Skip to main content
Erschienen in: Diabetology International 3/2017

27.07.2017 | Review Article

Immune regulation of glucose and lipid metabolism

verfasst von: Tsuguhito Ota

Erschienen in: Diabetology International | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

The immune response and metabolic regulation are highly integrated, and their interface maintains a homeostatic system. Their dysfunction can cause obesity and its comorbidities, including insulin resistance, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD). Endoplasmic reticulum (ER) stress is a central abnormality linking obesity, insulin resistance, and NAFLD. ER stress in response to increased hepatic lipids may decrease the ability of the liver to secrete triglyceride by limiting apolipoprotein B secretion, thereby worsening fatty liver. Overnutrition or obesity activates the innate immune system, with the subsequent recruitment of immune cells that contributes to the development of insulin resistance. A significant advance in our understanding of obesity-induced inflammation and insulin resistance has been a recognition of the critical role of adipose tissue macrophages. A role for chemokines, small proteins that direct the trafficking of immune cells to sites of inflammation, has also been demonstrated. Chemokines activate the production of inflammatory cytokines through specific chemokine receptors. This review highlights the chemokine systems linking obesity to inflammation and insulin resistance. Treatment options that target immune cells with the aim of halting the development of insulin resistance and type 2 diabetes remain limited. DPP-4 inhibitors or micronutrients may contribute to the immune regulation of glucose and lipid metabolism by regulating macrophage polarization, thereby reducing insulin resistance and preventing the progression of NAFLD. A detailed understanding of the immune regulation of glucose and lipid homeostasis can lead to the development of a novel therapy for insulin resistance, type 2 diabetes, and NAFLD.
Literatur
3.
Zurück zum Zitat Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.CrossRefPubMedPubMedCentral Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–30.CrossRefPubMedPubMedCentral Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–30.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Mauer SM. Structural-functional correlations of diabetic nephropathy. Kidney Int. 1994;45:612–22.CrossRefPubMed Mauer SM. Structural-functional correlations of diabetic nephropathy. Kidney Int. 1994;45:612–22.CrossRefPubMed
6.
Zurück zum Zitat Ota T, Takamura T, Ando H, Nohara E, Yamashita H, Kobayashi K. Preventive effect of cerivastatin on diabetic nephropathy through suppression of glomerular macrophage recruitment in a rat model. Diabetologia. 2003;46:843–51.CrossRefPubMed Ota T, Takamura T, Ando H, Nohara E, Yamashita H, Kobayashi K. Preventive effect of cerivastatin on diabetic nephropathy through suppression of glomerular macrophage recruitment in a rat model. Diabetologia. 2003;46:843–51.CrossRefPubMed
7.
Zurück zum Zitat Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142:1592–609.CrossRefPubMed Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142:1592–609.CrossRefPubMed
8.
Zurück zum Zitat Utzschneider KM, Kahn SE. Review: the role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2006;91:4753–61.CrossRefPubMed Utzschneider KM, Kahn SE. Review: the role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2006;91:4753–61.CrossRefPubMed
10.
Zurück zum Zitat Marchesini G, Brizi M, Bianchi G, Tomassetti S, Zoli M, Melchionda N. Metformin in non-alcoholic steatohepatitis. Lancet. 2001;358:893–4.CrossRefPubMed Marchesini G, Brizi M, Bianchi G, Tomassetti S, Zoli M, Melchionda N. Metformin in non-alcoholic steatohepatitis. Lancet. 2001;358:893–4.CrossRefPubMed
11.
Zurück zum Zitat Belfort R, Harrison SA, Brown K, Darland C, Finch J, Hardies J, Balas B, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med. 2006;355:2297–307.CrossRefPubMed Belfort R, Harrison SA, Brown K, Darland C, Finch J, Hardies J, Balas B, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med. 2006;355:2297–307.CrossRefPubMed
12.
Zurück zum Zitat Ota T, Takamura T, Kurita S, Matsuzawa N, Kita Y, Uno M, Akahori H, et al. Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology. 2007;132:282–93.CrossRefPubMed Ota T, Takamura T, Kurita S, Matsuzawa N, Kita Y, Uno M, Akahori H, et al. Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology. 2007;132:282–93.CrossRefPubMed
13.
Zurück zum Zitat Shima K, Zhu M, Mizuno A. Pathoetiology and prevention of NIDDM lessons from the OLETF rat. J Med Invest. 1999;46:121–9.PubMed Shima K, Zhu M, Mizuno A. Pathoetiology and prevention of NIDDM lessons from the OLETF rat. J Med Invest. 1999;46:121–9.PubMed
14.
Zurück zum Zitat Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8:1288–95.CrossRefPubMed Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8:1288–95.CrossRefPubMed
15.
Zurück zum Zitat Ota T, Takamura T, Kaneko S. Pioglitazone in nonalcoholic steatohepatitis. N Engl J Med. 2007;356:1068 (author reply 1068–1069).PubMed Ota T, Takamura T, Kaneko S. Pioglitazone in nonalcoholic steatohepatitis. N Engl J Med. 2007;356:1068 (author reply 1068–1069).PubMed
16.
Zurück zum Zitat Pagano G, Pacini G, Musso G, Gambino R, Mecca F, Depetris N, Cassader M, et al. Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association. Hepatology. 2002;35:367–72.CrossRefPubMed Pagano G, Pacini G, Musso G, Gambino R, Mecca F, Depetris N, Cassader M, et al. Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association. Hepatology. 2002;35:367–72.CrossRefPubMed
17.
Zurück zum Zitat Fisher EA, Ginsberg HN. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J Biol Chem. 2002;277:17377–80.CrossRefPubMed Fisher EA, Ginsberg HN. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J Biol Chem. 2002;277:17377–80.CrossRefPubMed
18.
Zurück zum Zitat Harding HP, Calfon M, Urano F, Novoa I, Ron D. Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol. 2002;18:575–99.CrossRefPubMed Harding HP, Calfon M, Urano F, Novoa I, Ron D. Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol. 2002;18:575–99.CrossRefPubMed
19.
Zurück zum Zitat Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell. 2000;101:451–4.CrossRefPubMed Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell. 2000;101:451–4.CrossRefPubMed
20.
Zurück zum Zitat Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306:457–61.CrossRefPubMed Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306:457–61.CrossRefPubMed
21.
Zurück zum Zitat Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest. 2008;118:316–32.CrossRefPubMed Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest. 2008;118:316–32.CrossRefPubMed
22.
Zurück zum Zitat Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313:1137–40.CrossRefPubMedPubMedCentral Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313:1137–40.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Caviglia JM, Gayet C, Ota T, Hernandez-Ono A, Conlon DM, Jiang H, Fisher EA, et al. Different fatty acids inhibit apoB100 secretion by different pathways: unique roles for ER stress, ceramide, and autophagy. J Lipid Res. 2011;52:1636–51.CrossRefPubMedPubMedCentral Caviglia JM, Gayet C, Ota T, Hernandez-Ono A, Conlon DM, Jiang H, Fisher EA, et al. Different fatty acids inhibit apoB100 secretion by different pathways: unique roles for ER stress, ceramide, and autophagy. J Lipid Res. 2011;52:1636–51.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.CrossRefPubMed Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.CrossRefPubMed
25.
Zurück zum Zitat Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54:2277–86.CrossRefPubMed Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54:2277–86.CrossRefPubMed
26.
Zurück zum Zitat Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.CrossRefPubMed Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.CrossRefPubMed
27.
Zurück zum Zitat Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Eagle AR, et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature. 2007;447:1116–20.CrossRefPubMedPubMedCentral Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Eagle AR, et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature. 2007;447:1116–20.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84.CrossRefPubMedPubMedCentral Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Proudfoot AE. Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol. 2002;2:106–15.CrossRefPubMed Proudfoot AE. Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol. 2002;2:106–15.CrossRefPubMed
31.
Zurück zum Zitat Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116:1494–505.CrossRefPubMedPubMedCentral Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116:1494–505.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116:115–24.CrossRefPubMed Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116:115–24.CrossRefPubMed
33.
Zurück zum Zitat Kirk EA, Sagawa ZK, McDonald TO, O’Brien KD, Heinecke JW. Macrophage chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue [corrected]. Diabetes. 2008;57:1254–61.CrossRefPubMed Kirk EA, Sagawa ZK, McDonald TO, O’Brien KD, Heinecke JW. Macrophage chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue [corrected]. Diabetes. 2008;57:1254–61.CrossRefPubMed
34.
Zurück zum Zitat Inouye KE, Shi H, Howard JK, Daly CH, Lord GM, Rollins BJ, Flier JS. Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes. 2007;56:2242–50.CrossRefPubMed Inouye KE, Shi H, Howard JK, Daly CH, Lord GM, Rollins BJ, Flier JS. Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes. 2007;56:2242–50.CrossRefPubMed
36.
Zurück zum Zitat Xu L, Kitade H, Ni Y, Ota T. Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease. Biomolecules. 2015;5:1563–79.CrossRefPubMedPubMedCentral Xu L, Kitade H, Ni Y, Ota T. Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease. Biomolecules. 2015;5:1563–79.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Bonecchi R, Bianchi G, Bordignon PP, D’Ambrosio D, Lang R, Borsatti A, Sozzani S, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med. 1998;187:129–34.CrossRefPubMedPubMedCentral Bonecchi R, Bianchi G, Bordignon PP, D’Ambrosio D, Lang R, Borsatti A, Sozzani S, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med. 1998;187:129–34.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL, Sweeney JF, et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation. 2007;115:1029–38.CrossRefPubMed Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL, Sweeney JF, et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation. 2007;115:1029–38.CrossRefPubMed
40.
Zurück zum Zitat Kitade H, Sawamoto K, Nagashimada M, Inoue H, Yamamoto Y, Sai Y, Takamura T, et al. CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes. 2012;61:1680–90.CrossRefPubMedPubMedCentral Kitade H, Sawamoto K, Nagashimada M, Inoue H, Yamamoto Y, Sai Y, Takamura T, et al. CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes. 2012;61:1680–90.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Yaron A, Naider F. Proline-dependent structural and biological properties of peptides and proteins. Crit Rev Biochem Mol Biol. 1993;28:31–81.CrossRefPubMed Yaron A, Naider F. Proline-dependent structural and biological properties of peptides and proteins. Crit Rev Biochem Mol Biol. 1993;28:31–81.CrossRefPubMed
43.
Zurück zum Zitat Muskiet MH, Smits MM, Morsink LM, Diamant M. The gut-renal axis: do incretin-based agents confer renoprotection in diabetes? Nat Rev Nephrol. 2014;10:88–103.CrossRefPubMed Muskiet MH, Smits MM, Morsink LM, Diamant M. The gut-renal axis: do incretin-based agents confer renoprotection in diabetes? Nat Rev Nephrol. 2014;10:88–103.CrossRefPubMed
44.
Zurück zum Zitat Tanaka T, Camerini D, Seed B, Torimoto Y, Dang NH, Kameoka J, Dahlberg HN, et al. Cloning and functional expression of the T cell activation antigen CD26. J Immunol. 1992;149:481–6.PubMed Tanaka T, Camerini D, Seed B, Torimoto Y, Dang NH, Kameoka J, Dahlberg HN, et al. Cloning and functional expression of the T cell activation antigen CD26. J Immunol. 1992;149:481–6.PubMed
45.
Zurück zum Zitat Lamers D, Famulla S, Wronkowitz N, Hartwig S, Lehr S, Ouwens DM, Eckardt K, et al. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes. 2011;60:1917–25.CrossRefPubMedPubMedCentral Lamers D, Famulla S, Wronkowitz N, Hartwig S, Lehr S, Ouwens DM, Eckardt K, et al. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes. 2011;60:1917–25.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Sell H, Bluher M, Kloting N, Schlich R, Willems M, Ruppe F, Knoefel WT, et al. Adipose dipeptidyl peptidase-4 and obesity: correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care. 2013;36:4083–90.CrossRefPubMedPubMedCentral Sell H, Bluher M, Kloting N, Schlich R, Willems M, Ruppe F, Knoefel WT, et al. Adipose dipeptidyl peptidase-4 and obesity: correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care. 2013;36:4083–90.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Zhong J, Rao X, Deiuliis J, Braunstein Z, Narula V, Hazey J, Mikami D, et al. A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes. 2013;62:149–57.CrossRefPubMed Zhong J, Rao X, Deiuliis J, Braunstein Z, Narula V, Hazey J, Mikami D, et al. A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes. 2013;62:149–57.CrossRefPubMed
48.
Zurück zum Zitat Zhuge F, Ni Y, Nagashimada M, Nagata N, Xu L, Mukaida N, Kaneko S, et al. DPP-4 inhibition by linagliptin attenuates obesity-related inflammation and insulin resistance by regulating M1/M2 macrophage polarization. Diabetes. 2016;65:2966–79.CrossRefPubMed Zhuge F, Ni Y, Nagashimada M, Nagata N, Xu L, Mukaida N, Kaneko S, et al. DPP-4 inhibition by linagliptin attenuates obesity-related inflammation and insulin resistance by regulating M1/M2 macrophage polarization. Diabetes. 2016;65:2966–79.CrossRefPubMed
49.
Zurück zum Zitat Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, Mayoux E, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine. 2017;20:137–49.CrossRefPubMedPubMedCentral Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, Mayoux E, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine. 2017;20:137–49.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, Yokoyama M, et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology. 2007;46:1392–403.CrossRefPubMed Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, Yokoyama M, et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology. 2007;46:1392–403.CrossRefPubMed
51.
Zurück zum Zitat Kitade H, Chen G, Ni Y, Ota T. Nonalcoholic fatty liver disease and insulin resistance: new insights and potential new treatments. Nutrients. 2017;9:387–99.CrossRefPubMedCentral Kitade H, Chen G, Ni Y, Ota T. Nonalcoholic fatty liver disease and insulin resistance: new insights and potential new treatments. Nutrients. 2017;9:387–99.CrossRefPubMedCentral
52.
Zurück zum Zitat Yadav D, Hertan HI, Schweitzer P, Norkus EP, Pitchumoni CS. Serum and liver micronutrient antioxidants and serum oxidative stress in patients with chronic hepatitis C. Am J Gastroenterol. 2002;97:2634–9.CrossRefPubMed Yadav D, Hertan HI, Schweitzer P, Norkus EP, Pitchumoni CS. Serum and liver micronutrient antioxidants and serum oxidative stress in patients with chronic hepatitis C. Am J Gastroenterol. 2002;97:2634–9.CrossRefPubMed
53.
Zurück zum Zitat Ruhl CE, Everhart JE. Relation of elevated serum alanine aminotransferase activity with iron and antioxidant levels in the United States. Gastroenterology. 2003;124:1821–9.CrossRefPubMed Ruhl CE, Everhart JE. Relation of elevated serum alanine aminotransferase activity with iron and antioxidant levels in the United States. Gastroenterology. 2003;124:1821–9.CrossRefPubMed
54.
Zurück zum Zitat Chen G, Ni Y, Nagata N, Xu L, Ota T. Micronutrient antioxidants and nonalcoholic fatty liver disease. Int J Mol Sci. 2016;17:1379–94.CrossRefPubMedCentral Chen G, Ni Y, Nagata N, Xu L, Ota T. Micronutrient antioxidants and nonalcoholic fatty liver disease. Int J Mol Sci. 2016;17:1379–94.CrossRefPubMedCentral
55.
Zurück zum Zitat Gunanti IR, Marks GC, Al-Mamun A, Long KZ. Low serum concentrations of carotenoids and vitamin E are associated with high adiposity in Mexican-American children. J Nutr. 2014;144:489–95.CrossRefPubMed Gunanti IR, Marks GC, Al-Mamun A, Long KZ. Low serum concentrations of carotenoids and vitamin E are associated with high adiposity in Mexican-American children. J Nutr. 2014;144:489–95.CrossRefPubMed
56.
Zurück zum Zitat Garcia OP, Long KZ, Rosado JL. Impact of micronutrient deficiencies on obesity. Nutr Rev. 2009;67:559–72.CrossRefPubMed Garcia OP, Long KZ, Rosado JL. Impact of micronutrient deficiencies on obesity. Nutr Rev. 2009;67:559–72.CrossRefPubMed
57.
Zurück zum Zitat Rock CL, Jacob RA, Bowen PE. Update on the biological characteristics of the antioxidant micronutrients: vitamin C, vitamin E, and the carotenoids. J Am Diet Assoc. 1996;96:693–702 (quiz 703–694).CrossRefPubMed Rock CL, Jacob RA, Bowen PE. Update on the biological characteristics of the antioxidant micronutrients: vitamin C, vitamin E, and the carotenoids. J Am Diet Assoc. 1996;96:693–702 (quiz 703–694).CrossRefPubMed
58.
Zurück zum Zitat Pongkan W, Takatori O, Ni Y, Xu L, Nagata N, Chattipakorn SC, Usui S, et al. β-Cryptoxanthin exerts greater cardioprotective effects on cardiac ischemia-reperfusion injury than astaxanthin by attenuating mitochondrial dysfunction in mice. Mol Nutr Food Res. 2017. doi:10.1002/mnfr.201601077. Pongkan W, Takatori O, Ni Y, Xu L, Nagata N, Chattipakorn SC, Usui S, et al. β-Cryptoxanthin exerts greater cardioprotective effects on cardiac ischemia-reperfusion injury than astaxanthin by attenuating mitochondrial dysfunction in mice. Mol Nutr Food Res. 2017. doi:10.​1002/​mnfr.​201601077.
59.
Zurück zum Zitat Ni Y, Nagashimada M, Zhan L, Nagata N, Kobori M, Sugiura M, Ogawa K, et al. Prevention and reversal of lipotoxicity-induced hepatic insulin resistance and steatohepatitis in mice by an antioxidant carotenoid, β-cryptoxanthin. Endocrinology. 2015;156:987–99.CrossRefPubMed Ni Y, Nagashimada M, Zhan L, Nagata N, Kobori M, Sugiura M, Ogawa K, et al. Prevention and reversal of lipotoxicity-induced hepatic insulin resistance and steatohepatitis in mice by an antioxidant carotenoid, β-cryptoxanthin. Endocrinology. 2015;156:987–99.CrossRefPubMed
60.
Zurück zum Zitat Ni Y, Nagashimada M, Zhuge F, Zhan L, Nagata N, Tsutsui A, Nakanuma Y, et al. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: a comparison with vitamin E. Sci Rep. 2015;5:17192.CrossRefPubMedPubMedCentral Ni Y, Nagashimada M, Zhuge F, Zhan L, Nagata N, Tsutsui A, Nakanuma Y, et al. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: a comparison with vitamin E. Sci Rep. 2015;5:17192.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Kobori M, Ni Y, Takahashi Y, Watanabe N, Sugiura M, Ogawa K, Nagashimada M, et al. β-Cryptoxanthin alleviates diet-induced nonalcoholic steatohepatitis by suppressing inflammatory gene expression in mice. PLoS One. 2014;9:e98294.CrossRefPubMedPubMedCentral Kobori M, Ni Y, Takahashi Y, Watanabe N, Sugiura M, Ogawa K, Nagashimada M, et al. β-Cryptoxanthin alleviates diet-induced nonalcoholic steatohepatitis by suppressing inflammatory gene expression in mice. PLoS One. 2014;9:e98294.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Kobori M, Takahashi Y, Sakurai M, Ni Y, Chen G, Nagashimada M, Kaneko S, et al. Hepatic transcriptome profiles of mice with diet-induced nonalcoholic steatohepatitis treated with astaxanthin and vitamin E. Int J Mol Sci. 2017;18:593–606.CrossRefPubMedCentral Kobori M, Takahashi Y, Sakurai M, Ni Y, Chen G, Nagashimada M, Kaneko S, et al. Hepatic transcriptome profiles of mice with diet-induced nonalcoholic steatohepatitis treated with astaxanthin and vitamin E. Int J Mol Sci. 2017;18:593–606.CrossRefPubMedCentral
63.
Zurück zum Zitat Wan J, Benkdane M, Teixeira-Clerc F, Bonnafous S, Louvet A, Lafdil F, Pecker F, et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology. 2014;59:130–42.CrossRefPubMed Wan J, Benkdane M, Teixeira-Clerc F, Bonnafous S, Louvet A, Lafdil F, Pecker F, et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology. 2014;59:130–42.CrossRefPubMed
64.
Zurück zum Zitat Sica A, Invernizzi P, Mantovani A. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology. 2014;59:2034–42.CrossRefPubMed Sica A, Invernizzi P, Mantovani A. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology. 2014;59:2034–42.CrossRefPubMed
65.
Zurück zum Zitat Ni Y, Zhuge F, Nagashimada M, Ota T. Novel action of carotenoids on non-alcoholic fatty liver disease: macrophage polarization and liver homeostasis. Nutrients. 2016;8:391–406.CrossRefPubMedCentral Ni Y, Zhuge F, Nagashimada M, Ota T. Novel action of carotenoids on non-alcoholic fatty liver disease: macrophage polarization and liver homeostasis. Nutrients. 2016;8:391–406.CrossRefPubMedCentral
66.
Zurück zum Zitat Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004;10:549–57.CrossRefPubMed Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004;10:549–57.CrossRefPubMed
67.
Zurück zum Zitat Shin S, Wakabayashi J, Yates MS, Wakabayashi N, Dolan PM, Aja S, Liby KT, et al. Role of Nrf2 in prevention of high-fat diet-induced obesity by synthetic triterpenoid CDDO-imidazolide. Eur J Pharmacol. 2009;620:138–44.CrossRefPubMedPubMedCentral Shin S, Wakabayashi J, Yates MS, Wakabayashi N, Dolan PM, Aja S, Liby KT, et al. Role of Nrf2 in prevention of high-fat diet-induced obesity by synthetic triterpenoid CDDO-imidazolide. Eur J Pharmacol. 2009;620:138–44.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Saha PK, Reddy VT, Konopleva M, Andreeff M, Chan L. The triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic-acid methyl ester has potent anti-diabetic effects in diet-induced diabetic mice and Lepr(db/db) mice. J Biol Chem. 2010;285:40581–92.CrossRefPubMedPubMedCentral Saha PK, Reddy VT, Konopleva M, Andreeff M, Chan L. The triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic-acid methyl ester has potent anti-diabetic effects in diet-induced diabetic mice and Lepr(db/db) mice. J Biol Chem. 2010;285:40581–92.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Yu Z, Shao W, Chiang Y, Foltz W, Zhang Z, Ling W, Fantus IG, et al. Oltipraz upregulates the nuclear factor (erythroid-derived 2)-like 2 [corrected](NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J mice. Diabetologia. 2011;54:922–34.CrossRefPubMed Yu Z, Shao W, Chiang Y, Foltz W, Zhang Z, Ling W, Fantus IG, et al. Oltipraz upregulates the nuclear factor (erythroid-derived 2)-like 2 [corrected](NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J mice. Diabetologia. 2011;54:922–34.CrossRefPubMed
70.
Zurück zum Zitat de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, Goldsberry A, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369:2492–503.CrossRefPubMedPubMedCentral de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, Goldsberry A, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369:2492–503.CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Kelley MJ, Glaser EM, Herndon JE 2nd, Becker F, Bhagat R, Zhang YJ, Santella RM, et al. Safety and efficacy of weekly oral oltipraz in chronic smokers. Cancer Epidemiol Biomark Prev. 2005;14:892–9.CrossRef Kelley MJ, Glaser EM, Herndon JE 2nd, Becker F, Bhagat R, Zhang YJ, Santella RM, et al. Safety and efficacy of weekly oral oltipraz in chronic smokers. Cancer Epidemiol Biomark Prev. 2005;14:892–9.CrossRef
72.
Zurück zum Zitat Fahey JW, Zhang Y, Talalay P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci U S A. 1997;94:10367–72.CrossRefPubMedPubMedCentral Fahey JW, Zhang Y, Talalay P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci U S A. 1997;94:10367–72.CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Nagata N, Xu L, Kohno S, Ushida Y, Aoki Y, Umeda R, Fuke N, et al. Glucoraphanin ameliorates obesity and insulin resistance through adipose tissue browning and reduction of metabolic endotoxemia in mice. Diabetes. 2017;66:1222–36.CrossRefPubMed Nagata N, Xu L, Kohno S, Ushida Y, Aoki Y, Umeda R, Fuke N, et al. Glucoraphanin ameliorates obesity and insulin resistance through adipose tissue browning and reduction of metabolic endotoxemia in mice. Diabetes. 2017;66:1222–36.CrossRefPubMed
Metadaten
Titel
Immune regulation of glucose and lipid metabolism
verfasst von
Tsuguhito Ota
Publikationsdatum
27.07.2017
Verlag
Springer Japan
Erschienen in
Diabetology International / Ausgabe 3/2017
Print ISSN: 2190-1678
Elektronische ISSN: 2190-1686
DOI
https://doi.org/10.1007/s13340-017-0331-1

Weitere Artikel der Ausgabe 3/2017

Diabetology International 3/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.