Skip to main content
Erschienen in: European Radiology 7/2016

22.09.2015 | Neuro

Imaging correlates of neural control of ocular movements

verfasst von: Mohit Agarwal, John L. Ulmer, Tushar Chandra, Andrew P. Klein, Leighton P. Mark, Suyash Mohan

Erschienen in: European Radiology | Ausgabe 7/2016

Einloggen, um Zugang zu erhalten

Abstract

The purpose of oculomotor movements is maintenance of clear images on the retina. Beyond this oversimplification, it requires several different types of ocular movements and reflexes to focus objects of interest to the fovea—the only portion of retina capable of sharp and clear vision. The different movements and reflexes that execute this task are the saccades, smooth pursuit movements, fixation, accommodation, and the optokinetic and vestibulo-ocular reflexes. Many different centres in the cerebrum, cerebellum, brainstem and thalami, control these movements via different pathways. At the outset, these mechanisms appear dauntingly complex to a radiologist. However, only a little effort could make it possible to understand these neural controls and empower the reading session. The following review on ocular movements and their neural control will enable radiologists and clinicians to correlate lesions with clinical deficits effectively without being swamped by exhaustive detail.
Key Points
Knowledge of cortical and subcortical areas controlling ocular movements is important.
Understanding of neural control of ocular movements makes a good foundation.
Awareness of anatomic areas controlling ocular movements helps in clinico-radiologic correlation.
Literatur
1.
Zurück zum Zitat Goldberg ME (2000) The control of gaze. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 4th edn. McGraw-Hill, New York, pp 782–800 Goldberg ME (2000) The control of gaze. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 4th edn. McGraw-Hill, New York, pp 782–800
2.
Zurück zum Zitat Pierrot-Deseilligny C, Muri RM, Ploner CJ et al (2003) Cortical control of ocular saccades in humans: a model for motricity. Prog Brain Res 142:3–17CrossRefPubMed Pierrot-Deseilligny C, Muri RM, Ploner CJ et al (2003) Cortical control of ocular saccades in humans: a model for motricity. Prog Brain Res 142:3–17CrossRefPubMed
4.
Zurück zum Zitat Buttner U, Buttner-Ennever JA (2006) Present concepts of oculomotor organization. Prog Brain Res 151:1–42CrossRefPubMed Buttner U, Buttner-Ennever JA (2006) Present concepts of oculomotor organization. Prog Brain Res 151:1–42CrossRefPubMed
5.
Zurück zum Zitat Ventre-Dominey J (2014) Vestibular function in the temporal and parietal cortex: distinct velocity and inertial processing pathways. Front Integr Neurosci 8:1–13CrossRef Ventre-Dominey J (2014) Vestibular function in the temporal and parietal cortex: distinct velocity and inertial processing pathways. Front Integr Neurosci 8:1–13CrossRef
6.
Zurück zum Zitat Dieterich M, Bucher SF, Seelos KC, Brandt T (1998) Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance: an fMRI study. Brain 121:1479–1495CrossRefPubMed Dieterich M, Bucher SF, Seelos KC, Brandt T (1998) Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance: an fMRI study. Brain 121:1479–1495CrossRefPubMed
7.
Zurück zum Zitat Dursteler MR, Wurtz RH (1988) Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST. J Neurophysiol 60:940–965PubMed Dursteler MR, Wurtz RH (1988) Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST. J Neurophysiol 60:940–965PubMed
8.
Zurück zum Zitat Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol 270:321–344CrossRefPubMedPubMedCentral Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol 270:321–344CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Zee DS, Tusa RJ, Herdman SJ et al (1987) Effects of occipital lobectomy upon eye movements in primate. J Neurophysiol 58:883–907PubMed Zee DS, Tusa RJ, Herdman SJ et al (1987) Effects of occipital lobectomy upon eye movements in primate. J Neurophysiol 58:883–907PubMed
10.
Zurück zum Zitat Verhagen W, Huygens P, Mulleners W (1997) Lack of optokinetic nystagmus and visual motion perception in acquired cortical blindness. Neuroophthalmology 17:211–216CrossRef Verhagen W, Huygens P, Mulleners W (1997) Lack of optokinetic nystagmus and visual motion perception in acquired cortical blindness. Neuroophthalmology 17:211–216CrossRef
11.
Zurück zum Zitat Naito Y, Tateya I, Hirano S et al (2003) Cortical correlates of vestibulo-ocular reflex modulation: a PET study. Brain 126:1562–1578CrossRefPubMed Naito Y, Tateya I, Hirano S et al (2003) Cortical correlates of vestibulo-ocular reflex modulation: a PET study. Brain 126:1562–1578CrossRefPubMed
12.
Zurück zum Zitat Monteiro MLR, Curi ALL, Pereira A et al (2003) Persistent accommodative spasm after severe head trauma. Br J Ophthalmol 87:240–251CrossRef Monteiro MLR, Curi ALL, Pereira A et al (2003) Persistent accommodative spasm after severe head trauma. Br J Ophthalmol 87:240–251CrossRef
13.
Zurück zum Zitat Alvarez TL, Alkan Y, Gohel S et al (2010) Functional anatomy of predictive vergence and saccade eye movements in humans: a functional MRI investigation. Vis Res 50:2163–2175CrossRefPubMed Alvarez TL, Alkan Y, Gohel S et al (2010) Functional anatomy of predictive vergence and saccade eye movements in humans: a functional MRI investigation. Vis Res 50:2163–2175CrossRefPubMed
14.
Zurück zum Zitat Ohtsuka K, Maekawa H, Takeda M et al (1998) Accommodation and convergence insufficiency with left middle cerebral artery occlusion. Am J Ophthalmol 106:60–64CrossRef Ohtsuka K, Maekawa H, Takeda M et al (1998) Accommodation and convergence insufficiency with left middle cerebral artery occlusion. Am J Ophthalmol 106:60–64CrossRef
15.
Zurück zum Zitat Lindner K, Hitzenberger P, Drlicek M et al (1992) Dissociated unilateral convergence paralysis in a patient with thalamotectal haemorrhage. J Neurol Neurosurg Psychiatry 55:731–733CrossRefPubMedPubMedCentral Lindner K, Hitzenberger P, Drlicek M et al (1992) Dissociated unilateral convergence paralysis in a patient with thalamotectal haemorrhage. J Neurol Neurosurg Psychiatry 55:731–733CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Herman P (1975) The Behr pupil revisited. Anisocoria after cerebrovascular accidents. Stroke 6:697–702CrossRefPubMed Herman P (1975) The Behr pupil revisited. Anisocoria after cerebrovascular accidents. Stroke 6:697–702CrossRefPubMed
17.
Zurück zum Zitat Kimura S, Shoumura K, Ichinohe N et al (1992) Neural mechanisms of pupillary abnormality following thalamic lesions: experimental lesion and stimulation studies in cats, and consideration of pupillary findings in thalamic vascular lesions. J Hirnforsch 33:565–583PubMed Kimura S, Shoumura K, Ichinohe N et al (1992) Neural mechanisms of pupillary abnormality following thalamic lesions: experimental lesion and stimulation studies in cats, and consideration of pupillary findings in thalamic vascular lesions. J Hirnforsch 33:565–583PubMed
18.
Zurück zum Zitat Milea D, Lobel E, Lehericy S et al (2001) Functional MRI mapping of parietal and cingular activity during voluntary saaccades. Soc Neurosci Abstr 71:27 Milea D, Lobel E, Lehericy S et al (2001) Functional MRI mapping of parietal and cingular activity during voluntary saaccades. Soc Neurosci Abstr 71:27
19.
Zurück zum Zitat Trillenberg P, Sprenger A, Petersen D et al (2007) Functional dissociation of saccade and hand reaching control with bilateral lesions of the medial wall of the intraparietal sulcus: implications for optic ataxia. Neuroimage 36:T69–T76CrossRefPubMed Trillenberg P, Sprenger A, Petersen D et al (2007) Functional dissociation of saccade and hand reaching control with bilateral lesions of the medial wall of the intraparietal sulcus: implications for optic ataxia. Neuroimage 36:T69–T76CrossRefPubMed
20.
Zurück zum Zitat Singer OC, Humpich MC, Laufs H et al (2006) Conjugate eye deviation in acute stroke incidence, hemispheric asymmetry, and lesion pattern. Stroke 37:2726–2732CrossRefPubMed Singer OC, Humpich MC, Laufs H et al (2006) Conjugate eye deviation in acute stroke incidence, hemispheric asymmetry, and lesion pattern. Stroke 37:2726–2732CrossRefPubMed
21.
Zurück zum Zitat Pierrot-Deseilligny C, Rivaud S, Gaymard B et al (1991) Cortical control of reflexive visually-guided saccades. Brain 114:1473–1485CrossRefPubMed Pierrot-Deseilligny C, Rivaud S, Gaymard B et al (1991) Cortical control of reflexive visually-guided saccades. Brain 114:1473–1485CrossRefPubMed
22.
Zurück zum Zitat Schlag J, Schlag-Rey M (1992) Neurophysiology of eye movements. Adv Neurol 57:135–147PubMed Schlag J, Schlag-Rey M (1992) Neurophysiology of eye movements. Adv Neurol 57:135–147PubMed
23.
Zurück zum Zitat Clark JM, Albers GW (1995) Vertical gaze Palsies from medial thalamic infarctions without midbrain involvement. Stroke 26:1467–1470CrossRefPubMed Clark JM, Albers GW (1995) Vertical gaze Palsies from medial thalamic infarctions without midbrain involvement. Stroke 26:1467–1470CrossRefPubMed
24.
Zurück zum Zitat Iijima M, Hirata A, Tadano Y et al (1994) A case of vertical gaze palsy associated with a unilateral infarct in the thalamo-mesencephalic junction on MR imaging. Rinsho Shinkeigaku 34:356–360PubMed Iijima M, Hirata A, Tadano Y et al (1994) A case of vertical gaze palsy associated with a unilateral infarct in the thalamo-mesencephalic junction on MR imaging. Rinsho Shinkeigaku 34:356–360PubMed
25.
Zurück zum Zitat Moriyasu H, Hashimoto Y, Miyashita T et al (1991) Supranuclear vertical gaze palsy and convergence nystagmus caused by unilateral riMLF lesion. Rinsho Shinkeigaku 31:1235–1237PubMed Moriyasu H, Hashimoto Y, Miyashita T et al (1991) Supranuclear vertical gaze palsy and convergence nystagmus caused by unilateral riMLF lesion. Rinsho Shinkeigaku 31:1235–1237PubMed
26.
Zurück zum Zitat Kremmyda O, Rettinger N, Strupp N (2009) Teaching video neuroimages: unilateral RIMLF lesion: pathologic eye movement torsion indicates lesion side and site. Neurology 73:e92–e93CrossRefPubMed Kremmyda O, Rettinger N, Strupp N (2009) Teaching video neuroimages: unilateral RIMLF lesion: pathologic eye movement torsion indicates lesion side and site. Neurology 73:e92–e93CrossRefPubMed
27.
Zurück zum Zitat Moschovakis AK, Scudde CA, Highstein SM (1991) Structure of the primate oculomotor burst generator. I. Medium-lead burst neurons with upward on-directions. J Neurophysiol 65:203–217PubMed Moschovakis AK, Scudde CA, Highstein SM (1991) Structure of the primate oculomotor burst generator. I. Medium-lead burst neurons with upward on-directions. J Neurophysiol 65:203–217PubMed
28.
Zurück zum Zitat McCrea RA, Strassman A, Highstei SM (1987) Anatomical and physiological characteristics of vestibular neurons mediating the vertical vestibulo-ocular reflexes of the squirrel monkey. J Comp Neurol 264:571–594CrossRefPubMed McCrea RA, Strassman A, Highstei SM (1987) Anatomical and physiological characteristics of vestibular neurons mediating the vertical vestibulo-ocular reflexes of the squirrel monkey. J Comp Neurol 264:571–594CrossRefPubMed
29.
Zurück zum Zitat Kokkoroyannis T, Scudder CA, Balaban CD et al (1996) Anatomy and physiology of the primate interstitial nucleus of Cajal I. Efferent projections. J Neurophysiol 75:725–739PubMed Kokkoroyannis T, Scudder CA, Balaban CD et al (1996) Anatomy and physiology of the primate interstitial nucleus of Cajal I. Efferent projections. J Neurophysiol 75:725–739PubMed
30.
Zurück zum Zitat Chimoto S, Iwamoto Y, Yoshida K (1999) Projections and firing properties of down eye-movement neurons in the interstitial nucleus of Cajal in the cat. J Neurophysiol 81:1199–1211PubMed Chimoto S, Iwamoto Y, Yoshida K (1999) Projections and firing properties of down eye-movement neurons in the interstitial nucleus of Cajal in the cat. J Neurophysiol 81:1199–1211PubMed
31.
Zurück zum Zitat Fukushima K (1991) The interstitial nucleus of Cajal in the midbrain reticular formation and vertical eye movement. Neurosci Res 10:159–187CrossRefPubMed Fukushima K (1991) The interstitial nucleus of Cajal in the midbrain reticular formation and vertical eye movement. Neurosci Res 10:159–187CrossRefPubMed
32.
Zurück zum Zitat Helmchen C, Rambold H, Fuhry L et al (1998) Deficits in vertical and torsional eye movements after uni and bilateral muscimol inactivation of the interstitial nucleus of Cajal (IC) of the alert monkey. Exp Brain Res 119:436–452CrossRefPubMed Helmchen C, Rambold H, Fuhry L et al (1998) Deficits in vertical and torsional eye movements after uni and bilateral muscimol inactivation of the interstitial nucleus of Cajal (IC) of the alert monkey. Exp Brain Res 119:436–452CrossRefPubMed
33.
Zurück zum Zitat Kheradmand A, Zee DS (2011) Cerebellum and ocular motor control. Front Neurol 2;53:1–15 Kheradmand A, Zee DS (2011) Cerebellum and ocular motor control. Front Neurol 2;53:1–15
34.
Zurück zum Zitat Waespe W, Cohen B, Raphan T (1985) Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science 228:199–202CrossRefPubMed Waespe W, Cohen B, Raphan T (1985) Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science 228:199–202CrossRefPubMed
35.
Zurück zum Zitat Baier P, Dieterich SM (2009) Anatomical correlates of ocular motor deficits in cerebellar lesions. Brain 132:2114–2124CrossRefPubMed Baier P, Dieterich SM (2009) Anatomical correlates of ocular motor deficits in cerebellar lesions. Brain 132:2114–2124CrossRefPubMed
36.
Zurück zum Zitat Frohman TC, Galetta S, Fox R et al (2008) Pearls & Oy-sters: the medial longitudinal fasciculus in ocular motor physiology. Neurology 70:e57–e67CrossRefPubMed Frohman TC, Galetta S, Fox R et al (2008) Pearls & Oy-sters: the medial longitudinal fasciculus in ocular motor physiology. Neurology 70:e57–e67CrossRefPubMed
37.
Zurück zum Zitat Ropper AH, Samuels MA, Klein JP (2014) Chapter 14. Disorders of ocular movement and pupillary function. In: Ropper AH, Samuels MA, Klein JP (eds) Adams & Victor's principles of neurology, 10th edn. McGraw-Hill, New York Ropper AH, Samuels MA, Klein JP (2014) Chapter 14. Disorders of ocular movement and pupillary function. In: Ropper AH, Samuels MA, Klein JP (eds) Adams & Victor's principles of neurology, 10th edn. McGraw-Hill, New York
Metadaten
Titel
Imaging correlates of neural control of ocular movements
verfasst von
Mohit Agarwal
John L. Ulmer
Tushar Chandra
Andrew P. Klein
Leighton P. Mark
Suyash Mohan
Publikationsdatum
22.09.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 7/2016
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-4004-9

Weitere Artikel der Ausgabe 7/2016

European Radiology 7/2016 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.