Skip to main content
Erschienen in: Current Atherosclerosis Reports 10/2020

01.10.2020 | Genetics and Genomics (A.J. Marian, Section Editor)

Immunogenetics of Atherosclerosis—Link between Lipids, Immunity, and Genes

verfasst von: Kuang-Yuh Chyu, Paul C. Dimayuga, Prediman K. Shah

Erschienen in: Current Atherosclerosis Reports | Ausgabe 10/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Atherosclerosis is a complex disease process with lipid as a traditional modifiable risk factor and therapeutic target in treating atherosclerotic cardiovascular disease (ACVD). Recent evidence indicates that genetic influence and host immune response also are vital in this process. How these elements interact and modify each other and if immune response may emerge as a novel modifiable target remain poorly understood.

Recent Findings

Numerous preclinical studies have clearly demonstrated that hypercholesterolemia is essential for atherogenesis, but genetic variations and host immune-inflammatory responses can modulate the pro-atherogenic effect of elevated LDL-C. Clinical studies also suggest that a similar paradigm may also be operational in atherogenesis in humans. More importantly each element modifies the biological behavior of the other two elements, forming a triangular relationship among the three. Modulating any one of them will have downstream impact on atherosclerosis.

Summary

This brief review summarizes the relationship among lipids, genes, and immunity in atherogenesis and presents evidence to show how these elements affect each other. Modulation of immune response, though in its infancy, has a potential to emerge as a novel clinical strategy in treating ACVD.
Literatur
1.
Zurück zum Zitat Ross R. Atherosclerosis is an inflammatory disease. Am Heart J. 1999;138:S419–20.PubMed Ross R. Atherosclerosis is an inflammatory disease. Am Heart J. 1999;138:S419–20.PubMed
2.
Zurück zum Zitat Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116(16):1832–44.PubMed Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116(16):1832–44.PubMed
3.
Zurück zum Zitat Libby P, Lichtman AH, Hansson GK. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity. 2013;38(6):1092–104.PubMedPubMedCentral Libby P, Lichtman AH, Hansson GK. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity. 2013;38(6):1092–104.PubMedPubMedCentral
4.
Zurück zum Zitat Schaftenaar F, Frodermann V, Kuiper J, Lutgens E. Atherosclerosis: the interplay between lipids and immune cells. Curr Opin Lipidol. 2016;27(3):209–15.PubMed Schaftenaar F, Frodermann V, Kuiper J, Lutgens E. Atherosclerosis: the interplay between lipids and immune cells. Curr Opin Lipidol. 2016;27(3):209–15.PubMed
5.
Zurück zum Zitat Gimbrone MA Jr, Garcia-Cardena G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol. 2013;22(1):9–15.PubMed Gimbrone MA Jr, Garcia-Cardena G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol. 2013;22(1):9–15.PubMed
6.
Zurück zum Zitat Roberts R. Genetics in the prevention and management of coronary artery disease. Curr Opin Cardiol. 2018;33(3):257–68.PubMed Roberts R. Genetics in the prevention and management of coronary artery disease. Curr Opin Cardiol. 2018;33(3):257–68.PubMed
7.
Zurück zum Zitat Perez DL, Alonso R, Muniz-Grijalvo O, az-Diaz JL, Zambon D, Miramontes JP, et al. Coronary computed tomographic angiography findings and their therapeutic implications in asymptomatic patients with familial hypercholesterolemia. Lessons from the SAFEHEART study. J Clin Lipidol. 2018;12(4):948–57. Perez DL, Alonso R, Muniz-Grijalvo O, az-Diaz JL, Zambon D, Miramontes JP, et al. Coronary computed tomographic angiography findings and their therapeutic implications in asymptomatic patients with familial hypercholesterolemia. Lessons from the SAFEHEART study. J Clin Lipidol. 2018;12(4):948–57.
8.
Zurück zum Zitat Miname MH, Bittencourt MS, Moraes SR, Alves RIM, Silva PRS, Jannes CE, et al. Coronary artery calcium and cardiovascular events in patients with familial hypercholesterolemia receiving standard lipid-lowering therapy. JACC Cardiovasc Imaging. 2019;12(9):1797–804.PubMed Miname MH, Bittencourt MS, Moraes SR, Alves RIM, Silva PRS, Jannes CE, et al. Coronary artery calcium and cardiovascular events in patients with familial hypercholesterolemia receiving standard lipid-lowering therapy. JACC Cardiovasc Imaging. 2019;12(9):1797–804.PubMed
9.
Zurück zum Zitat Galaska R, Kulawiak-Galaska D, Wegrzyn A, Wasag B, Chmara M, Borowiec J, et al. Assessment of subclinical atherosclerosis using computed tomography calcium scores in patients with familial and nonfamilial hypercholesterolemia. J Atheroscler Thromb. 2016;23(5):588–95.PubMed Galaska R, Kulawiak-Galaska D, Wegrzyn A, Wasag B, Chmara M, Borowiec J, et al. Assessment of subclinical atherosclerosis using computed tomography calcium scores in patients with familial and nonfamilial hypercholesterolemia. J Atheroscler Thromb. 2016;23(5):588–95.PubMed
10.
Zurück zum Zitat Johnson KW, Dudley JT, Bobe JR. A 72-year-old patient with longstanding, untreated familial hypercholesterolemia but no coronary artery calcification: a case report. Cureus. 2018;10(4):e2452.PubMedPubMedCentral Johnson KW, Dudley JT, Bobe JR. A 72-year-old patient with longstanding, untreated familial hypercholesterolemia but no coronary artery calcification: a case report. Cureus. 2018;10(4):e2452.PubMedPubMedCentral
11.
Zurück zum Zitat Selathurai A, Deswaerte V, Kanellakis P, Tipping P, Toh BH, Bobik A, et al. Natural killer (NK) cells augment atherosclerosis by cytotoxic-dependent mechanisms. Cardiovasc Res. 2014;102(1):128–37.PubMed Selathurai A, Deswaerte V, Kanellakis P, Tipping P, Toh BH, Bobik A, et al. Natural killer (NK) cells augment atherosclerosis by cytotoxic-dependent mechanisms. Cardiovasc Res. 2014;102(1):128–37.PubMed
12.
Zurück zum Zitat Qiao JH, Tripathi J, Mishra NK, Cai Y, Tripathi S, Wang XP, et al. Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathol. 1997;150:1687–99.PubMedPubMedCentral Qiao JH, Tripathi J, Mishra NK, Cai Y, Tripathi S, Wang XP, et al. Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathol. 1997;150:1687–99.PubMedPubMedCentral
13.
Zurück zum Zitat Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, et al. Lack of toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A. 2004;101:10679–84.PubMedPubMedCentral Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, et al. Lack of toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A. 2004;101:10679–84.PubMedPubMedCentral
14.
Zurück zum Zitat Binder CJ, Shaw PX, Chang MK, Boullier A, Hartvigsen K, Horkko S, et al. The role of natural antibodies in atherogenesis. J Lipid Res. 2005;46(7):1353–63 Epub 2005 May 16 2005; 46:1353–1363.PubMed Binder CJ, Shaw PX, Chang MK, Boullier A, Hartvigsen K, Horkko S, et al. The role of natural antibodies in atherogenesis. J Lipid Res. 2005;46(7):1353–63 Epub 2005 May 16 2005; 46:1353–1363.PubMed
15.
Zurück zum Zitat Kyaw T, Tipping P, Bobik A, Toh BH. Protective role of natural IgM-producing B1a cells in atherosclerosis. Trends Cardiovasc Med. 2012;22(2):48–53.PubMed Kyaw T, Tipping P, Bobik A, Toh BH. Protective role of natural IgM-producing B1a cells in atherosclerosis. Trends Cardiovasc Med. 2012;22(2):48–53.PubMed
16.
Zurück zum Zitat Rosenfeld SM, Perry HM, Gonen A, Prohaska TA, Srikakulapu P, Grewal S, et al. B-1b cells secrete atheroprotective IgM and attenuate atherosclerosis. Circ Res. 2015;117(3):e28–39.PubMedPubMedCentral Rosenfeld SM, Perry HM, Gonen A, Prohaska TA, Srikakulapu P, Grewal S, et al. B-1b cells secrete atheroprotective IgM and attenuate atherosclerosis. Circ Res. 2015;117(3):e28–39.PubMedPubMedCentral
17.
Zurück zum Zitat Lewis MJ, Malik TH, Ehrenstein MR, Boyle JJ, Botto M, Haskard DO. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2009;120(5):417–26.PubMedPubMedCentral Lewis MJ, Malik TH, Ehrenstein MR, Boyle JJ, Botto M, Haskard DO. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2009;120(5):417–26.PubMedPubMedCentral
18.
Zurück zum Zitat Tsiantoulas D, Bot I, Ozsvar-Kozma M, Goderle L, Perkmann T, Hartvigsen K, et al. Increased plasma IgE accelerate atherosclerosis in secreted IgM deficiency. Circ Res. 2017;120(1):78–84.PubMed Tsiantoulas D, Bot I, Ozsvar-Kozma M, Goderle L, Perkmann T, Hartvigsen K, et al. Increased plasma IgE accelerate atherosclerosis in secreted IgM deficiency. Circ Res. 2017;120(1):78–84.PubMed
19.
Zurück zum Zitat Kyaw T, Tay C, Hosseini H, Kanellakis P, Gadowski T, Mackay F, et al. Depletion of B2 but not B1a B cells in BAFF receptor-deficient ApoE mice attenuates atherosclerosis by potently ameliorating arterial inflammation. PLoS One. 2012;7(1):e29371.PubMedPubMedCentral Kyaw T, Tay C, Hosseini H, Kanellakis P, Gadowski T, Mackay F, et al. Depletion of B2 but not B1a B cells in BAFF receptor-deficient ApoE mice attenuates atherosclerosis by potently ameliorating arterial inflammation. PLoS One. 2012;7(1):e29371.PubMedPubMedCentral
20.
Zurück zum Zitat Sage AP, Tsiantoulas D, Baker L, Harrison J, Masters L, Murphy D, et al. BAFF receptor deficiency reduces the development of atherosclerosis in mice--brief report. Arterioscler Thromb Vasc Biol. 2012;32(7):1573–6.PubMed Sage AP, Tsiantoulas D, Baker L, Harrison J, Masters L, Murphy D, et al. BAFF receptor deficiency reduces the development of atherosclerosis in mice--brief report. Arterioscler Thromb Vasc Biol. 2012;32(7):1573–6.PubMed
22.
Zurück zum Zitat Back M, Yurdagul A Jr, Tabas I, Oorni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019;16(7):389–406.PubMedPubMedCentral Back M, Yurdagul A Jr, Tabas I, Oorni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019;16(7):389–406.PubMedPubMedCentral
23.
Zurück zum Zitat Paulson KE, Zhu SN, Chen M, Nurmohamed S, Jongstra-Bilen J, Cybulsky MI. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ Res. 2010;106(2):383–90.PubMed Paulson KE, Zhu SN, Chen M, Nurmohamed S, Jongstra-Bilen J, Cybulsky MI. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ Res. 2010;106(2):383–90.PubMed
24.
Zurück zum Zitat Liu P, Yu YR, Spencer JA, Johnson AE, Vallanat CT, Fong AM, et al. CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler Thromb Vasc Biol. 2008;28(2):243–50.PubMed Liu P, Yu YR, Spencer JA, Johnson AE, Vallanat CT, Fong AM, et al. CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler Thromb Vasc Biol. 2008;28(2):243–50.PubMed
25.
Zurück zum Zitat Tian D, Hong H, Shang W, Ho CC, Dong J, Tian XY. Deletion of Ppard in CD11c(+) cells attenuates atherosclerosis in ApoE knockout mice. FASEB J. 2020;34(2):3367–78.PubMed Tian D, Hong H, Shang W, Ho CC, Dong J, Tian XY. Deletion of Ppard in CD11c(+) cells attenuates atherosclerosis in ApoE knockout mice. FASEB J. 2020;34(2):3367–78.PubMed
26.
Zurück zum Zitat Wu H, Gower RM, Wang H, Perrard XY, Ma R, Bullard DC, et al. Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia. Circulation. 2009;119(20):2708–17.PubMedPubMedCentral Wu H, Gower RM, Wang H, Perrard XY, Ma R, Bullard DC, et al. Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia. Circulation. 2009;119(20):2708–17.PubMedPubMedCentral
27.
Zurück zum Zitat Daugherty A, Pure E, Delfel-Butteiger D, Chen S, Leferovich J, Roselaar SE, et al. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J Clin Invest. 1997;100:1575–80.PubMedPubMedCentral Daugherty A, Pure E, Delfel-Butteiger D, Chen S, Leferovich J, Roselaar SE, et al. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J Clin Invest. 1997;100:1575–80.PubMedPubMedCentral
28.
Zurück zum Zitat Reardon CA, Blachowicz L, White T, Cabana V, Wang Y, Lukens J, et al. Effect of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2001;21:1011–6.PubMed Reardon CA, Blachowicz L, White T, Cabana V, Wang Y, Lukens J, et al. Effect of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2001;21:1011–6.PubMed
29.
Zurück zum Zitat Roselaar SE, Kakkanathu PX, Daugherty A. Lymphocyte populations in atherosclerotic lesions of apoE −/− and LDL receptor −/− mice. Decreasing density with disease progression. Arterioscler Thromb Vasc Biol. 1996;16:1013–8.PubMed Roselaar SE, Kakkanathu PX, Daugherty A. Lymphocyte populations in atherosclerotic lesions of apoE −/− and LDL receptor −/− mice. Decreasing density with disease progression. Arterioscler Thromb Vasc Biol. 1996;16:1013–8.PubMed
30.
Zurück zum Zitat Zhou X, Stemme S, Hansson GK. Evidence for a local immune response in atherosclerosis. CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice. Am J Pathol. 1996;149:359–66.PubMedPubMedCentral Zhou X, Stemme S, Hansson GK. Evidence for a local immune response in atherosclerosis. CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice. Am J Pathol. 1996;149:359–66.PubMedPubMedCentral
31.
Zurück zum Zitat Zhou X. CD4+ T cells in atherosclerosis. Biomed Pharmacother. 2003;57(7):287–91.PubMed Zhou X. CD4+ T cells in atherosclerosis. Biomed Pharmacother. 2003;57(7):287–91.PubMed
32.
Zurück zum Zitat Engelbertsen D, Rattik S, Wigren M, Vallejo J, Marinkovic G, Schiopu A, et al. IL-1R and MyD88 signalling in CD4+ T cells promote Th17 immunity and atherosclerosis. Cardiovasc Res. 2018;114(1):180–7.PubMed Engelbertsen D, Rattik S, Wigren M, Vallejo J, Marinkovic G, Schiopu A, et al. IL-1R and MyD88 signalling in CD4+ T cells promote Th17 immunity and atherosclerosis. Cardiovasc Res. 2018;114(1):180–7.PubMed
33.
Zurück zum Zitat Buono C, Binder CJ, Stavrakis G, Witztum JL, Glimcher LH, Lichtman AH. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci U S A. 2005;102:1596–601.PubMedPubMedCentral Buono C, Binder CJ, Stavrakis G, Witztum JL, Glimcher LH, Lichtman AH. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci U S A. 2005;102:1596–601.PubMedPubMedCentral
34.
Zurück zum Zitat Elhage R, Gourdy P, Brouchet L, Jawien J, Fouque MJ, Fievet C, et al. Deleting TCR alpha beta+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice. Am J Pathol. 2004;165:2013–8.PubMedPubMedCentral Elhage R, Gourdy P, Brouchet L, Jawien J, Fouque MJ, Fievet C, et al. Deleting TCR alpha beta+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice. Am J Pathol. 2004;165:2013–8.PubMedPubMedCentral
35.
Zurück zum Zitat Kolbus D, Ramos OH, Berg KE, Persson J, Wigren M, Bjorkbacka H, et al. CD8+ T cell activation predominate early immune responses to hypercholesterolemia in Apoe(/) mice. BMC Immunol. 2010;11:58.PubMedPubMedCentral Kolbus D, Ramos OH, Berg KE, Persson J, Wigren M, Bjorkbacka H, et al. CD8+ T cell activation predominate early immune responses to hypercholesterolemia in Apoe(/) mice. BMC Immunol. 2010;11:58.PubMedPubMedCentral
36.
Zurück zum Zitat Kyaw T, Winship A, Tay C, Kanellakis P, Hosseini H, Cao A, et al. Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in ApoE−/− mice. Circulation. 2013;127(9):1028–39.PubMed Kyaw T, Winship A, Tay C, Kanellakis P, Hosseini H, Cao A, et al. Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in ApoE−/− mice. Circulation. 2013;127(9):1028–39.PubMed
37.
Zurück zum Zitat Clement M, Guedj K, Andreata F, Morvan M, Bey L, Khallou-Laschet J, et al. Control of the T follicular helper-germinal center B-cell axis by CD8(+) regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation. 2015;131(6):560–70.PubMed Clement M, Guedj K, Andreata F, Morvan M, Bey L, Khallou-Laschet J, et al. Control of the T follicular helper-germinal center B-cell axis by CD8(+) regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation. 2015;131(6):560–70.PubMed
38.
Zurück zum Zitat Kolbus D, Ljungcrantz I, Soderberg I, Alm R, Bjorkbacka H, Nilsson J, et al. TAP1-deficiency does not alter atherosclerosis development in Apoe−/− mice. PLoS One. 2012;7(3):e33932.PubMedPubMedCentral Kolbus D, Ljungcrantz I, Soderberg I, Alm R, Bjorkbacka H, Nilsson J, et al. TAP1-deficiency does not alter atherosclerosis development in Apoe−/− mice. PLoS One. 2012;7(3):e33932.PubMedPubMedCentral
39.
Zurück zum Zitat Kyaw T, Tay C, Hosseini H, Kanellakis P, Gadowski T, Mackay F, et al. Depletion of B2 but not B1a B cells in BAFF receptor-deficient ApoE mice attenuates atherosclerosis by potently ameliorating arterial inflammation. PLoS One. 2012;7(1):e29371.PubMedPubMedCentral Kyaw T, Tay C, Hosseini H, Kanellakis P, Gadowski T, Mackay F, et al. Depletion of B2 but not B1a B cells in BAFF receptor-deficient ApoE mice attenuates atherosclerosis by potently ameliorating arterial inflammation. PLoS One. 2012;7(1):e29371.PubMedPubMedCentral
40.
Zurück zum Zitat Major AS, Fazio S, Linton MF. B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler Thromb Vasc Biol. 2002;22(11):1892–8.PubMed Major AS, Fazio S, Linton MF. B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler Thromb Vasc Biol. 2002;22(11):1892–8.PubMed
41.
Zurück zum Zitat Rao LN, Ponnusamy T, Philip S, Mukhopadhyay R, Kakkar VV, Mundkur L. Hypercholesterolemia induced immune response and inflammation on progression of atherosclerosis in Apob(tm2Sgy) Ldlr(tm1Her)/J mice. Lipids. 2015;50(8):785–97.PubMed Rao LN, Ponnusamy T, Philip S, Mukhopadhyay R, Kakkar VV, Mundkur L. Hypercholesterolemia induced immune response and inflammation on progression of atherosclerosis in Apob(tm2Sgy) Ldlr(tm1Her)/J mice. Lipids. 2015;50(8):785–97.PubMed
42.
Zurück zum Zitat Proto JD, Doran AC, Subramanian M, Wang H, Zhang M, Sozen E, et al. Hypercholesterolemia induces T cell expansion in humanized immune mice. J Clin Invest. 2018;128(6):2370–5.PubMedPubMedCentral Proto JD, Doran AC, Subramanian M, Wang H, Zhang M, Sozen E, et al. Hypercholesterolemia induces T cell expansion in humanized immune mice. J Clin Invest. 2018;128(6):2370–5.PubMedPubMedCentral
43.
Zurück zum Zitat • Dimayuga PC, Zhao X, Yano J, Lio WM, Zhou J, Mihailovic PM, et al. Identification of apoB-100 Peptide-Specific CD8+ T Cells in Atherosclerosis. J Am Heart Assoc. 2017;6(7). https://doi.org/10.1161/JAHA.116.005318Characterization of apoB-100 peptide related immune responses in atherosclerosis. • Dimayuga PC, Zhao X, Yano J, Lio WM, Zhou J, Mihailovic PM, et al. Identification of apoB-100 Peptide-Specific CD8+ T Cells in Atherosclerosis. J Am Heart Assoc. 2017;6(7). https://​doi.​org/​10.​1161/​JAHA.​116.​005318Characterization of apoB-100 peptide related immune responses in atherosclerosis.
44.
Zurück zum Zitat Chyu KY, Lio WM, Dimayuga PC, Zhou J, Zhao X, Yano J, et al. Cholesterol lowering modulates T cell function in vivo and in vitro. PLoS One. 2014;9(3):e92095.PubMedPubMedCentral Chyu KY, Lio WM, Dimayuga PC, Zhou J, Zhao X, Yano J, et al. Cholesterol lowering modulates T cell function in vivo and in vitro. PLoS One. 2014;9(3):e92095.PubMedPubMedCentral
45.
Zurück zum Zitat Armstrong AJ, Gebre AK, Parks JS, Hedrick CC. ATP-binding cassette transporter G1 negatively regulates thymocyte and peripheral lymphocyte proliferation. J Immunol. 2010;184(1):173–83.PubMed Armstrong AJ, Gebre AK, Parks JS, Hedrick CC. ATP-binding cassette transporter G1 negatively regulates thymocyte and peripheral lymphocyte proliferation. J Immunol. 2010;184(1):173–83.PubMed
46.
Zurück zum Zitat Bensinger SJ, Bradley MN, Joseph SB, Zelcer N, Janssen EM, Hausner MA, et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell. 2008;134(1):97–111.PubMedPubMedCentral Bensinger SJ, Bradley MN, Joseph SB, Zelcer N, Janssen EM, Hausner MA, et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell. 2008;134(1):97–111.PubMedPubMedCentral
47.
Zurück zum Zitat Muldoon MF, Marsland A, Flory JD, Rabin BS, Whiteside TL, Manuck SB. Immune system differences in men with hypo- or hypercholesterolemia. Clin Immunol Immunopathol. 1997;84(2):145–9.PubMed Muldoon MF, Marsland A, Flory JD, Rabin BS, Whiteside TL, Manuck SB. Immune system differences in men with hypo- or hypercholesterolemia. Clin Immunol Immunopathol. 1997;84(2):145–9.PubMed
48.
Zurück zum Zitat Moreno LA, Sarria A, Lazaro A, Lasierra MP, Larrad L, Bueno M. Lymphocyte T subset counts in children with hypercholesterolemia receiving dietary therapy. Ann Nutr Metab. 1998;42(5):261–5.PubMed Moreno LA, Sarria A, Lazaro A, Lasierra MP, Larrad L, Bueno M. Lymphocyte T subset counts in children with hypercholesterolemia receiving dietary therapy. Ann Nutr Metab. 1998;42(5):261–5.PubMed
49.
Zurück zum Zitat Oda E. Longitudinal associations between lymphocyte count and LDL cholesterol in a health screening population. J Clin Transl Endocrinol. 2014;1(2):49–53.PubMedPubMedCentral Oda E. Longitudinal associations between lymphocyte count and LDL cholesterol in a health screening population. J Clin Transl Endocrinol. 2014;1(2):49–53.PubMedPubMedCentral
50.
Zurück zum Zitat Wu H, Perrard XD, Wang Q, Perrard JL, Polsani VR, Jones PH, et al. CD11c expression in adipose tissue and blood and its role in diet-induced obesity. Arterioscler Thromb Vasc Biol. 2010;30(2):186–92.PubMed Wu H, Perrard XD, Wang Q, Perrard JL, Polsani VR, Jones PH, et al. CD11c expression in adipose tissue and blood and its role in diet-induced obesity. Arterioscler Thromb Vasc Biol. 2010;30(2):186–92.PubMed
51.
Zurück zum Zitat Owens D, Collins P, Johnson A, Tomkin G. Cellular cholesterol metabolism in mitogen-stimulated lymphocytes--requirement for de novo synthesis. Biochim Biophys Acta. 1990;1051(2):138–43.PubMed Owens D, Collins P, Johnson A, Tomkin G. Cellular cholesterol metabolism in mitogen-stimulated lymphocytes--requirement for de novo synthesis. Biochim Biophys Acta. 1990;1051(2):138–43.PubMed
52.
Zurück zum Zitat Cuthbert JA, Lipsky PE. Provision of cholesterol to lymphocytes by high density and low density lipoproteins. Requirement for low density lipoprotein receptors. J Biol Chem. 1987;262(16):7808–18.PubMed Cuthbert JA, Lipsky PE. Provision of cholesterol to lymphocytes by high density and low density lipoproteins. Requirement for low density lipoprotein receptors. J Biol Chem. 1987;262(16):7808–18.PubMed
53.
Zurück zum Zitat Holven KB, Narverud I, Lindvig HW, Halvorsen B, Langslet G, Nenseter MS, et al. Subjects with familial hypercholesterolemia are characterized by an inflammatory phenotype despite long-term intensive cholesterol lowering treatment. Atherosclerosis. 2014;233(2):561–7.PubMed Holven KB, Narverud I, Lindvig HW, Halvorsen B, Langslet G, Nenseter MS, et al. Subjects with familial hypercholesterolemia are characterized by an inflammatory phenotype despite long-term intensive cholesterol lowering treatment. Atherosclerosis. 2014;233(2):561–7.PubMed
54.
Zurück zum Zitat Taghizadeh E, Taheri F, Gheibi Hayat SM, Montecucco F, Carbone F, Rostami D, et al. The atherogenic role of immune cells in familial hypercholesterolemia. IUBMB Life. 2020;72(4):782–9.PubMed Taghizadeh E, Taheri F, Gheibi Hayat SM, Montecucco F, Carbone F, Rostami D, et al. The atherogenic role of immune cells in familial hypercholesterolemia. IUBMB Life. 2020;72(4):782–9.PubMed
55.
Zurück zum Zitat Alborn WE, Cao G, Careskey HE, Qian YW, Subramaniam DR, Davies J, et al. Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol. Clin Chem. 2007;53(10):1814–9.PubMed Alborn WE, Cao G, Careskey HE, Qian YW, Subramaniam DR, Davies J, et al. Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol. Clin Chem. 2007;53(10):1814–9.PubMed
56.
Zurück zum Zitat Lambert G, Ancellin N, Charlton F, Comas D, Pilot J, Keech A, et al. Plasma PCSK9 concentrations correlate with LDL and total cholesterol in diabetic patients and are decreased by fenofibrate treatment. Clin Chem. 2008;54(6):1038–45.PubMed Lambert G, Ancellin N, Charlton F, Comas D, Pilot J, Keech A, et al. Plasma PCSK9 concentrations correlate with LDL and total cholesterol in diabetic patients and are decreased by fenofibrate treatment. Clin Chem. 2008;54(6):1038–45.PubMed
57.
Zurück zum Zitat Mohammadi A, Shabani M, Naseri F, Hosseni B, Soltanmohammadi E, Piran S, et al. Circulating PCSK9 affects serum LDL and cholesterol levels more than SREBP-2 expression. Adv Clin Exp Med. 2017;26(4):655–9.PubMed Mohammadi A, Shabani M, Naseri F, Hosseni B, Soltanmohammadi E, Piran S, et al. Circulating PCSK9 affects serum LDL and cholesterol levels more than SREBP-2 expression. Adv Clin Exp Med. 2017;26(4):655–9.PubMed
58.
Zurück zum Zitat Li S, Guo YL, Xu RX, Zhang Y, Zhu CG, Sun J, et al. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis. 2014;234(2):441–5.PubMed Li S, Guo YL, Xu RX, Zhang Y, Zhu CG, Sun J, et al. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis. 2014;234(2):441–5.PubMed
59.
Zurück zum Zitat Makinen VP, Civelek M, Meng Q, Zhang B, Zhu J, Levian C, et al. Integrative genomics reveals novel molecular pathways and gene networks for coronary artery disease. PLoS Genet. 2014;10(7):e1004502.PubMedPubMedCentral Makinen VP, Civelek M, Meng Q, Zhang B, Zhu J, Levian C, et al. Integrative genomics reveals novel molecular pathways and gene networks for coronary artery disease. PLoS Genet. 2014;10(7):e1004502.PubMedPubMedCentral
60.
Zurück zum Zitat Bjorkbacka H, Lavant EH, Fredrikson GN, Melander O, Berglund G, Carlson JA, et al. Weak associations between human leucocyte antigen genotype and acute myocardial infarction. J Intern Med. 2010;268(1):50–8.PubMed Bjorkbacka H, Lavant EH, Fredrikson GN, Melander O, Berglund G, Carlson JA, et al. Weak associations between human leucocyte antigen genotype and acute myocardial infarction. J Intern Med. 2010;268(1):50–8.PubMed
61.
Zurück zum Zitat Davies RW, Wells GA, Stewart AF, Erdmann J, Shah SH, Ferguson JF, et al. A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex. Circ Cardiovasc Genet. 2012;5(2):217–25.PubMedPubMedCentral Davies RW, Wells GA, Stewart AF, Erdmann J, Shah SH, Ferguson JF, et al. A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex. Circ Cardiovasc Genet. 2012;5(2):217–25.PubMedPubMedCentral
62.
Zurück zum Zitat Elliott J, Bodinier B, Bond TA, Chadeau-Hyam M, Evangelou E, Moons KGM, et al. Predictive accuracy of a polygenic risk score-enhanced prediction model vs a clinical risk score for coronary artery disease. JAMA. 2020;323(7):636–45.PubMedPubMedCentral Elliott J, Bodinier B, Bond TA, Chadeau-Hyam M, Evangelou E, Moons KGM, et al. Predictive accuracy of a polygenic risk score-enhanced prediction model vs a clinical risk score for coronary artery disease. JAMA. 2020;323(7):636–45.PubMedPubMedCentral
63.
Zurück zum Zitat Mosley JD, Gupta DK, Tan J, Yao J, Wells QS, Shaffer CM, et al. Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease. JAMA. 2020;323(7):627–35.PubMedPubMedCentral Mosley JD, Gupta DK, Tan J, Yao J, Wells QS, Shaffer CM, et al. Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease. JAMA. 2020;323(7):627–35.PubMedPubMedCentral
64.
Zurück zum Zitat Christiansen MK, Nissen L, Winther S, Moller PL, Frost L, Johansen JK, et al. Genetic risk of coronary artery disease, features of atherosclerosis, and coronary plaque burden. J Am Heart Assoc. 2020;9(3):e014795.PubMedPubMedCentral Christiansen MK, Nissen L, Winther S, Moller PL, Frost L, Johansen JK, et al. Genetic risk of coronary artery disease, features of atherosclerosis, and coronary plaque burden. J Am Heart Assoc. 2020;9(3):e014795.PubMedPubMedCentral
65.
Zurück zum Zitat Eder L, Abji F, Rosen CF, Chandran V, Cook RJ, Gladman DD. The association of HLA-class I genes and the extent of atherosclerotic plaques in patients with psoriatic disease. J Rheumatol. 2016;43(10):1844–51.PubMed Eder L, Abji F, Rosen CF, Chandran V, Cook RJ, Gladman DD. The association of HLA-class I genes and the extent of atherosclerotic plaques in patients with psoriatic disease. J Rheumatol. 2016;43(10):1844–51.PubMed
66.
Zurück zum Zitat Eder L, Chandran V, Pellet F, Shanmugarajah S, Rosen CF, Bull SB, et al. Human leucocyte antigen risk alleles for psoriatic arthritis among patients with psoriasis. Ann Rheum Dis. 2012;71(1):50–5.PubMed Eder L, Chandran V, Pellet F, Shanmugarajah S, Rosen CF, Bull SB, et al. Human leucocyte antigen risk alleles for psoriatic arthritis among patients with psoriasis. Ann Rheum Dis. 2012;71(1):50–5.PubMed
67.
Zurück zum Zitat Lopez-Mejias R, Carmona FD, Genre F, Remuzgo-Martinez S, Gonzalez-Juanatey C, Corrales A, et al. Identification of a 3'-Untranslated genetic variant of RARB associated with carotid intima-media thickness in rheumatoid arthritis: a genome-wide association study. Arthritis Rheumatol. 2019;71(3):351–60.PubMedPubMedCentral Lopez-Mejias R, Carmona FD, Genre F, Remuzgo-Martinez S, Gonzalez-Juanatey C, Corrales A, et al. Identification of a 3'-Untranslated genetic variant of RARB associated with carotid intima-media thickness in rheumatoid arthritis: a genome-wide association study. Arthritis Rheumatol. 2019;71(3):351–60.PubMedPubMedCentral
68.
Zurück zum Zitat Mathur P, Ostadal B, Romeo F, Mehta JL. Gender-related differences in atherosclerosis. Cardiovasc Drugs Ther. 2015;29(4):319–27.PubMed Mathur P, Ostadal B, Romeo F, Mehta JL. Gender-related differences in atherosclerosis. Cardiovasc Drugs Ther. 2015;29(4):319–27.PubMed
69.
Zurück zum Zitat Madonna R, Balistreri CR, de Rosa S, Muscoli S, Selvaggio S, Selvaggio G, et al. Impact of Sex Differences and Diabetes on Coronary Atherosclerosis and Ischemic Heart Disease. J Clin Med. 2019;8(1):98. Madonna R, Balistreri CR, de Rosa S, Muscoli S, Selvaggio S, Selvaggio G, et al. Impact of Sex Differences and Diabetes on Coronary Atherosclerosis and Ischemic Heart Disease. J Clin Med. 2019;8(1):98.
70.
Zurück zum Zitat Jobling MA, Tyler-Smith C. Human Y-chromosome variation in the genome-sequencing era. Nat Rev Genet. 2017;18(8):485–97.PubMed Jobling MA, Tyler-Smith C. Human Y-chromosome variation in the genome-sequencing era. Nat Rev Genet. 2017;18(8):485–97.PubMed
71.
Zurück zum Zitat Eales JM, Maan AA, Xu X, Michoel T, Hallast P, Batini C, et al. Human Y chromosome exerts pleiotropic effects on susceptibility to atherosclerosis. Arterioscler Thromb Vasc Biol. 2019;39(11):2386–401.PubMedPubMedCentral Eales JM, Maan AA, Xu X, Michoel T, Hallast P, Batini C, et al. Human Y chromosome exerts pleiotropic effects on susceptibility to atherosclerosis. Arterioscler Thromb Vasc Biol. 2019;39(11):2386–401.PubMedPubMedCentral
72.
Zurück zum Zitat Moros-Perez M, Fuster JJ. Clonal hematopoiesis driven by somatic mutations: a new player in atherosclerotic cardiovascular disease. Atherosclerosis. 2020;297:120–6. Moros-Perez M, Fuster JJ. Clonal hematopoiesis driven by somatic mutations: a new player in atherosclerotic cardiovascular disease. Atherosclerosis. 2020;297:120–6.
73.
Zurück zum Zitat Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.PubMedPubMedCentral Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.PubMedPubMedCentral
74.
Zurück zum Zitat Kaasinen E, Kuismin O, Rajamaki K, Ristolainen H, Aavikko M, Kondelin J, et al. Impact of constitutional TET2 haploinsufficiency on molecular and clinical phenotype in humans. Nat Commun. 2019;10(1):1252.PubMedPubMedCentral Kaasinen E, Kuismin O, Rajamaki K, Ristolainen H, Aavikko M, Kondelin J, et al. Impact of constitutional TET2 haploinsufficiency on molecular and clinical phenotype in humans. Nat Commun. 2019;10(1):1252.PubMedPubMedCentral
75.
Zurück zum Zitat Bick AG, Pirruccello JP, Griffin GK, Gupta N, Gabriel S, Saleheen D, et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation. 2020;141(2):124–31.PubMed Bick AG, Pirruccello JP, Griffin GK, Gupta N, Gabriel S, Saleheen D, et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation. 2020;141(2):124–31.PubMed
76.
Zurück zum Zitat Chyu KY, Shah PK. In pursuit of an atherosclerosis vaccine. Circ Res. 2018;123(10):1121–3.PubMed Chyu KY, Shah PK. In pursuit of an atherosclerosis vaccine. Circ Res. 2018;123(10):1121–3.PubMed
77.
Zurück zum Zitat Lutgens E, Atzler D, Doring Y, Duchene J, Steffens S, Weber C. Immunotherapy for cardiovascular disease. Eur Heart J. 2019;40(48):3937–46.PubMed Lutgens E, Atzler D, Doring Y, Duchene J, Steffens S, Weber C. Immunotherapy for cardiovascular disease. Eur Heart J. 2019;40(48):3937–46.PubMed
Metadaten
Titel
Immunogenetics of Atherosclerosis—Link between Lipids, Immunity, and Genes
verfasst von
Kuang-Yuh Chyu
Paul C. Dimayuga
Prediman K. Shah
Publikationsdatum
01.10.2020
Verlag
Springer US
Erschienen in
Current Atherosclerosis Reports / Ausgabe 10/2020
Print ISSN: 1523-3804
Elektronische ISSN: 1534-6242
DOI
https://doi.org/10.1007/s11883-020-00874-4

Weitere Artikel der Ausgabe 10/2020

Current Atherosclerosis Reports 10/2020 Zur Ausgabe

Genetics and Genomics (A.J. Marian, Section Editor)

Exosomes: Multifaceted Messengers in Atherosclerosis

Evidence-Based Medicine, Clinical Trials and Their Interpretations (L. Roever, Section Editor)

Bei Hypertonikern mit COVID-19 sind RAAS-Blocker sogar von Vorteil

Genetics and Genomics (A.J. Marian, Section Editor)

The Long Non-coding Road to Atherosclerosis

Coronary Heart Disease (S. Virani and S. Naderi, Section Editor)

The Impact of Psychological Functioning on Cardiovascular Disease

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Neu im Fachgebiet Innere Medizin

22.04.2024 | DGIM 2024 | Kongressbericht | Nachrichten

Krebspatienten impfen: Was? Wen? Und wann nicht?

22.04.2024 | DGIM 2024 | Kongressbericht | Nachrichten

Nierenultraschall: Tipps vom Profi

22.04.2024 | DGIM 2024 | Kongressbericht | Nachrichten

„KI sieht, was wir nicht sehen“

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.