Skip to main content

08.04.2019 | Oncology | Ausgabe 10/2019

European Radiology 10/2019

Image-based biomarkers for solid tumor quantification

European Radiology > Ausgabe 10/2019
Peter Savadjiev, Jaron Chong, Anthony Dohan, Vincent Agnus, Reza Forghani, Caroline Reinhold, Benoit Gallix
Wichtige Hinweise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


The last few decades have witnessed tremendous technological developments in image-based biomarkers for tumor quantification and characterization. Initially limited to manual one- and two-dimensional size measurements, image biomarkers have evolved to harness developments not only in image acquisition technology but also in image processing and analysis algorithms. At the same time, clinical validation remains a major challenge for the vast majority of these novel techniques, and there is still a major gap between the latest technological developments and image biomarkers used in everyday clinical practice. Currently, the imaging biomarker field is attracting increasing attention not only because of the tremendous interest in cutting-edge therapeutic developments and personalized medicine but also because of the recent progress in the application of artificial intelligence (AI) algorithms to large-scale datasets. Thus, the goal of the present article is to review the current state of the art for image biomarkers and their use for characterization and predictive quantification of solid tumors. Beginning with an overview of validated imaging biomarkers in current clinical practice, we proceed to a review of AI-based methods for tumor characterization, such as radiomics-based approaches and deep learning.
Key Points
Recent years have seen tremendous technological developments in image-based biomarkers for tumor quantification and characterization.
Image-based biomarkers can be used on an ongoing basis, in a non-invasive (or mildly invasive) way, to monitor the development and progression of the disease or its response to therapy.
We review the current state of the art for image biomarkers, as well as the recent developments in artificial intelligence (AI) algorithms for image processing and analysis.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

e.Med Interdisziplinär

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag als Mediziner

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf

Weitere Produktempfehlungen anzeigen
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2019

European Radiology 10/2019 Zur Ausgabe
  1. Sie können e.Med Radiologie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

Neu im Fachgebiet Radiologie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.