Skip to main content
Erschienen in: Inflammation 4/2017

18.05.2017 | ORIGINAL ARTICLE

Immature Exosomes Derived from MicroRNA-146a Overexpressing Dendritic Cells Act as Antigen-Specific Therapy for Myasthenia Gravis

verfasst von: Weifan Yin, Song Ouyang, Zhaohui Luo, Qiuming Zeng, Bo Hu, Liqun Xu, Yuan Li, Bo Xiao, Huan Yang

Erschienen in: Inflammation | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Myasthenia gravis (MG) is a neurological autoimmune disease characterized by fluctuating weakness of certain voluntary muscles. Current treatments for MG are largely directed at suppressing the whole immune system by using immunosuppressants or glucocorticoids and often cause several side effects. The ideal therapeutic methods for MG should suppress aberrant immunoactivation specifically, while retaining normal function of the immune system. In this study, we first produced exosomes from microRNA-146a overexpressing dendritic cells (DCs). Then, we observed suppressive effects of those exosomes in experimental autoimmune myasthenia gravis (EAMG) mice. Results showed that exosomes from microRNA-146a overexpressing DCs expressed decreased levels of CD80 and CD86. In experimental autoimmune MG, exosomes from microRNA-146a overexpressing DCs suppressed ongoing clinical MG in mice and altered T helper cell profiles from Th1/Th17 to Th2/Treg both in serum and spleen, and the therapeutic effects of those exosomes were antigen-specific and partly dose dependent. All the findings provide experimental basis for antigen-specific therapy of MG.
Literatur
1.
Zurück zum Zitat Christadoss, P., J. Lindstrom, S. Munro, and N. Talal. 1985. Muscle acetylcholine receptor loss in murine experimental autoimmune myasthenia gravis: Correlated with cellular, humoral and clinical responses. Journal of Neuroimmunology 8: 29–44.CrossRefPubMed Christadoss, P., J. Lindstrom, S. Munro, and N. Talal. 1985. Muscle acetylcholine receptor loss in murine experimental autoimmune myasthenia gravis: Correlated with cellular, humoral and clinical responses. Journal of Neuroimmunology 8: 29–44.CrossRefPubMed
2.
Zurück zum Zitat Drachman, D.B. 1994. Myasthenia gravis. The New England Journal of Medicine 330: 1797–1810.CrossRefPubMed Drachman, D.B. 1994. Myasthenia gravis. The New England Journal of Medicine 330: 1797–1810.CrossRefPubMed
3.
Zurück zum Zitat Rodgaard, A., F.C. Nielsen, R. Djurup, F. Somnier, and S. Gammeltoft. 1987. Acetylcholine receptor antibody in myasthenia gravis: Predominance of IgG subclasses 1 and 3. J Clin. Exp Immunol 67: 82–88. Rodgaard, A., F.C. Nielsen, R. Djurup, F. Somnier, and S. Gammeltoft. 1987. Acetylcholine receptor antibody in myasthenia gravis: Predominance of IgG subclasses 1 and 3. J Clin. Exp Immunol 67: 82–88.
4.
Zurück zum Zitat Christadoss, P., M. Poussin, and C. Deng. 2000. Animal models of myasthenia gravis. Clinical Immunology 94: 75–87.CrossRefPubMed Christadoss, P., M. Poussin, and C. Deng. 2000. Animal models of myasthenia gravis. Clinical Immunology 94: 75–87.CrossRefPubMed
5.
Zurück zum Zitat Imai, T., S. Suzuki, E. Tsuda, Y. Nagane, H. Murai, M. Masuda, S. Konno, Y. Suzuki, S. Nakane, K. Fujihara, N. Suzuki, and K. Utsugisawa. 2015. Oral corticosteroid therapy and present disease status in myasthenia gravis. Muscle & Nerve 51: 692–696.CrossRef Imai, T., S. Suzuki, E. Tsuda, Y. Nagane, H. Murai, M. Masuda, S. Konno, Y. Suzuki, S. Nakane, K. Fujihara, N. Suzuki, and K. Utsugisawa. 2015. Oral corticosteroid therapy and present disease status in myasthenia gravis. Muscle & Nerve 51: 692–696.CrossRef
6.
Zurück zum Zitat Luo, J., and J. Lindstrom. 2014. Antigen-specific immunotherapeutic vaccine for experimental autoimmune myasthenia gravis. Journal of Immunology 193: 5044–5055.CrossRef Luo, J., and J. Lindstrom. 2014. Antigen-specific immunotherapeutic vaccine for experimental autoimmune myasthenia gravis. Journal of Immunology 193: 5044–5055.CrossRef
7.
Zurück zum Zitat Banchereau, J., and R.M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392: 245–252.CrossRefPubMed Banchereau, J., and R.M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392: 245–252.CrossRefPubMed
8.
Zurück zum Zitat Osorio, F., C. Fuentes, M.N. López, F. Salazar-Onfray, and F.E. González. 2015. Role of dendritic cells in the induction of lymphocyte tolerance. Frontiers in Immunology 6: 535.CrossRefPubMedPubMedCentral Osorio, F., C. Fuentes, M.N. López, F. Salazar-Onfray, and F.E. González. 2015. Role of dendritic cells in the induction of lymphocyte tolerance. Frontiers in Immunology 6: 535.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Chung, C.Y., D. Ysebaert, Z.N. Berneman, and N. Cools. 2013. Dendritic cells: Cellular mediators for immunological tolerance. Clinical & Developmental Immunology 2013: 972865.CrossRef Chung, C.Y., D. Ysebaert, Z.N. Berneman, and N. Cools. 2013. Dendritic cells: Cellular mediators for immunological tolerance. Clinical & Developmental Immunology 2013: 972865.CrossRef
10.
Zurück zum Zitat O’Connell, R.M., D.S. Rao, A.A. Chaudhuri, and D. Baltimore. 2010. Physiological and pathological roles for microRNAs in the immune system. Nature Reviews. Immunology 10: 111–122.CrossRefPubMed O’Connell, R.M., D.S. Rao, A.A. Chaudhuri, and D. Baltimore. 2010. Physiological and pathological roles for microRNAs in the immune system. Nature Reviews. Immunology 10: 111–122.CrossRefPubMed
11.
Zurück zum Zitat Fukaya, T., and Y. Tomari. 2012. MicroRNAs mediate gene silencing via multiple different pathways in Drosophila. Molecular Cell 48: 825–836.CrossRefPubMed Fukaya, T., and Y. Tomari. 2012. MicroRNAs mediate gene silencing via multiple different pathways in Drosophila. Molecular Cell 48: 825–836.CrossRefPubMed
12.
Zurück zum Zitat Du, J., J. Wang, G. Tan, Z. Cai, L. Zhang, B. Tang, and Z. Wang. 2012. Aberrant elevated microRNA-146a in dendritic cells (DC) induced by human pancreatic cancer cell line BxPC-3-conditioned medium inhibits DC maturation and activation. Medical Oncology 29: 2814–2823.CrossRefPubMed Du, J., J. Wang, G. Tan, Z. Cai, L. Zhang, B. Tang, and Z. Wang. 2012. Aberrant elevated microRNA-146a in dendritic cells (DC) induced by human pancreatic cancer cell line BxPC-3-conditioned medium inhibits DC maturation and activation. Medical Oncology 29: 2814–2823.CrossRefPubMed
13.
Zurück zum Zitat Karrich, J.J., L.C. Jachimowski, M. Libouban, A. Iyer, K. Brandwijk, E.W. Taanman-Kueter, M. Nagasawa, E.C. de Jong, C.H. Uittenbogaart, and B. Blom. 2013. MicroRNA-146a regulates survival and maturation of human plasmacytoid dendritic cells. Blood 122: 3001–3009.CrossRefPubMedPubMedCentral Karrich, J.J., L.C. Jachimowski, M. Libouban, A. Iyer, K. Brandwijk, E.W. Taanman-Kueter, M. Nagasawa, E.C. de Jong, C.H. Uittenbogaart, and B. Blom. 2013. MicroRNA-146a regulates survival and maturation of human plasmacytoid dendritic cells. Blood 122: 3001–3009.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Park, H., X. Huang, C. Lu, M.S. Cairo, and X. Zhou. 2015. MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. The Journal of Biological Chemistry 290: 2831–2841.CrossRefPubMed Park, H., X. Huang, C. Lu, M.S. Cairo, and X. Zhou. 2015. MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. The Journal of Biological Chemistry 290: 2831–2841.CrossRefPubMed
15.
Zurück zum Zitat Chen, T., Z. Li, T. Jing, W. Zhu, J. Ge, X. Zheng, X. Pan, H. Yan, and J. Zhu. 2011. MicroRNA-146a regulates the maturation process and pro-inflammatory cytokine secretion by targeting CD40L in oxLDL-stimulated dendritic cells. FEBS Letters 585: 567–573.CrossRefPubMed Chen, T., Z. Li, T. Jing, W. Zhu, J. Ge, X. Zheng, X. Pan, H. Yan, and J. Zhu. 2011. MicroRNA-146a regulates the maturation process and pro-inflammatory cytokine secretion by targeting CD40L in oxLDL-stimulated dendritic cells. FEBS Letters 585: 567–573.CrossRefPubMed
16.
Zurück zum Zitat Bodey, B., Jr B. Bodey, S.E. Siegel, and H.E. Kaiser. 2000. Failure of cancer vaccines: The significant limitations of this approach to immunotherapy. Anticancer Research 20: 2665–2676.PubMed Bodey, B., Jr B. Bodey, S.E. Siegel, and H.E. Kaiser. 2000. Failure of cancer vaccines: The significant limitations of this approach to immunotherapy. Anticancer Research 20: 2665–2676.PubMed
17.
Zurück zum Zitat Segura, E., S. Amigorena, and C. Théry. 2005. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells, Molecules & Diseases 35: 89.CrossRef Segura, E., S. Amigorena, and C. Théry. 2005. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells, Molecules & Diseases 35: 89.CrossRef
18.
Zurück zum Zitat Yin, W., S. Ouyang, Y. Li, B. Xiao, and H. Yang. 2013. Immature dendritic cell-derived exosomes: A promise subcellular vaccine for autoimmunity. Inflammation 36: 232–240.CrossRefPubMed Yin, W., S. Ouyang, Y. Li, B. Xiao, and H. Yang. 2013. Immature dendritic cell-derived exosomes: A promise subcellular vaccine for autoimmunity. Inflammation 36: 232–240.CrossRefPubMed
19.
Zurück zum Zitat Pêche, H., K. Renaudin, G. Beriou, E. Merieau, S. Amigorena, and M.C. Cuturi. 2006. Induction of tolerance by exosome and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am Transplantat 6: 1541–1550.CrossRef Pêche, H., K. Renaudin, G. Beriou, E. Merieau, S. Amigorena, and M.C. Cuturi. 2006. Induction of tolerance by exosome and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am Transplantat 6: 1541–1550.CrossRef
20.
Zurück zum Zitat Yang, X., S. Meng, H. Jiang, C. Zhu, and W. Wu. 2011. Exosomes derived from immature bone marrow dendritic cells induce tolerogenicity of intestinal transplantation in rats. The Journal of Surgical Research 171: 826–832.CrossRefPubMed Yang, X., S. Meng, H. Jiang, C. Zhu, and W. Wu. 2011. Exosomes derived from immature bone marrow dendritic cells induce tolerogenicity of intestinal transplantation in rats. The Journal of Surgical Research 171: 826–832.CrossRefPubMed
21.
Zurück zum Zitat Kim, S.H., N. Bianco, R. Menon, E.R. Lechman, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2006. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Molecular Therapy 13: 289–300.CrossRefPubMed Kim, S.H., N. Bianco, R. Menon, E.R. Lechman, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2006. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Molecular Therapy 13: 289–300.CrossRefPubMed
22.
Zurück zum Zitat Kim, S.H., N.R. Bianco, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2007. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. Journal of Immunology 179: 2242–2249.CrossRef Kim, S.H., N.R. Bianco, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2007. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. Journal of Immunology 179: 2242–2249.CrossRef
23.
Zurück zum Zitat Kim, S.H., E.R. Lechman, N. Bianco, R. Menon, A. Keravala, J. Nash, Z. Mi, S.C. Watkins, A. Gambotto, and P.D. Robbins. 2005. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. Journal of Immunology 174: 6440–6448.CrossRef Kim, S.H., E.R. Lechman, N. Bianco, R. Menon, A. Keravala, J. Nash, Z. Mi, S.C. Watkins, A. Gambotto, and P.D. Robbins. 2005. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. Journal of Immunology 174: 6440–6448.CrossRef
24.
Zurück zum Zitat Bu, N., H.Q. Wu, G.L. Zhang, S.Q. Zhan, R. Zhang, Q.Y. Fan, Y.L. Li, Y.F. Zhai, and H.W. Ren. 2015. Immature dendritic cell exosomes suppress experimental autoimmune myasthenia gravis. Journal of Neuroimmunology 285: 71–75.CrossRefPubMed Bu, N., H.Q. Wu, G.L. Zhang, S.Q. Zhan, R. Zhang, Q.Y. Fan, Y.L. Li, Y.F. Zhai, and H.W. Ren. 2015. Immature dendritic cell exosomes suppress experimental autoimmune myasthenia gravis. Journal of Neuroimmunology 285: 71–75.CrossRefPubMed
25.
Zurück zum Zitat Li, X.L., H. Li, M. Zhang, H. Xu, L.T. Yue, X.X. Zhang, S. Wang, C.C. Wang, Y.B. Li, Y.C. Dou, and R.S. Duan. 2016. Exosomes derived from atorvastatin-modified bone marrow dendritic cells ameliorate experimental autoimmune myasthenia gravis by up-regulated levels of IDO/Treg and partly dependent on FasL/Fas pathway. Journal of Neuroinflammation 13: 8.CrossRefPubMedPubMedCentral Li, X.L., H. Li, M. Zhang, H. Xu, L.T. Yue, X.X. Zhang, S. Wang, C.C. Wang, Y.B. Li, Y.C. Dou, and R.S. Duan. 2016. Exosomes derived from atorvastatin-modified bone marrow dendritic cells ameliorate experimental autoimmune myasthenia gravis by up-regulated levels of IDO/Treg and partly dependent on FasL/Fas pathway. Journal of Neuroinflammation 13: 8.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Min, W.P., R. Gorczynski, X.Y. Huang, M. Kushida, P. Kim, M. Obataki, J. Lei, R.M. Suri, and M.S. Cattral. 2000. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. Journal of Immunology 164: 161–167.CrossRef Min, W.P., R. Gorczynski, X.Y. Huang, M. Kushida, P. Kim, M. Obataki, J. Lei, R.M. Suri, and M.S. Cattral. 2000. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. Journal of Immunology 164: 161–167.CrossRef
27.
Zurück zum Zitat Doffek, K., X. Chen, S.L. Sugg, and J. Shilyansky. 2011. Phosphatidylserine inhibits NF-κB and p38 MAPK activation in human monocyte derived dendritic cells. Molecular Immunology 48: 1771–1777.CrossRefPubMed Doffek, K., X. Chen, S.L. Sugg, and J. Shilyansky. 2011. Phosphatidylserine inhibits NF-κB and p38 MAPK activation in human monocyte derived dendritic cells. Molecular Immunology 48: 1771–1777.CrossRefPubMed
28.
Zurück zum Zitat Matsue H, Yang C, Matsue K, Edelbaum D, Mummert M, Takashima A Contrasting impacts of immunosuppressive agents (rapamycin, FK506, cyclosporin A, and dexamethasone) on bidirectional dendritic cell-T cell interaction during antigen presentation. J Immunol 169:3555–3564. Matsue H, Yang C, Matsue K, Edelbaum D, Mummert M, Takashima A Contrasting impacts of immunosuppressive agents (rapamycin, FK506, cyclosporin A, and dexamethasone) on bidirectional dendritic cell-T cell interaction during antigen presentation. J Immunol 169:3555–3564.
29.
Zurück zum Zitat Manavella, P.A., and I. Rubio-Somoza. 2011. Engineering elements for gene silencing: The artificial microRNAs technology. Methods in Molecular Biology 732: 121–123.CrossRefPubMed Manavella, P.A., and I. Rubio-Somoza. 2011. Engineering elements for gene silencing: The artificial microRNAs technology. Methods in Molecular Biology 732: 121–123.CrossRefPubMed
30.
Zurück zum Zitat Pusic, A.D., K.M. Pusic, B.L. Clayton, and R.P. Kraig. 2014. IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination. Journal of Neuroimmunology 266: 12–23.CrossRefPubMed Pusic, A.D., K.M. Pusic, B.L. Clayton, and R.P. Kraig. 2014. IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination. Journal of Neuroimmunology 266: 12–23.CrossRefPubMed
31.
Zurück zum Zitat Li, X., J.J. Li, J.Y. Yang, D.S. Wan, W. Zhao, W.J. Song, W.M. Li, J.F. Wang, W. Han, Z.C. Zhang, Y. Yu, D.Y. Cao, and K.F. Dou. 2012. Tolerance induction by exosomes from immature dendritic cells and rapamycin in a mouse cardiac allograft model. PloS One 7: e44045.CrossRefPubMedPubMedCentral Li, X., J.J. Li, J.Y. Yang, D.S. Wan, W. Zhao, W.J. Song, W.M. Li, J.F. Wang, W. Han, Z.C. Zhang, Y. Yu, D.Y. Cao, and K.F. Dou. 2012. Tolerance induction by exosomes from immature dendritic cells and rapamycin in a mouse cardiac allograft model. PloS One 7: e44045.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Hall, B.M. 2015. T cell: Soldiers and spies—The surveillance and control of effector T cells by regulatory T cell. Clinical Journal of the American Society of Nephrology 10 (11): 2050–2064.CrossRefPubMedPubMedCentral Hall, B.M. 2015. T cell: Soldiers and spies—The surveillance and control of effector T cells by regulatory T cell. Clinical Journal of the American Society of Nephrology 10 (11): 2050–2064.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Talaat, R.M., S.F. Mohamed, I.H. Bassyouni, and A.A. Raouf. 2015. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine 72 (2): 146–153.CrossRefPubMed Talaat, R.M., S.F. Mohamed, I.H. Bassyouni, and A.A. Raouf. 2015. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine 72 (2): 146–153.CrossRefPubMed
34.
Zurück zum Zitat Xiao, J., F. Zhu, X. Liu, and J. Xiong. 2012. Th1/Th2/Th17/Treg expression in cultured PBMCs with antiphospholipid antibodies. Molecular Medicine Reports 6 (5): 1035–1039.PubMed Xiao, J., F. Zhu, X. Liu, and J. Xiong. 2012. Th1/Th2/Th17/Treg expression in cultured PBMCs with antiphospholipid antibodies. Molecular Medicine Reports 6 (5): 1035–1039.PubMed
35.
Zurück zum Zitat Alexandre, P.B., D.B. Rodrigues, and V. Rodrigues. 2015. Expression pattern of transcription factors and intracellular cytokines reveals that clinically cured tuberculosis is accompanied by an increase in Mycobacterium-specific Th1, Th2, and Th17 cells. BioMed Research International 2015: 591237.PubMedPubMedCentral Alexandre, P.B., D.B. Rodrigues, and V. Rodrigues. 2015. Expression pattern of transcription factors and intracellular cytokines reveals that clinically cured tuberculosis is accompanied by an increase in Mycobacterium-specific Th1, Th2, and Th17 cells. BioMed Research International 2015: 591237.PubMedPubMedCentral
36.
Zurück zum Zitat Pitt, J.M., F. André, S. Amigorena, J.C. Soria, A. Eggermont, G. Kroemer, and L. Zitvogel. 2016. Dendritic cell-derived exosomes for cancer therapy. The Journal of Clinical Investigation 126 (4): 1224–1232.CrossRefPubMedPubMedCentral Pitt, J.M., F. André, S. Amigorena, J.C. Soria, A. Eggermont, G. Kroemer, and L. Zitvogel. 2016. Dendritic cell-derived exosomes for cancer therapy. The Journal of Clinical Investigation 126 (4): 1224–1232.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Tan, A., H. De La Peña, and A.M. Seifalian. 2010. The application of exosomes as a nanoscale cancer vaccine. International Journal of Nanomedicine 10 (5): 889–900. Tan, A., H. De La Peña, and A.M. Seifalian. 2010. The application of exosomes as a nanoscale cancer vaccine. International Journal of Nanomedicine 10 (5): 889–900.
Metadaten
Titel
Immature Exosomes Derived from MicroRNA-146a Overexpressing Dendritic Cells Act as Antigen-Specific Therapy for Myasthenia Gravis
verfasst von
Weifan Yin
Song Ouyang
Zhaohui Luo
Qiuming Zeng
Bo Hu
Liqun Xu
Yuan Li
Bo Xiao
Huan Yang
Publikationsdatum
18.05.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0589-2

Weitere Artikel der Ausgabe 4/2017

Inflammation 4/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.