Skip to main content
Erschienen in: Inflammation 1/2013

01.02.2013

Immature Dendritic Cell-Derived Exosomes: a Promise Subcellular Vaccine for Autoimmunity

verfasst von: Weifan Yin, Song Ouyang, Yi Li, Bo Xiao, Huan Yang

Erschienen in: Inflammation | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Exosomes, 60–90-nm-sized vesicles, are produced by a large number of cell types, including tumor cells, neurons, astrocytes, hemocytes, intestinal epithelial cells, and so on. Dendritic cell (DC), the most potent professional antigen-presenting cell in the immune system, produces exosomes in the course of maturation. Mature DCs produce exosomes with the ability to elicit potent immunoactivation, resulting in tumor eradication and bacterial or virus elimination. Given the notion that exosomes are stable and easy to be modified artificially, autologous mature DC-derived exosomes have been vaccinated into patients with malignant diseases. In clinical trials utilizing exosomes as therapeutic approaches, researchers observed considerable curative effect with little side effect. However, immature or suppressive DC-derived exosomes harbor anti-inflammatory properties distinct from mature DC-derived exosomes. In murine models of autoimmune disease and transplantation, immature DC-derived exosomes reduced T cell-dependent immunoactivation, relieved clinical manifestation of autoimmune disease, and prolonged survival time of transplantation. Although the exact mechanism of how immature DC-derived exosomes function in vivo is still unclear, and there are no clinical trials regarding application of exosome vaccine into patients with autoimmune disease, we will analyze the promise of immature DC-derived exosomes as a subcellular vaccine in autoimmunity in this review.
Literatur
1.
Zurück zum Zitat Rossi, M., and J.W. Young. 2005. Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. Journal of Immunology 175: 1373–1381. Rossi, M., and J.W. Young. 2005. Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. Journal of Immunology 175: 1373–1381.
2.
Zurück zum Zitat Romani, N., B.E. Clausen, and P. Stoitzner. 2010. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunological Reviews 234: 120–141.PubMedCrossRef Romani, N., B.E. Clausen, and P. Stoitzner. 2010. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunological Reviews 234: 120–141.PubMedCrossRef
3.
Zurück zum Zitat Thomson, A.W., D.A. Geller, C. Gandhi, N. Murase, A.J. Demetris, and D. Beer-Stolz. 2011. Hepatic antigen-presenting cells and regulation of liver transplant outcome. Immunologic Research 50: 2221–2227.CrossRef Thomson, A.W., D.A. Geller, C. Gandhi, N. Murase, A.J. Demetris, and D. Beer-Stolz. 2011. Hepatic antigen-presenting cells and regulation of liver transplant outcome. Immunologic Research 50: 2221–2227.CrossRef
4.
Zurück zum Zitat Segura, E., J. Valladeau-Guilemond, M.H. Donnadieu, X. Sastre-Garau, V. Soumelis, and S. Amigorena. 2012. Characterization of resident and migratory dendritic cells in human lymph nodes. Journal of Experimental Medicine 209: 653–660.PubMedCrossRef Segura, E., J. Valladeau-Guilemond, M.H. Donnadieu, X. Sastre-Garau, V. Soumelis, and S. Amigorena. 2012. Characterization of resident and migratory dendritic cells in human lymph nodes. Journal of Experimental Medicine 209: 653–660.PubMedCrossRef
5.
Zurück zum Zitat Tan, J.K., and H.C. O’Neill. 2007. Concise review: dendritic cell development in the context of the spleen microenvironment. Stem Cells 25: 2139–2145.PubMedCrossRef Tan, J.K., and H.C. O’Neill. 2007. Concise review: dendritic cell development in the context of the spleen microenvironment. Stem Cells 25: 2139–2145.PubMedCrossRef
6.
Zurück zum Zitat Zanoni, I., and F. Granucci. 2011. The regulatory role of dendritic cells in the induction and maintenance of T-cell tolerance. Autoimmunity 4: 23–32.CrossRef Zanoni, I., and F. Granucci. 2011. The regulatory role of dendritic cells in the induction and maintenance of T-cell tolerance. Autoimmunity 4: 23–32.CrossRef
7.
Zurück zum Zitat Morva, A., S. Lemoine, A. Achour, J.O. Pers, P. Youinou, and C. Jamin. 2012. Maturation and function of human dendritic cells are regulated by B lymphocytes. Blood 119: 106–114.PubMedCrossRef Morva, A., S. Lemoine, A. Achour, J.O. Pers, P. Youinou, and C. Jamin. 2012. Maturation and function of human dendritic cells are regulated by B lymphocytes. Blood 119: 106–114.PubMedCrossRef
8.
Zurück zum Zitat Prado, C., F. Contreras, H. González, P. Díaz, D. Elgueta, M. Barrientos, A.A. Herrada, Á. Lladser, S. Bernales, and R. Pacheco. 2012. Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity. Journal of Immunology 188: 3062–3070.CrossRef Prado, C., F. Contreras, H. González, P. Díaz, D. Elgueta, M. Barrientos, A.A. Herrada, Á. Lladser, S. Bernales, and R. Pacheco. 2012. Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity. Journal of Immunology 188: 3062–3070.CrossRef
9.
Zurück zum Zitat Wang, Z., A. Sokolovska, R. Seymour, J.P. Sundberg, and H. Hogenesch. 2012. SHARPIN is essential for cytokine production, NF-κB signaling, and induction of Th1 differentiation by dendritic cells. PLoS One 7: e31809.PubMedCrossRef Wang, Z., A. Sokolovska, R. Seymour, J.P. Sundberg, and H. Hogenesch. 2012. SHARPIN is essential for cytokine production, NF-κB signaling, and induction of Th1 differentiation by dendritic cells. PLoS One 7: e31809.PubMedCrossRef
10.
Zurück zum Zitat Yang, H., Y. Zhang, M. Wu, J. Li, W. Zhou, G. Li, X. Li, B. Xiao, and P. Christadoss. 2010. Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dendritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and Foxp3+ regulatory T cell profile. Inflammation Research 59: 197–205.PubMedCrossRef Yang, H., Y. Zhang, M. Wu, J. Li, W. Zhou, G. Li, X. Li, B. Xiao, and P. Christadoss. 2010. Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dendritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and Foxp3+ regulatory T cell profile. Inflammation Research 59: 197–205.PubMedCrossRef
11.
Zurück zum Zitat Wakkach, A., N. Fournier, V. Brun, J.P. Breittmayer, F. Cottrez, and H. Groux. 2003. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18: 605–617.PubMedCrossRef Wakkach, A., N. Fournier, V. Brun, J.P. Breittmayer, F. Cottrez, and H. Groux. 2003. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18: 605–617.PubMedCrossRef
12.
Zurück zum Zitat Zhang, X., J.R. Gordon, and J. Xiang. 2002. Advances in dendritic cell-based vaccine of cancer. Cancer Biotherapy and Radiopharmaceuticals 17: 601–619.PubMedCrossRef Zhang, X., J.R. Gordon, and J. Xiang. 2002. Advances in dendritic cell-based vaccine of cancer. Cancer Biotherapy and Radiopharmaceuticals 17: 601–619.PubMedCrossRef
13.
Zurück zum Zitat Markowicz, S., Z.I. Nowecki, P. Rutkowski, A.W. Lipkowski, M. Biernacka, A. Jakubowska-Mucka, T. Switaj, A. Misicka, H. Skurzak, H. Polowniak-Pracka, and J. Walewski. 2012. Adjuvant vaccination with melanoma antigen-pulsed dendritic cells in stage III melanoma patients. Medical Oncology. doi:10.1007/s12032-012-0168-1. Markowicz, S., Z.I. Nowecki, P. Rutkowski, A.W. Lipkowski, M. Biernacka, A. Jakubowska-Mucka, T. Switaj, A. Misicka, H. Skurzak, H. Polowniak-Pracka, and J. Walewski. 2012. Adjuvant vaccination with melanoma antigen-pulsed dendritic cells in stage III melanoma patients. Medical Oncology. doi:10.​1007/​s12032-012-0168-1.
14.
Zurück zum Zitat Decker, W.K., and A. Safdar. 2010. Dendritic cell vaccines for the immunocompromised patient: prevention of influenza virus infection. Expert Review of Vaccines 9: 721–730.PubMedCrossRef Decker, W.K., and A. Safdar. 2010. Dendritic cell vaccines for the immunocompromised patient: prevention of influenza virus infection. Expert Review of Vaccines 9: 721–730.PubMedCrossRef
15.
Zurück zum Zitat Ren, W.N., C.K. Chang, H.H. Fan, F. Guo, Y.N. Ren, J. Yang, J. Guo, and X. Li. 2011. A combination of exosomes carrying TSA derived from HLA-A2-positive human white buffy coat and polyl: C for use as a subcellular antitumor vaccine. Journal of Immunoassay and Immunochemistry 32: 207–218.PubMedCrossRef Ren, W.N., C.K. Chang, H.H. Fan, F. Guo, Y.N. Ren, J. Yang, J. Guo, and X. Li. 2011. A combination of exosomes carrying TSA derived from HLA-A2-positive human white buffy coat and polyl: C for use as a subcellular antitumor vaccine. Journal of Immunoassay and Immunochemistry 32: 207–218.PubMedCrossRef
16.
Zurück zum Zitat Chaput, N., N.E. Schartz, F. André, J. Taïeb, S. Novault, P. Bonnaventure, N. Aubert, J. Bernard, F. Lemonnier, M. Merad, G. Adema, M. Adams, M. Ferrantini, A.F. Carpentier, B. Escudier, T. Tursz, E. Angevin, and L. Zitvogel. 2004. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. Journal of Immunology 172: 2137–2146. Chaput, N., N.E. Schartz, F. André, J. Taïeb, S. Novault, P. Bonnaventure, N. Aubert, J. Bernard, F. Lemonnier, M. Merad, G. Adema, M. Adams, M. Ferrantini, A.F. Carpentier, B. Escudier, T. Tursz, E. Angevin, and L. Zitvogel. 2004. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. Journal of Immunology 172: 2137–2146.
17.
Zurück zum Zitat André, F., N. Chaput, N.E. Schartz, C. Flament, N. Aubert, J. Bernard, F. Lemonnier, G. Raposo, B. Escudier, D.H. Hsu, T. Tursz, S. Amigorena, E. Angevin, and L. Zitvogel. 2004. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. Journal of Immunology 172: 2126–2136. André, F., N. Chaput, N.E. Schartz, C. Flament, N. Aubert, J. Bernard, F. Lemonnier, G. Raposo, B. Escudier, D.H. Hsu, T. Tursz, S. Amigorena, E. Angevin, and L. Zitvogel. 2004. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. Journal of Immunology 172: 2126–2136.
18.
Zurück zum Zitat Cools, N., V.F. Van Tendeloo, E.L. Smits, M. Lenjou, G. Nijs, D.R. Van Bockstaele, Z.N. Berneman, and P. Ponsaerts. 2008. Immunosuppression induced by immature dendritic cells is mediated by TGF-beta/IL-10 double-positive CD4+ regulatory T cells. Journal of Cellular and Molecular Medicine 12: 690–700.PubMedCrossRef Cools, N., V.F. Van Tendeloo, E.L. Smits, M. Lenjou, G. Nijs, D.R. Van Bockstaele, Z.N. Berneman, and P. Ponsaerts. 2008. Immunosuppression induced by immature dendritic cells is mediated by TGF-beta/IL-10 double-positive CD4+ regulatory T cells. Journal of Cellular and Molecular Medicine 12: 690–700.PubMedCrossRef
19.
Zurück zum Zitat Oh, K., Y.S. Kim, and D.S. Lee. 2011. Maturation-resistant dendritic cells ameliorate experimental autoimmune uveoretinitis. Immune Network 11: 399–405.PubMedCrossRef Oh, K., Y.S. Kim, and D.S. Lee. 2011. Maturation-resistant dendritic cells ameliorate experimental autoimmune uveoretinitis. Immune Network 11: 399–405.PubMedCrossRef
20.
Zurück zum Zitat Sun, X., Z.J. Gong, Z.W. Wang, T. Li, J.Y. Zhang, H.C. Sun, S. Liu, L. Huang, C. Huang, and Z.H. Peng. 2012. IDO-competent-DCs induced by IFN-γ attenuate acute rejection in rat liver transplantation. Journal of Clinical Immunology 32: 837–847.PubMedCrossRef Sun, X., Z.J. Gong, Z.W. Wang, T. Li, J.Y. Zhang, H.C. Sun, S. Liu, L. Huang, C. Huang, and Z.H. Peng. 2012. IDO-competent-DCs induced by IFN-γ attenuate acute rejection in rat liver transplantation. Journal of Clinical Immunology 32: 837–847.PubMedCrossRef
21.
Zurück zum Zitat Ezzelarab, M., and A.W. Thomson. 2011. Tolerogenic dendritic cells and their role in transplantation. Seminars in Immunology 23: 252–263.PubMedCrossRef Ezzelarab, M., and A.W. Thomson. 2011. Tolerogenic dendritic cells and their role in transplantation. Seminars in Immunology 23: 252–263.PubMedCrossRef
22.
Zurück zum Zitat Keller, S., M.P. Sanderson, A. Stoeck, and P. Altevogt. 2006. Exosomes: from biogenesis and secretion to biological function. Immunology Letters 107: 102–108.PubMedCrossRef Keller, S., M.P. Sanderson, A. Stoeck, and P. Altevogt. 2006. Exosomes: from biogenesis and secretion to biological function. Immunology Letters 107: 102–108.PubMedCrossRef
23.
Zurück zum Zitat Yang, C., S.H. Kim, N.R. Bianco, and P.D. Robbins. 2011. Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model. PLoS One 6: e22517.PubMedCrossRef Yang, C., S.H. Kim, N.R. Bianco, and P.D. Robbins. 2011. Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model. PLoS One 6: e22517.PubMedCrossRef
24.
Zurück zum Zitat Lachenal, G., K. Pernet-Gallay, M. Chivet, F.J. Hemming, A. Belly, G. Bodon, B. Blot, G. Haase, Y. Goldberg, and R. Sadoul. 2011. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Molecular and Cellular Neuroscience 46: 409–418.PubMedCrossRef Lachenal, G., K. Pernet-Gallay, M. Chivet, F.J. Hemming, A. Belly, G. Bodon, B. Blot, G. Haase, Y. Goldberg, and R. Sadoul. 2011. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Molecular and Cellular Neuroscience 46: 409–418.PubMedCrossRef
25.
Zurück zum Zitat Mallegol, J., G. van Niel, and M. Heyman. 2005. Phenotypic and functional characterization of intestinal epithelial exosomes. Blood Cells Molecules and Diseases 35: 11–16.CrossRef Mallegol, J., G. van Niel, and M. Heyman. 2005. Phenotypic and functional characterization of intestinal epithelial exosomes. Blood Cells Molecules and Diseases 35: 11–16.CrossRef
26.
Zurück zum Zitat Guescini, M., S. Genedani, V. Stocchi, and L.F. Agnati. 2010. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. Journal of Neural Transmission 117: 1–4.PubMedCrossRef Guescini, M., S. Genedani, V. Stocchi, and L.F. Agnati. 2010. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. Journal of Neural Transmission 117: 1–4.PubMedCrossRef
27.
Zurück zum Zitat Pierre, P., S.J. Turley, E. Gatti, M. Hull, J. Meltzer, A. Mirza, K. Inaba, R.M. Steinman, and I. Mellman. 1997. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388: 787–792.PubMedCrossRef Pierre, P., S.J. Turley, E. Gatti, M. Hull, J. Meltzer, A. Mirza, K. Inaba, R.M. Steinman, and I. Mellman. 1997. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388: 787–792.PubMedCrossRef
28.
Zurück zum Zitat Mellman, I., S.J. Turley, and R.M. Steinman. 1998. Antigen processing for amateurs and professionals. Trends in Cell Biology 8: 231–237.PubMedCrossRef Mellman, I., S.J. Turley, and R.M. Steinman. 1998. Antigen processing for amateurs and professionals. Trends in Cell Biology 8: 231–237.PubMedCrossRef
29.
Zurück zum Zitat Tamai, K., N. Tanaka, T. Nakano, E. Kakazu, Y. Kondo, J. Inoue, M. Shiina, K. Fukushima, T. Hoshino, K. Sano, Y. Ueno, T. Shimosegawa, and K. Sugamura. 2010. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochemical and Biophysical Research Communications 399: 384–390.PubMedCrossRef Tamai, K., N. Tanaka, T. Nakano, E. Kakazu, Y. Kondo, J. Inoue, M. Shiina, K. Fukushima, T. Hoshino, K. Sano, Y. Ueno, T. Shimosegawa, and K. Sugamura. 2010. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochemical and Biophysical Research Communications 399: 384–390.PubMedCrossRef
30.
Zurück zum Zitat Buschow, S.I., E.N. Nolte-'t Hoen, G. van Niel, M.S. Pols, T. ten Broeke, M. Lauwen, F. Ossendorp, C.J. Melief, G. Raposo, R. Wubbolts, M.H. Wauben, and W. Stoorvogel. 2009. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10: 1528–1542.PubMedCrossRef Buschow, S.I., E.N. Nolte-'t Hoen, G. van Niel, M.S. Pols, T. ten Broeke, M. Lauwen, F. Ossendorp, C.J. Melief, G. Raposo, R. Wubbolts, M.H. Wauben, and W. Stoorvogel. 2009. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10: 1528–1542.PubMedCrossRef
31.
Zurück zum Zitat Johansson, S.M., C. Admyre, A. Scheynius, and S. Gabrielsson. 2008. Different types of in vitro generated human monocyte-derived dendritic cells release exosomes with distinct phenotypes. Immunology 123: 491–499.PubMedCrossRef Johansson, S.M., C. Admyre, A. Scheynius, and S. Gabrielsson. 2008. Different types of in vitro generated human monocyte-derived dendritic cells release exosomes with distinct phenotypes. Immunology 123: 491–499.PubMedCrossRef
32.
Zurück zum Zitat Zitvogel, L., A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. 1998. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nature Medicine 4: 594–600.PubMedCrossRef Zitvogel, L., A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. 1998. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nature Medicine 4: 594–600.PubMedCrossRef
33.
Zurück zum Zitat Aline, F., D. Bout, S. Amigorena, P. Roingeard, and I. Dimier-Poisson. 2004. Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infection and Immunity 72: 4127–4137.PubMedCrossRef Aline, F., D. Bout, S. Amigorena, P. Roingeard, and I. Dimier-Poisson. 2004. Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infection and Immunity 72: 4127–4137.PubMedCrossRef
34.
Zurück zum Zitat Del Cacho, E., M. Gallego, S.H. Lee, H.S. Lillehoj, J. Quilez, E.P. Lillehoj, and C. Sánchez-Acedo. 2012. Induction of protective immunity against Eimeria tenella, Eimeria maxima, and Eimeria acervulina infections using dendritic cell-derived exosomes. Infection and Immunity 80: 1909–1916.PubMedCrossRef Del Cacho, E., M. Gallego, S.H. Lee, H.S. Lillehoj, J. Quilez, E.P. Lillehoj, and C. Sánchez-Acedo. 2012. Induction of protective immunity against Eimeria tenella, Eimeria maxima, and Eimeria acervulina infections using dendritic cell-derived exosomes. Infection and Immunity 80: 1909–1916.PubMedCrossRef
35.
Zurück zum Zitat Luketic, L., J. Delanghe, P.T. Sobol, P. Yang, E. Frotten, K.L. Mossman, J. Gauldie, J. Bramson, and Y. Wan. 2007. Antigen presentation by exosomes released from peptide-pulsed dendritic cells is not suppressed by the presence of active CTL. Journal of Immunology 179: 5024–5032. Luketic, L., J. Delanghe, P.T. Sobol, P. Yang, E. Frotten, K.L. Mossman, J. Gauldie, J. Bramson, and Y. Wan. 2007. Antigen presentation by exosomes released from peptide-pulsed dendritic cells is not suppressed by the presence of active CTL. Journal of Immunology 179: 5024–5032.
36.
Zurück zum Zitat Escudier, B., T. Dorval, N. Chaput, F. André, M.P. Caby, S. Novault, C. Flament, C. Leboulaire, C. Borg, S. Amigorena, C. Boccaccio, C. Bonnerot, O. Dhellin, M. Movassagh, S. Piperno, C. Robert, V. Serra, N. Valente, J.B. Le Pecq, A. Spatz, O. Lantz, T. Tursz, E. Angevin, and L. Zitvogel. 2005. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. Journal of Translational Medicine 3: 10.PubMedCrossRef Escudier, B., T. Dorval, N. Chaput, F. André, M.P. Caby, S. Novault, C. Flament, C. Leboulaire, C. Borg, S. Amigorena, C. Boccaccio, C. Bonnerot, O. Dhellin, M. Movassagh, S. Piperno, C. Robert, V. Serra, N. Valente, J.B. Le Pecq, A. Spatz, O. Lantz, T. Tursz, E. Angevin, and L. Zitvogel. 2005. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. Journal of Translational Medicine 3: 10.PubMedCrossRef
37.
Zurück zum Zitat Morse, M.A., J. Garst, T. Osada, S. Khan, A. Hobeika, T.M. Clay, N. Valente, R. Shreeniwas, M.A. Sutton, A. Delcayre, D.H. Hsu, J.B. Le Pecq, and H.K. Lyerly. 2005. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. Journal of Translational Medicine 3: 9.PubMedCrossRef Morse, M.A., J. Garst, T. Osada, S. Khan, A. Hobeika, T.M. Clay, N. Valente, R. Shreeniwas, M.A. Sutton, A. Delcayre, D.H. Hsu, J.B. Le Pecq, and H.K. Lyerly. 2005. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. Journal of Translational Medicine 3: 9.PubMedCrossRef
38.
Zurück zum Zitat Pêche, H., M. Heslan, C. Usal, S. Amigorena, and M.C. Cuturi. 2003. Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection. Transplantation 76: 1503–1510.PubMedCrossRef Pêche, H., M. Heslan, C. Usal, S. Amigorena, and M.C. Cuturi. 2003. Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection. Transplantation 76: 1503–1510.PubMedCrossRef
39.
Zurück zum Zitat Bianco, N.R., S.H. Kim, M.A. Ruffner, and P.D. Robbins. 2009. Therapeutic effect of exosomes from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis & Rheumatism 60: 380–389.CrossRef Bianco, N.R., S.H. Kim, M.A. Ruffner, and P.D. Robbins. 2009. Therapeutic effect of exosomes from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis & Rheumatism 60: 380–389.CrossRef
40.
Zurück zum Zitat Kim, S.H., N.R. Bianco, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2007. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. Journal of Immunology 179: 2242–2249. Kim, S.H., N.R. Bianco, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2007. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. Journal of Immunology 179: 2242–2249.
41.
Zurück zum Zitat Pêche, H., K. Renaudin, G. Beriou, E. Merieau, S. Amigorena, and M.C. Cuturi. 2006. Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. American Journal of Transplantation 6: 1541–1550.PubMedCrossRef Pêche, H., K. Renaudin, G. Beriou, E. Merieau, S. Amigorena, and M.C. Cuturi. 2006. Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. American Journal of Transplantation 6: 1541–1550.PubMedCrossRef
42.
Zurück zum Zitat Kim, S.H., N. Bianco, R. Menon, E.R. Lechman, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2006. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Molecular Therapy 13: 289–300.PubMedCrossRef Kim, S.H., N. Bianco, R. Menon, E.R. Lechman, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2006. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Molecular Therapy 13: 289–300.PubMedCrossRef
43.
Zurück zum Zitat Kim, S.H., E.R. Lechman, N. Bianco, R. Menon, A. Keravala, J. Nash, Z. Mi, S.C. Watkins, A. Gambotto, and P.D. Robbins. 2005. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. Journal of Immunology 174: 6440–6448. Kim, S.H., E.R. Lechman, N. Bianco, R. Menon, A. Keravala, J. Nash, Z. Mi, S.C. Watkins, A. Gambotto, and P.D. Robbins. 2005. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. Journal of Immunology 174: 6440–6448.
44.
Zurück zum Zitat Yang, X., S. Meng, H. Jiang, C. Zhu, and W. Wu. 2011. Exosomes derived from immature bone marrow dendritic cells induce tolerogenicity of intestinal transplantation in rats. Journal of Surgical Research 171: 826–832.PubMedCrossRef Yang, X., S. Meng, H. Jiang, C. Zhu, and W. Wu. 2011. Exosomes derived from immature bone marrow dendritic cells induce tolerogenicity of intestinal transplantation in rats. Journal of Surgical Research 171: 826–832.PubMedCrossRef
45.
Zurück zum Zitat Cai, Z., W. Zhang, F. Yang, L. Yu, Z. Yu, J. Pan, L. Wang, X. Cao, and J. Wang. 2012. Immunosuppressive exosomes from TGF-β1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell Research 22: 607–610.PubMedCrossRef Cai, Z., W. Zhang, F. Yang, L. Yu, Z. Yu, J. Pan, L. Wang, X. Cao, and J. Wang. 2012. Immunosuppressive exosomes from TGF-β1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell Research 22: 607–610.PubMedCrossRef
46.
Zurück zum Zitat Simpson, R.J., S.S. Jensen, and J.W. Lim. 2008. Proteomic profiling of exosomes: current perspectives. Proteomics 8: 4083–4099.PubMedCrossRef Simpson, R.J., S.S. Jensen, and J.W. Lim. 2008. Proteomic profiling of exosomes: current perspectives. Proteomics 8: 4083–4099.PubMedCrossRef
47.
Zurück zum Zitat Simpson, R.J., J.W. Lim, R.L. Moritz, and S. Mathivanan. 2009. Exosomes: proteomic insights and diagnostic potential. Expert Review of Proteomics 6: 267–283.PubMedCrossRef Simpson, R.J., J.W. Lim, R.L. Moritz, and S. Mathivanan. 2009. Exosomes: proteomic insights and diagnostic potential. Expert Review of Proteomics 6: 267–283.PubMedCrossRef
48.
Zurück zum Zitat Poliakov, A., M. Spilman, T. Dokland, C.L. Amling, and J.A. Mobley. 2009. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. The Prostate 69: 159–167.PubMedCrossRef Poliakov, A., M. Spilman, T. Dokland, C.L. Amling, and J.A. Mobley. 2009. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. The Prostate 69: 159–167.PubMedCrossRef
49.
Zurück zum Zitat Katzmann, D.J., G. Odorizzi, and S.D. Emr. 2002. Receptor downregulation and multivesicular-body sorting. Nature Reviews Molecular Cell Biology 3: 893–905.PubMedCrossRef Katzmann, D.J., G. Odorizzi, and S.D. Emr. 2002. Receptor downregulation and multivesicular-body sorting. Nature Reviews Molecular Cell Biology 3: 893–905.PubMedCrossRef
50.
Zurück zum Zitat Clayton, A., C.L. Harris, J. Court, M.D. Mason, and B.P. Morgan. 2003. Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. European Journal of Immunology 33: 522–531.PubMedCrossRef Clayton, A., C.L. Harris, J. Court, M.D. Mason, and B.P. Morgan. 2003. Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. European Journal of Immunology 33: 522–531.PubMedCrossRef
51.
Zurück zum Zitat Lamparski, H.G., A. Metha-Damani, J.Y. Yao, S. Patel, D.H. Hsu, C. Ruegg, and J.B. Le Pecq. 2002. Production and characterization of clinical grade exosomes derived from dendritic cells. Journal of Immunological Methods 270: 211–226.PubMedCrossRef Lamparski, H.G., A. Metha-Damani, J.Y. Yao, S. Patel, D.H. Hsu, C. Ruegg, and J.B. Le Pecq. 2002. Production and characterization of clinical grade exosomes derived from dendritic cells. Journal of Immunological Methods 270: 211–226.PubMedCrossRef
52.
Zurück zum Zitat Hammond, C., L.K. Denzin, M. Pan, J.M. Griffith, H.J. Geuze, and P. Cresswell. 1998. The tetraspan protein CD82 is a resident of MHC class II compartments where it associates with HLA-DR, -DM, and -DO molecules. Journal of Immunology 161: 3282–3291. Hammond, C., L.K. Denzin, M. Pan, J.M. Griffith, H.J. Geuze, and P. Cresswell. 1998. The tetraspan protein CD82 is a resident of MHC class II compartments where it associates with HLA-DR, -DM, and -DO molecules. Journal of Immunology 161: 3282–3291.
53.
Zurück zum Zitat Théry, C., A. Regnault, J. Garin, J. Wolfers, L. Zitvogel, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. 1999. Molecular characterization of dendritic cell-derived exosomes: selective accumulation of the heat shock protein hsc73. The Journal of Cell Biology 147: 599–610.PubMedCrossRef Théry, C., A. Regnault, J. Garin, J. Wolfers, L. Zitvogel, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. 1999. Molecular characterization of dendritic cell-derived exosomes: selective accumulation of the heat shock protein hsc73. The Journal of Cell Biology 147: 599–610.PubMedCrossRef
54.
Zurück zum Zitat Théry, C., M. Boussac, P. Véron, P. Ricciardi-Castagnoli, G. Raposo, J. Garin, and S. Amigorena. 2001. Proteomic analysis of dendritic cell-derived exosome: a secreted subcellular compartment distinct form apoptotic vesicles. Journal of Immunology 166: 7309–7318. Théry, C., M. Boussac, P. Véron, P. Ricciardi-Castagnoli, G. Raposo, J. Garin, and S. Amigorena. 2001. Proteomic analysis of dendritic cell-derived exosome: a secreted subcellular compartment distinct form apoptotic vesicles. Journal of Immunology 166: 7309–7318.
55.
Zurück zum Zitat Théry, C., L. Duban, E. Segura, P. Véron, O. Lantz, and S. Amigorena. 2002. Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nature Immunology 3: 1156–1162.PubMedCrossRef Théry, C., L. Duban, E. Segura, P. Véron, O. Lantz, and S. Amigorena. 2002. Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nature Immunology 3: 1156–1162.PubMedCrossRef
56.
Zurück zum Zitat Clayton, A., J. Court, H. Navabi, M. Adams, M.D. Mason, J.A. Hobot, G.R. Newman, and B. Jasani. 2001. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. Journal of Immunological Methods 247: 163–174.PubMedCrossRef Clayton, A., J. Court, H. Navabi, M. Adams, M.D. Mason, J.A. Hobot, G.R. Newman, and B. Jasani. 2001. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. Journal of Immunological Methods 247: 163–174.PubMedCrossRef
57.
Zurück zum Zitat Hoen, E.N., E.J. Van der Vlist, M. Aalberts, H.C. Mertens, B.J. Bosch, W. Bartelink, E. Mastrobattista, E.V. van Gaal, W. Stoorvogel, G.J. Arkesteijn, and M.H. Wauben. 2012. Quantitative and qualitative flow cytometric analysis of nano-sized cell-derived membrane vesicles. Nanomedicine: Nanotechnology, Biology and Medicine 8: 712–720.CrossRef Hoen, E.N., E.J. Van der Vlist, M. Aalberts, H.C. Mertens, B.J. Bosch, W. Bartelink, E. Mastrobattista, E.V. van Gaal, W. Stoorvogel, G.J. Arkesteijn, and M.H. Wauben. 2012. Quantitative and qualitative flow cytometric analysis of nano-sized cell-derived membrane vesicles. Nanomedicine: Nanotechnology, Biology and Medicine 8: 712–720.CrossRef
58.
Zurück zum Zitat Segura, E., S. Amigorena, and C. Théry. 2005. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells, Molecules and Diseases 35: 89–93.CrossRef Segura, E., S. Amigorena, and C. Théry. 2005. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells, Molecules and Diseases 35: 89–93.CrossRef
59.
Zurück zum Zitat Subra, C., K. Laulagnier, B. Perret, and M. Record. 2007. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89: 205–212.PubMedCrossRef Subra, C., K. Laulagnier, B. Perret, and M. Record. 2007. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89: 205–212.PubMedCrossRef
60.
Zurück zum Zitat Laulagnier, K., C. Motta, S. Hamdi, S. Roy, F. Fauvelle, J.F. Pageaux, T. Kobayashi, J.P. Salles, B. Perret, C. Bonnerot, and M. Record. 2004. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem Journal 380: 161–171.CrossRef Laulagnier, K., C. Motta, S. Hamdi, S. Roy, F. Fauvelle, J.F. Pageaux, T. Kobayashi, J.P. Salles, B. Perret, C. Bonnerot, and M. Record. 2004. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem Journal 380: 161–171.CrossRef
61.
Zurück zum Zitat Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.PubMedCrossRef Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.PubMedCrossRef
62.
Zurück zum Zitat Turner, M.L., F.M. Schnorfeil, and T. Brocker. 2011. MicroRNAs regulate dendritic cell differentiation and function. Journal of Immunology 187: 3911–3917.CrossRef Turner, M.L., F.M. Schnorfeil, and T. Brocker. 2011. MicroRNAs regulate dendritic cell differentiation and function. Journal of Immunology 187: 3911–3917.CrossRef
63.
Zurück zum Zitat Kosaka, N., H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki, and T. Ochiya. 2010. Secretory mechanisms and intercellular transfer of microRNAs in living cells. The Journal of Biology Chemistry 285: 17442–17452.CrossRef Kosaka, N., H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki, and T. Ochiya. 2010. Secretory mechanisms and intercellular transfer of microRNAs in living cells. The Journal of Biology Chemistry 285: 17442–17452.CrossRef
64.
Zurück zum Zitat Vickers, K.C., and A.T. Remaley. 2012. Lipid-based carriers of microRNAs and intercellular communication. Current Opinion in Lipidology 23: 91–97.PubMedCrossRef Vickers, K.C., and A.T. Remaley. 2012. Lipid-based carriers of microRNAs and intercellular communication. Current Opinion in Lipidology 23: 91–97.PubMedCrossRef
65.
Zurück zum Zitat Montecalvo, A., A.T. Larregina, W.J. Shufesky, D.B. Stolz, M.L. Sullivan, J.M. Karlsson, C.J. Baty, G.A. Gibson, G. Erdos, Z. Wang, J. Milosevic, O.A. Tkacheva, S.J. Divito, R. Jordan, J. Lyons-Weiler, S.C. Watkins, and A.E. Morelli. 2012. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119: 756–766.PubMedCrossRef Montecalvo, A., A.T. Larregina, W.J. Shufesky, D.B. Stolz, M.L. Sullivan, J.M. Karlsson, C.J. Baty, G.A. Gibson, G. Erdos, Z. Wang, J. Milosevic, O.A. Tkacheva, S.J. Divito, R. Jordan, J. Lyons-Weiler, S.C. Watkins, and A.E. Morelli. 2012. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119: 756–766.PubMedCrossRef
66.
Zurück zum Zitat Mittelbrunn, M., C. Gutiérrez-Vázquez, C. Villarroya-Beltri, S. González, F. Sánchez-Cabo, M.Á. González, A. Bernad, and F. Sánchez-Madrid. 2011. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature Communications 2: 282.PubMedCrossRef Mittelbrunn, M., C. Gutiérrez-Vázquez, C. Villarroya-Beltri, S. González, F. Sánchez-Cabo, M.Á. González, A. Bernad, and F. Sánchez-Madrid. 2011. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature Communications 2: 282.PubMedCrossRef
67.
68.
Zurück zum Zitat Ramachandran, S., and V. Palanisamy. 2012. Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdisciplinary Reviews: RNA 3: 286–293.PubMedCrossRef Ramachandran, S., and V. Palanisamy. 2012. Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdisciplinary Reviews: RNA 3: 286–293.PubMedCrossRef
69.
Zurück zum Zitat Chen, X., H. Liang, J. Zhang, K. Zen, and C.Y. Zhang. 2012. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein & Cell 3: 28–37.CrossRef Chen, X., H. Liang, J. Zhang, K. Zen, and C.Y. Zhang. 2012. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein & Cell 3: 28–37.CrossRef
70.
Zurück zum Zitat Szántó, S., T. Koreny, K. Mikecz, T.T. Glant, Z. Szekanecz, and J. Varga. 2007. Inhibition of indoleamine 2,3-dioxygenase-mediated tryptophan catabolism accelerates collagen-induced arthritis in mice. Arthritis Research & Therapy 9: R50.CrossRef Szántó, S., T. Koreny, K. Mikecz, T.T. Glant, Z. Szekanecz, and J. Varga. 2007. Inhibition of indoleamine 2,3-dioxygenase-mediated tryptophan catabolism accelerates collagen-induced arthritis in mice. Arthritis Research & Therapy 9: R50.CrossRef
71.
Zurück zum Zitat Bastos-Amador, P., B. Pérez-Cabezas, N. Izquierdo-Useros, M.C. Puertas, J. Martinez-Picado, R. Pujol-Borrell, M. Naranjo-Gómez, and F.E. Borràs. 2012. Capture of cell-derived microvesicles (exosomes and apoptotic bodies) by human plasmacytoid dendritic cells. Journal of Leukocyte Biology 91: 751–758.PubMedCrossRef Bastos-Amador, P., B. Pérez-Cabezas, N. Izquierdo-Useros, M.C. Puertas, J. Martinez-Picado, R. Pujol-Borrell, M. Naranjo-Gómez, and F.E. Borràs. 2012. Capture of cell-derived microvesicles (exosomes and apoptotic bodies) by human plasmacytoid dendritic cells. Journal of Leukocyte Biology 91: 751–758.PubMedCrossRef
72.
Zurück zum Zitat Wolfers, J., A. Lozier, G. Raposo, A. Regnault, C. Théry, C. Masurier, C. Flament, S. Pouzieux, F. Faure, T. Tursz, E. Angevin, S. Amigorena, and L. Zitvogel. 2001. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Medicine 7: 297–303.PubMedCrossRef Wolfers, J., A. Lozier, G. Raposo, A. Regnault, C. Théry, C. Masurier, C. Flament, S. Pouzieux, F. Faure, T. Tursz, E. Angevin, S. Amigorena, and L. Zitvogel. 2001. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Medicine 7: 297–303.PubMedCrossRef
73.
Zurück zum Zitat Fleissner, F., Y. Goerzig, A. Haverich, and T. Thum. 2012. Microvesicles as novel biomarkers and therapeutic targets in transplantation medicine. American Journal of Transplantation 12: 289–297.PubMedCrossRef Fleissner, F., Y. Goerzig, A. Haverich, and T. Thum. 2012. Microvesicles as novel biomarkers and therapeutic targets in transplantation medicine. American Journal of Transplantation 12: 289–297.PubMedCrossRef
74.
Zurück zum Zitat Qazi, K.R., U. Gehrmann, E. Domange Jordö, M.C. Karlsson, and S. Gabrielsson. 2009. Antigen-loaded exosomes alone induce Th1-type memory through a B cell-dependent mechanism. Blood 113: 2673–2683.PubMedCrossRef Qazi, K.R., U. Gehrmann, E. Domange Jordö, M.C. Karlsson, and S. Gabrielsson. 2009. Antigen-loaded exosomes alone induce Th1-type memory through a B cell-dependent mechanism. Blood 113: 2673–2683.PubMedCrossRef
75.
Zurück zum Zitat Delcayre, A., A. Estelles, J. Sperinde, T. Roulon, P. Paz, B. Aguilar, J. Villanueva, S. Khine, and J.B. Le Pecq. 2005. Exosome display technology: applications to the development of new diagnostics and therapeutics. Blood Cells, Molecules, and Diseases 35: 158–168.PubMedCrossRef Delcayre, A., A. Estelles, J. Sperinde, T. Roulon, P. Paz, B. Aguilar, J. Villanueva, S. Khine, and J.B. Le Pecq. 2005. Exosome display technology: applications to the development of new diagnostics and therapeutics. Blood Cells, Molecules, and Diseases 35: 158–168.PubMedCrossRef
76.
Zurück zum Zitat Viaud, S., M. Terme, C. Flament, J. Taieb, F. André, S. Novault, B. Escudier, C. Robert, S. Caillat-Zucman, T. Tursz, L. Zitvogel, and N. Chaput. 2009. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One 4: e4942.PubMedCrossRef Viaud, S., M. Terme, C. Flament, J. Taieb, F. André, S. Novault, B. Escudier, C. Robert, S. Caillat-Zucman, T. Tursz, L. Zitvogel, and N. Chaput. 2009. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One 4: e4942.PubMedCrossRef
77.
Zurück zum Zitat Taieb, J., N. Chaput, N. Schartz, S. Roux, S. Novault, C. Ménard, F. Ghiringhelli, M. Terme, A.F. Carpentier, G. Darrasse-Jèze, F. Lemonnier, and L. Zitvogel. 2006. Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. Journal of Immunology 176: 2722–2729. Taieb, J., N. Chaput, N. Schartz, S. Roux, S. Novault, C. Ménard, F. Ghiringhelli, M. Terme, A.F. Carpentier, G. Darrasse-Jèze, F. Lemonnier, and L. Zitvogel. 2006. Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. Journal of Immunology 176: 2722–2729.
Metadaten
Titel
Immature Dendritic Cell-Derived Exosomes: a Promise Subcellular Vaccine for Autoimmunity
verfasst von
Weifan Yin
Song Ouyang
Yi Li
Bo Xiao
Huan Yang
Publikationsdatum
01.02.2013
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2013
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-012-9539-1

Weitere Artikel der Ausgabe 1/2013

Inflammation 1/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.