Skip to main content
Erschienen in: Strahlentherapie und Onkologie 6/2018

02.03.2018 | Review Article

Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies

Erschienen in: Strahlentherapie und Onkologie | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Background

Radiotherapy (RT) has been known for decades as a local treatment modality for malign and benign disease. In order to efficiently exploit the therapeutic potential of RT, an understanding of the immune modulatory properties of ionizing radiation is mandatory. These should be used for improvement of radioimmunotherapies for cancer in particular.

Methods

We here summarize the latest research and review articles about immune modulatory properties of RT, with focus on radiation dose and on combination of RT with selected immunotherapies. Based on the knowledge of the manifold immune mechanisms that are triggered by RT, thought-provoking impulse for multimodal radioimmunotherapies is provided.

Results

It has become obvious that ionizing radiation induces various forms of cell death and associated processes via DNA damage initiation and triggering of cellular stress responses. Immunogenic cell death (ICD) is of special interest since it activates the immune system via release of danger signals and via direct activation of immune cells. While RT with higher single doses in particular induces ICD, RT with a lower dose is mainly responsible for immune cell recruitment and for attenuation of an existing inflammation. The counteracting immunosuppression emanating from tumor cells can be overcome by combining RT with selected immunotherapies such as immune checkpoint inhibition, TGF-β inhibitors, and boosting of immunity with vaccination.

Conclusion

In order to exploit the full power of RT and thereby develop efficient radioimmunotherapies, the dose per fraction used in RT protocols, the fractionation, the quality, and the quantity of certain immunotherapies need to be qualitatively and chronologically well-matched to the individual immune status of the patient.
Literatur
1.
Zurück zum Zitat Wu Q, Allouch A, Martins I et al (2017) Modulating both tumor cell death and innate immunity is essential for improving radiation therapy effectiveness. Front Immunol 8:613CrossRefPubMedPubMedCentral Wu Q, Allouch A, Martins I et al (2017) Modulating both tumor cell death and innate immunity is essential for improving radiation therapy effectiveness. Front Immunol 8:613CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Castedo M, Perfettini JL, Roumier T et al (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837CrossRefPubMed Castedo M, Perfettini JL, Roumier T et al (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837CrossRefPubMed
4.
6.
Zurück zum Zitat Frey B, Schildkopf P, Rodel F et al (2009) AnnexinA5 renders dead tumor cells immunogenic—implications for multimodal cancer therapies. J Immunotoxicol 6:209–216CrossRefPubMed Frey B, Schildkopf P, Rodel F et al (2009) AnnexinA5 renders dead tumor cells immunogenic—implications for multimodal cancer therapies. J Immunotoxicol 6:209–216CrossRefPubMed
7.
Zurück zum Zitat Werthmoller N, Frey B, Wunderlich R et al (2015) Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T‑cell-dependent manner. Cell Death Dis 6:e1761CrossRefPubMedPubMedCentral Werthmoller N, Frey B, Wunderlich R et al (2015) Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T‑cell-dependent manner. Cell Death Dis 6:e1761CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223CrossRefPubMed Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223CrossRefPubMed
9.
Zurück zum Zitat Muth C, Rubner Y, Semrau S et al (2016) Primary glioblastoma multiforme tumors and recurrence: comparative analysis of the danger signals HMGB1, HSP70, and calreticulin. Strahlenther Onkol 192:146–155CrossRefPubMed Muth C, Rubner Y, Semrau S et al (2016) Primary glioblastoma multiforme tumors and recurrence: comparative analysis of the danger signals HMGB1, HSP70, and calreticulin. Strahlenther Onkol 192:146–155CrossRefPubMed
10.
Zurück zum Zitat Lu C, Xie C (2016) Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway. Oncol Rep 35:3559–3565CrossRefPubMed Lu C, Xie C (2016) Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway. Oncol Rep 35:3559–3565CrossRefPubMed
11.
Zurück zum Zitat Chiu HW, Lin SW, Lin LC et al (2015) Synergistic antitumor effects of radiation and proteasome inhibitor treatment in pancreatic cancer through the induction of autophagy and the downregulation of TRAF6. Cancer Lett 365:229–239CrossRefPubMed Chiu HW, Lin SW, Lin LC et al (2015) Synergistic antitumor effects of radiation and proteasome inhibitor treatment in pancreatic cancer through the induction of autophagy and the downregulation of TRAF6. Cancer Lett 365:229–239CrossRefPubMed
12.
13.
14.
15.
Zurück zum Zitat Gaipl US, Multhoff G, Scheithauer H et al (2014) Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy 6:597–610CrossRefPubMed Gaipl US, Multhoff G, Scheithauer H et al (2014) Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy 6:597–610CrossRefPubMed
16.
Zurück zum Zitat Shevtsov M, Multhoff G (2016) Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol 7:171PubMedPubMedCentral Shevtsov M, Multhoff G (2016) Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol 7:171PubMedPubMedCentral
17.
Zurück zum Zitat Stangl S, Tontcheva N, Sievert W et al (2017) Heat shock protein 70 and tumor-infiltrating NK cells as prognostic indicators for patients with squamous cell carcinoma of the head and neck after radiochemotherapy: a multicentre retrospective study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Int J Cancer. https://doi.org/10.1002/ijc.31213 PubMedCentralCrossRefPubMed Stangl S, Tontcheva N, Sievert W et al (2017) Heat shock protein 70 and tumor-infiltrating NK cells as prognostic indicators for patients with squamous cell carcinoma of the head and neck after radiochemotherapy: a multicentre retrospective study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Int J Cancer. https://​doi.​org/​10.​1002/​ijc.​31213 PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Specht HM, Ahrens N, Blankenstein C et al (2015) Heat Shock Protein 70 (Hsp70) peptide activated Natural Killer (NK) cells for the treatment of patients with Non-Small Cell Lung Cancer (NSCLC) after Radiochemotherapy (RCTx)—from preclinical studies to a clinical phase II trial. Front Immunol 6:162CrossRefPubMedPubMedCentral Specht HM, Ahrens N, Blankenstein C et al (2015) Heat Shock Protein 70 (Hsp70) peptide activated Natural Killer (NK) cells for the treatment of patients with Non-Small Cell Lung Cancer (NSCLC) after Radiochemotherapy (RCTx)—from preclinical studies to a clinical phase II trial. Front Immunol 6:162CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Garg AD, Galluzzi L, Apetoh L et al (2015) Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol 6:588CrossRefPubMedPubMedCentral Garg AD, Galluzzi L, Apetoh L et al (2015) Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol 6:588CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271CrossRefPubMedPubMedCentral Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Frey B, Rubner Y, Kulzer L et al (2014) Antitumor immune responses induced by ionizing irradiation and further immune stimulation. Cancer Immunol Immunother 63:29–36CrossRefPubMed Frey B, Rubner Y, Kulzer L et al (2014) Antitumor immune responses induced by ionizing irradiation and further immune stimulation. Cancer Immunol Immunother 63:29–36CrossRefPubMed
22.
Zurück zum Zitat Galluzzi L, Buque A, Kepp O et al (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17:97–111CrossRefPubMed Galluzzi L, Buque A, Kepp O et al (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17:97–111CrossRefPubMed
23.
24.
Zurück zum Zitat Bouquet F, Pal A, Pilones KA et al (2011) TGFbeta1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 17:6754–6765CrossRefPubMedPubMedCentral Bouquet F, Pal A, Pilones KA et al (2011) TGFbeta1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 17:6754–6765CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Deng L, Liang H, Burnette B et al (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124:687–695CrossRefPubMedPubMedCentral Deng L, Liang H, Burnette B et al (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124:687–695CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Jobling MF, Mott JD, Finnegan MT et al (2006) Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res 166:839–848CrossRefPubMed Jobling MF, Mott JD, Finnegan MT et al (2006) Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res 166:839–848CrossRefPubMed
27.
Zurück zum Zitat Vanpouille-Box C, Diamond JM, Pilones KA et al (2015) TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 75:2232–2242CrossRefPubMedPubMedCentral Vanpouille-Box C, Diamond JM, Pilones KA et al (2015) TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 75:2232–2242CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Vanpouille-Box C, Alard A, Aryankalayil MJ et al (2017) DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 8:15618CrossRefPubMedPubMedCentral Vanpouille-Box C, Alard A, Aryankalayil MJ et al (2017) DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 8:15618CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Kang J, Demaria S, Formenti S (2016) Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer 4:51CrossRefPubMedPubMedCentral Kang J, Demaria S, Formenti S (2016) Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer 4:51CrossRefPubMedPubMedCentral
30.
31.
Zurück zum Zitat Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T‑cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800CrossRefPubMed Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T‑cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800CrossRefPubMed
32.
Zurück zum Zitat Derer A, Spiljar M, Baumler M et al (2016) Chemoradiation increases PD-L1 expression in certain melanoma and glioblastoma cells. Front Immunol 7:610CrossRefPubMedPubMedCentral Derer A, Spiljar M, Baumler M et al (2016) Chemoradiation increases PD-L1 expression in certain melanoma and glioblastoma cells. Front Immunol 7:610CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Dovedi SJ, Adlard AL, Lipowska-Bhalla G et al (2014) Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res 74:5458–5468CrossRefPubMed Dovedi SJ, Adlard AL, Lipowska-Bhalla G et al (2014) Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res 74:5458–5468CrossRefPubMed
34.
Zurück zum Zitat Twyman-Saint Victor C, Rech AJ, Maity A et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–377CrossRefPubMed Twyman-Saint Victor C, Rech AJ, Maity A et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–377CrossRefPubMed
35.
Zurück zum Zitat Derer A, Deloch L, Rubner Y et al (2015) Radio-immunotherapy-induced immunogenic cancer cells as basis for induction of systemic anti-tumor immune responses—pre-clinical evidence and ongoing clinical applications. Front Immunol 6:505CrossRefPubMedPubMedCentral Derer A, Deloch L, Rubner Y et al (2015) Radio-immunotherapy-induced immunogenic cancer cells as basis for induction of systemic anti-tumor immune responses—pre-clinical evidence and ongoing clinical applications. Front Immunol 6:505CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Golden EB, Chhabra A, Chachoua A et al (2015) Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 16:795–803CrossRefPubMed Golden EB, Chhabra A, Chachoua A et al (2015) Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 16:795–803CrossRefPubMed
37.
Zurück zum Zitat Frey B, Gaipl US (2015) Radio-immunotherapy: the focused beam expands. Lancet Oncol 16:742–743CrossRefPubMed Frey B, Gaipl US (2015) Radio-immunotherapy: the focused beam expands. Lancet Oncol 16:742–743CrossRefPubMed
38.
Zurück zum Zitat Rodel F, Fournier C, Wiedemann J et al (2017) Basics of radiation biology when treating hyperproliferative benign diseases. Front Immunol 8:519CrossRefPubMedPubMedCentral Rodel F, Fournier C, Wiedemann J et al (2017) Basics of radiation biology when treating hyperproliferative benign diseases. Front Immunol 8:519CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Frey B, Hehlgans S, Rodel F et al (2015) Modulation of inflammation by low and high doses of ionizing radiation: implications for benign and malign diseases. Cancer Lett 368:230–237CrossRefPubMed Frey B, Hehlgans S, Rodel F et al (2015) Modulation of inflammation by low and high doses of ionizing radiation: implications for benign and malign diseases. Cancer Lett 368:230–237CrossRefPubMed
40.
Zurück zum Zitat Rodel F, Frey B, Gaipl U et al (2012) Modulation of inflammatory immune reactions by low-dose ionizing radiation: molecular mechanisms and clinical application. Curr Med Chem 19:1741–1750CrossRefPubMed Rodel F, Frey B, Gaipl U et al (2012) Modulation of inflammatory immune reactions by low-dose ionizing radiation: molecular mechanisms and clinical application. Curr Med Chem 19:1741–1750CrossRefPubMed
41.
Zurück zum Zitat Wunderlich R, Ernst A, Rodel F et al (2015) Low and moderate doses of ionizing radiation up to 2 Gy modulate transmigration and chemotaxis of activated macrophages, provoke an anti-inflammatory cytokine milieu, but do not impact upon viability and phagocytic function. Clin Exp Immunol 179:50–61CrossRefPubMed Wunderlich R, Ernst A, Rodel F et al (2015) Low and moderate doses of ionizing radiation up to 2 Gy modulate transmigration and chemotaxis of activated macrophages, provoke an anti-inflammatory cytokine milieu, but do not impact upon viability and phagocytic function. Clin Exp Immunol 179:50–61CrossRefPubMed
42.
Zurück zum Zitat Large M, Hehlgans S, Reichert S et al (2015) Study of the anti-inflammatory effects of low-dose radiation: the contribution of biphasic regulation of the antioxidative system in endothelial cells. Strahlenther Onkol 191:742–749CrossRefPubMed Large M, Hehlgans S, Reichert S et al (2015) Study of the anti-inflammatory effects of low-dose radiation: the contribution of biphasic regulation of the antioxidative system in endothelial cells. Strahlenther Onkol 191:742–749CrossRefPubMed
43.
Zurück zum Zitat Rodel F, Hofmann D, Auer J et al (2008) The anti-inflammatory effect of low-dose radiation therapy involves a diminished CCL20 chemokine expression and granulocyte/endothelial cell adhesion. Strahlenther Onkol 184:41–47CrossRefPubMed Rodel F, Hofmann D, Auer J et al (2008) The anti-inflammatory effect of low-dose radiation therapy involves a diminished CCL20 chemokine expression and granulocyte/endothelial cell adhesion. Strahlenther Onkol 184:41–47CrossRefPubMed
44.
Zurück zum Zitat Lodermann B, Wunderlich R, Frey S et al (2012) Low dose ionising radiation leads to a NF-kappaB dependent decreased secretion of active IL-1beta by activated macrophages with a discontinuous dose-dependency. Int J Radiat Biol 88:727–734CrossRefPubMed Lodermann B, Wunderlich R, Frey S et al (2012) Low dose ionising radiation leads to a NF-kappaB dependent decreased secretion of active IL-1beta by activated macrophages with a discontinuous dose-dependency. Int J Radiat Biol 88:727–734CrossRefPubMed
45.
Zurück zum Zitat Ott OJ, Jeremias C, Gaipl US et al (2015) Radiotherapy for benign achillodynia. Long-term results of the Erlangen Dose Optimization Trial. Strahlenther Onkol 191:979–984CrossRefPubMed Ott OJ, Jeremias C, Gaipl US et al (2015) Radiotherapy for benign achillodynia. Long-term results of the Erlangen Dose Optimization Trial. Strahlenther Onkol 191:979–984CrossRefPubMed
46.
Zurück zum Zitat Ott OJ, Jeremias C, Gaipl US et al (2014) Radiotherapy for benign calcaneodynia: long-term results of the Erlangen Dose Optimization (EDO) trial. Strahlenther Onkol 190:671–675CrossRefPubMed Ott OJ, Jeremias C, Gaipl US et al (2014) Radiotherapy for benign calcaneodynia: long-term results of the Erlangen Dose Optimization (EDO) trial. Strahlenther Onkol 190:671–675CrossRefPubMed
47.
Zurück zum Zitat Ott OJ, Hertel S, Gaipl US et al (2014) The Erlangen Dose Optimization Trial for radiotherapy of benign painful shoulder syndrome. Long-term results. Strahlenther Onkol 190:394–398CrossRefPubMed Ott OJ, Hertel S, Gaipl US et al (2014) The Erlangen Dose Optimization Trial for radiotherapy of benign painful shoulder syndrome. Long-term results. Strahlenther Onkol 190:394–398CrossRefPubMed
48.
Zurück zum Zitat Ott OJ, Hertel S, Gaipl US et al (2014) The Erlangen Dose Optimization trial for low-dose radiotherapy of benign painful elbow syndrome. Long-term results. Strahlenther Onkol 190:293–297CrossRefPubMed Ott OJ, Hertel S, Gaipl US et al (2014) The Erlangen Dose Optimization trial for low-dose radiotherapy of benign painful elbow syndrome. Long-term results. Strahlenther Onkol 190:293–297CrossRefPubMed
49.
Zurück zum Zitat Ruhle PF, Wunderlich R, Deloch L et al (2017) Modulation of the peripheral immune system after low-dose radon spa therapy: detailed longitudinal immune monitoring of patients within the RAD-ON01 study. Autoimmunity 50:133–140CrossRefPubMed Ruhle PF, Wunderlich R, Deloch L et al (2017) Modulation of the peripheral immune system after low-dose radon spa therapy: detailed longitudinal immune monitoring of patients within the RAD-ON01 study. Autoimmunity 50:133–140CrossRefPubMed
50.
Zurück zum Zitat Cucu A, Shreder K, Kraft D et al (2017) Decrease of markers related to bone erosion in serum of patients with musculoskeletal disorders after serial low-dose radon spa therapy. Front Immunol 8:882CrossRefPubMedPubMedCentral Cucu A, Shreder K, Kraft D et al (2017) Decrease of markers related to bone erosion in serum of patients with musculoskeletal disorders after serial low-dose radon spa therapy. Front Immunol 8:882CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Asur R, Butterworth KT, Penagaricano JA et al (2015) High dose bystander effects in spatially fractionated radiation therapy. Cancer Lett 356:52–57CrossRefPubMed Asur R, Butterworth KT, Penagaricano JA et al (2015) High dose bystander effects in spatially fractionated radiation therapy. Cancer Lett 356:52–57CrossRefPubMed
52.
53.
Zurück zum Zitat Ghita M, Coffey CB, Butterworth KT et al (2016) Impact of fractionation on out-of-field survival and DNA damage responses following exposure to intensity modulated radiation fields. Phys Med Biol 61:515–526CrossRefPubMed Ghita M, Coffey CB, Butterworth KT et al (2016) Impact of fractionation on out-of-field survival and DNA damage responses following exposure to intensity modulated radiation fields. Phys Med Biol 61:515–526CrossRefPubMed
54.
Zurück zum Zitat Burnette BC, Liang H, Lee Y et al (2011) The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res 71:2488–2496CrossRefPubMedPubMedCentral Burnette BC, Liang H, Lee Y et al (2011) The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res 71:2488–2496CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Demaria O, De Gassart A, Coso S et al (2015) STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci USA 112:15408–15413CrossRefPubMedPubMedCentral Demaria O, De Gassart A, Coso S et al (2015) STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci USA 112:15408–15413CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Derer A, Frey B, Fietkau R et al (2016) Immune-modulating properties of ionizing radiation: rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors. Cancer Immunol Immunother 65:779–786CrossRefPubMed Derer A, Frey B, Fietkau R et al (2016) Immune-modulating properties of ionizing radiation: rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors. Cancer Immunol Immunother 65:779–786CrossRefPubMed
57.
Zurück zum Zitat Klug F, Prakash H, Huber PE et al (2013) Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24:589–602CrossRefPubMed Klug F, Prakash H, Huber PE et al (2013) Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24:589–602CrossRefPubMed
58.
Zurück zum Zitat Frey B, Rubner Y, Wunderlich R et al (2012) Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation—implications for cancer therapies. Curr Med Chem 19:1751–1764CrossRefPubMed Frey B, Rubner Y, Wunderlich R et al (2012) Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation—implications for cancer therapies. Curr Med Chem 19:1751–1764CrossRefPubMed
59.
Zurück zum Zitat Vanpouille-Box C, Pilones KA, Wennerberg E et al (2015) In situ vaccination by radiotherapy to improve responses to anti-CTLA-4 treatment. Vaccine 33:7415–7422CrossRefPubMedPubMedCentral Vanpouille-Box C, Pilones KA, Wennerberg E et al (2015) In situ vaccination by radiotherapy to improve responses to anti-CTLA-4 treatment. Vaccine 33:7415–7422CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Sahin U, Derhovanessian E, Miller M et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–226CrossRefPubMed Sahin U, Derhovanessian E, Miller M et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–226CrossRefPubMed
62.
Zurück zum Zitat Yarchoan M, Johnson BA 3rd, Lutz ER et al (2017) Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17:569CrossRefPubMed Yarchoan M, Johnson BA 3rd, Lutz ER et al (2017) Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17:569CrossRefPubMed
63.
64.
Zurück zum Zitat Liu R, Luo F, Liu X et al (2016) Biological response modifier in cancer immunotherapy. Adv Exp Med Biol 909:69–138CrossRefPubMed Liu R, Luo F, Liu X et al (2016) Biological response modifier in cancer immunotherapy. Adv Exp Med Biol 909:69–138CrossRefPubMed
65.
Zurück zum Zitat Eckert F, Jelas I, Oehme M et al (2017) Tumor-targeted IL-12 combined with local irradiation leads to systemic tumor control via abscopal effects in vivo. Oncoimmunology 6:e1323161CrossRefPubMedPubMedCentral Eckert F, Jelas I, Oehme M et al (2017) Tumor-targeted IL-12 combined with local irradiation leads to systemic tumor control via abscopal effects in vivo. Oncoimmunology 6:e1323161CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Yang QY, Yang JD, Wang YS (2017) Current strategies to improve the safety of chimeric antigen receptor (CAR) modified T cells. Immunol Lett 190:201–205CrossRefPubMed Yang QY, Yang JD, Wang YS (2017) Current strategies to improve the safety of chimeric antigen receptor (CAR) modified T cells. Immunol Lett 190:201–205CrossRefPubMed
67.
Zurück zum Zitat Fournier C, Martin F, Zitvogel L et al (2017) Trial watch: adoptively transferred cells for anticancer immunotherapy. Oncoimmunology 6:e1363139CrossRefPubMedPubMedCentral Fournier C, Martin F, Zitvogel L et al (2017) Trial watch: adoptively transferred cells for anticancer immunotherapy. Oncoimmunology 6:e1363139CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat van der Burg SH, Arens R, Ossendorp F et al (2016) Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 16:219–233CrossRefPubMed van der Burg SH, Arens R, Ossendorp F et al (2016) Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 16:219–233CrossRefPubMed
69.
Zurück zum Zitat Loi M, Desideri I, Greto D et al (2017) Radiotherapy in the age of cancer immunology: current concepts and future developments. Crit Rev Oncol Hematol 112:1–10CrossRefPubMed Loi M, Desideri I, Greto D et al (2017) Radiotherapy in the age of cancer immunology: current concepts and future developments. Crit Rev Oncol Hematol 112:1–10CrossRefPubMed
70.
Zurück zum Zitat Harjes U (2017) Tumour vaccines: personal training by vaccination. Nat Rev Cancer 17:451–451CrossRefPubMed Harjes U (2017) Tumour vaccines: personal training by vaccination. Nat Rev Cancer 17:451–451CrossRefPubMed
71.
Zurück zum Zitat Muenst S, Soysal SD, Tzankov A et al (2015) The PD-1/PD-L1 pathway: biological background and clinical relevance of an emerging treatment target in immunotherapy. Expert Opin Ther Targets 19:201–211CrossRefPubMed Muenst S, Soysal SD, Tzankov A et al (2015) The PD-1/PD-L1 pathway: biological background and clinical relevance of an emerging treatment target in immunotherapy. Expert Opin Ther Targets 19:201–211CrossRefPubMed
72.
74.
Zurück zum Zitat Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723CrossRefPubMedPubMedCentral Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Topalian SL, Taube JM, Anders RA et al (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287CrossRefPubMedPubMedCentral Topalian SL, Taube JM, Anders RA et al (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat Abuodeh Y, Venkat P, Kim S (2016) Systematic review of case reports on the abscopal effect. Curr Probl Cancer 40:25–37CrossRefPubMed Abuodeh Y, Venkat P, Kim S (2016) Systematic review of case reports on the abscopal effect. Curr Probl Cancer 40:25–37CrossRefPubMed
78.
Zurück zum Zitat Demaria S, Ng B, Devitt ML et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58:862–870CrossRefPubMed Demaria S, Ng B, Devitt ML et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58:862–870CrossRefPubMed
79.
Zurück zum Zitat Zheng W, Skowron KB, Namm JP et al (2016) Combination of radiotherapy and vaccination overcomes checkpoint blockade resistance. Oncotarget 7:43039–43051PubMedPubMedCentral Zheng W, Skowron KB, Namm JP et al (2016) Combination of radiotherapy and vaccination overcomes checkpoint blockade resistance. Oncotarget 7:43039–43051PubMedPubMedCentral
80.
Zurück zum Zitat Dewan MZ, Galloway AE, Kawashima N et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388CrossRefPubMedPubMedCentral Dewan MZ, Galloway AE, Kawashima N et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Frey B, Rückert M, Weber J et al (2017) Hypofractionated irradiation has immune stimulatory potential and induces a timely restricted infiltration of immune cells in colon cancer tumors. Front Immunol 8:231CrossRefPubMedPubMedCentral Frey B, Rückert M, Weber J et al (2017) Hypofractionated irradiation has immune stimulatory potential and induces a timely restricted infiltration of immune cells in colon cancer tumors. Front Immunol 8:231CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Hettich M, Lahoti J, Prasad S, Niedermann G (2016) Checkpoint Antibodies but not T Cell-Recruiting Diabodies Effectively Synergize with TIL-Inducing γ-Irradiation. Cancer Res 76:4673–4683CrossRefPubMed Hettich M, Lahoti J, Prasad S, Niedermann G (2016) Checkpoint Antibodies but not T Cell-Recruiting Diabodies Effectively Synergize with TIL-Inducing γ-Irradiation. Cancer Res 76:4673–4683CrossRefPubMed
83.
Zurück zum Zitat Belka C, Ottinger H, Kreuzfelder E et al (1999) Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother Oncol 50:199–204CrossRefPubMed Belka C, Ottinger H, Kreuzfelder E et al (1999) Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother Oncol 50:199–204CrossRefPubMed
84.
Zurück zum Zitat Heylmann D, Rodel F, Kindler T et al (2014) Radiation sensitivity of human and murine peripheral blood lymphocytes, stem and progenitor cells. Biochim Biophys Acta 1846:121–129PubMed Heylmann D, Rodel F, Kindler T et al (2014) Radiation sensitivity of human and murine peripheral blood lymphocytes, stem and progenitor cells. Biochim Biophys Acta 1846:121–129PubMed
85.
Zurück zum Zitat Sage EK, Schmid TE, Geinitz H et al (2017) Effects of definitive and salvage radiotherapy on the distribution of lymphocyte subpopulations in prostate cancer patients. Strahlenther Onkol 193:648–655CrossRefPubMed Sage EK, Schmid TE, Geinitz H et al (2017) Effects of definitive and salvage radiotherapy on the distribution of lymphocyte subpopulations in prostate cancer patients. Strahlenther Onkol 193:648–655CrossRefPubMed
86.
Zurück zum Zitat van Meir H, Nout RA, Welters MJ et al (2017) Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology 6:e1267095CrossRefPubMed van Meir H, Nout RA, Welters MJ et al (2017) Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology 6:e1267095CrossRefPubMed
87.
Zurück zum Zitat Frey B, Ruckert M, Deloch L et al (2017) Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol Rev 280:231–248CrossRefPubMed Frey B, Ruckert M, Deloch L et al (2017) Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol Rev 280:231–248CrossRefPubMed
88.
Zurück zum Zitat Ruhle PF, Goerig N, Wunderlich R et al (2017) Modulations in the peripheral immune system of glioblastoma patient is connected to therapy and tumor progression-A case report from the IMMO-GLIO-01 trial. Front Neurol 8:296CrossRefPubMedPubMedCentral Ruhle PF, Goerig N, Wunderlich R et al (2017) Modulations in the peripheral immune system of glioblastoma patient is connected to therapy and tumor progression-A case report from the IMMO-GLIO-01 trial. Front Neurol 8:296CrossRefPubMedPubMedCentral
90.
Zurück zum Zitat Karakhanova S, Ryschich E, Mosl B et al (2015) Prognostic and predictive value of immunological parameters for chemoradioimmunotherapy in patients with pancreatic adenocarcinoma. Br J Cancer 112:1027–1036CrossRefPubMedPubMedCentral Karakhanova S, Ryschich E, Mosl B et al (2015) Prognostic and predictive value of immunological parameters for chemoradioimmunotherapy in patients with pancreatic adenocarcinoma. Br J Cancer 112:1027–1036CrossRefPubMedPubMedCentral
Metadaten
Titel
Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies
Publikationsdatum
02.03.2018
Erschienen in
Strahlentherapie und Onkologie / Ausgabe 6/2018
Print ISSN: 0179-7158
Elektronische ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-018-1287-1

Weitere Artikel der Ausgabe 6/2018

Strahlentherapie und Onkologie 6/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.