuelle Studien ergeben für die periprozedurale Lyse jedoch keine großen Vorteile. Die Frage, wie viel sie nützt, bleibt weiter offen.

Nasenstimulation lindert chronische Migräne

Wird die Naseninnenseite durch Vibrationen stimuliert, kann dies offenbar die Zahl der Migränetage von Menschen mit chronischer Migräne deutlich senken. Darauf deuten die Resultate einer randomisiert-kontrollierten deutsch-finnischen Untersuchung.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.