Skip to main content
Erschienen in: Inflammation 3/2018

23.02.2018 | ORIGINAL ARTICLE

Immunomodulatory Effects of CP-25 on Splenic T Cells of Rats with Adjuvant Arthritis

verfasst von: Yang Wang, Chen-chen Han, Dongqian Cui, Ting-ting Luo, Yifan Li, Yuwen Zhang, Yang Ma, Wei Wei

Erschienen in: Inflammation | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease in which T cells play an important role. Paeoniflorin-6-oxy-benzenesulfonate (CP-25) shows a strong anti-inflammatory and immunomodulatory effect in the joint of adjuvant arthritis (AA) rats, but the role of the spleen function is still unclear. The aim of this study was to research how CP-25 regulated spleen function of AA rats. Male Sprague-Dawley rats were administered with CP-25 (50 mg/kg) orally from day 17 to 29 after immunization. The spleen histopathological changes were analyzed by hematoxylin–eosin staining. G protein-coupled receptor kinases (GRKs) and prostaglandin receptor subtypes (EPs) were screened by Western blot and immunohistochemistry. The co-expression of GRK2 and EP2 as well as GRK2 and EP4 was measured by immunofluorescence and co-immunoprecipitation. The expression of GRK2 and EP4 in splenic T cells was further detected by immunofluorescence. CP-25 was found to relieve the secondary paw swelling, attenuate histopathologic changes, and downregulate GRK2, EP2 and EP4 expression in AA rats. Additionally, CP-25 not only downregulated the co-expression of GRK2 and EP4 but also downregulated GRK2, EP4 expression in splenic T cells of AA rats. From these results, we can infer that CP-25 play an anti-inflammatory and immune function by affecting the function of the splenic T cells.
Literatur
1.
Zurück zum Zitat López Mantecón, A.M., G. Garrido, R. Delgado-Hernández, and B.B. Garrido-Suárez. 2014. Combination of Mangifera indica L. extract supplementation plus methotrexate in rheumatoid arthritis patients: a pilot study. Phytotherapy Research 28 (8): 1163–1172.CrossRefPubMed López Mantecón, A.M., G. Garrido, R. Delgado-Hernández, and B.B. Garrido-Suárez. 2014. Combination of Mangifera indica L. extract supplementation plus methotrexate in rheumatoid arthritis patients: a pilot study. Phytotherapy Research 28 (8): 1163–1172.CrossRefPubMed
2.
Zurück zum Zitat Zwerina, J., K. Redlich, G. Schett, and J.S. Smolen. 2005. Pathogenesis of rheumatoid arthritis: targeting cytokines. Annals of the New York Academy of Sciences: 716–729. Zwerina, J., K. Redlich, G. Schett, and J.S. Smolen. 2005. Pathogenesis of rheumatoid arthritis: targeting cytokines. Annals of the New York Academy of Sciences: 716–729.
3.
Zurück zum Zitat Zhang, X., T. Nakajima, J.J. Goronzy, and C.M. Weyand. 2005. Tissue trafficking patterns of effector memory CD4 + T cells in rheumatoid arthritis. Arthritis and Rheumatism 52 (12): 3839–3849.CrossRefPubMed Zhang, X., T. Nakajima, J.J. Goronzy, and C.M. Weyand. 2005. Tissue trafficking patterns of effector memory CD4 + T cells in rheumatoid arthritis. Arthritis and Rheumatism 52 (12): 3839–3849.CrossRefPubMed
4.
Zurück zum Zitat Rogers, J.L., D.S. Serafin, R.G. Timoshchenko, and T.K. Tarrant. 2012. Cellular targeting in autoimmunity. Current Allergy and Asthma Reports 12 (6): 495–510.CrossRefPubMedPubMedCentral Rogers, J.L., D.S. Serafin, R.G. Timoshchenko, and T.K. Tarrant. 2012. Cellular targeting in autoimmunity. Current Allergy and Asthma Reports 12 (6): 495–510.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Martin, R. 2012. Anti-CD25 (daclizumab) monoclonal antibody therapy in relapsing-remitting multiple sclerosis. Clinical Immunology 142 (1): 9–14.CrossRefPubMed Martin, R. 2012. Anti-CD25 (daclizumab) monoclonal antibody therapy in relapsing-remitting multiple sclerosis. Clinical Immunology 142 (1): 9–14.CrossRefPubMed
6.
Zurück zum Zitat Pierce, K.L., R.T. Premont, and R.J. Lefkowitz. 2002. Seven-transmembrane receptors. Nature Reviews. Molecular Cell Biology 3 (9): 639–650.CrossRefPubMed Pierce, K.L., R.T. Premont, and R.J. Lefkowitz. 2002. Seven-transmembrane receptors. Nature Reviews. Molecular Cell Biology 3 (9): 639–650.CrossRefPubMed
7.
Zurück zum Zitat Neumann, E., K. Khawaja, and U. Müller-Ladner. 2014. G protein-coupled receptors in rheumatology. Nature Reviews Rheumatology 10 (7): 429–436.CrossRefPubMed Neumann, E., K. Khawaja, and U. Müller-Ladner. 2014. G protein-coupled receptors in rheumatology. Nature Reviews Rheumatology 10 (7): 429–436.CrossRefPubMed
8.
Zurück zum Zitat Shukla, A.K., A. Manglik, A.C. Kruse, K. Xiao, R.I. Reis, W.C. Tseng, et al. 2013. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497 (7447): 137–141.CrossRefPubMedPubMedCentral Shukla, A.K., A. Manglik, A.C. Kruse, K. Xiao, R.I. Reis, W.C. Tseng, et al. 2013. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497 (7447): 137–141.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Sato, P.Y., J.K. Chuprun, M. Schwartz, and W.J. Koch. 2015. The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiological Reviews 95 (2): 377–404.CrossRefPubMedPubMedCentral Sato, P.Y., J.K. Chuprun, M. Schwartz, and W.J. Koch. 2015. The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiological Reviews 95 (2): 377–404.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Chen, C.K., K. Zhang, J. Church-Kopish, W. Huang, H. Zhang, Y.J. Chen, et al. 2001. Characterization of human GRK7 as a potential cone opsin kinase. Molecular Vision 7: 305–313.PubMed Chen, C.K., K. Zhang, J. Church-Kopish, W. Huang, H. Zhang, Y.J. Chen, et al. 2001. Characterization of human GRK7 as a potential cone opsin kinase. Molecular Vision 7: 305–313.PubMed
11.
Zurück zum Zitat Zeng, C., V.A. Villar, G.M. Eisner, S.M. Williams, R.A. Felder, et al. 2008. G protein-coupled receptor kinase 4: role in blood pressure regulation. Hypertension 51 (6): 1449–1455.CrossRefPubMedPubMedCentral Zeng, C., V.A. Villar, G.M. Eisner, S.M. Williams, R.A. Felder, et al. 2008. G protein-coupled receptor kinase 4: role in blood pressure regulation. Hypertension 51 (6): 1449–1455.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Dautzenberg, F.M., S. Wille, S. Braun, and R.L. Hauger. 2002. GRK3 regulation during CRF- and urocortin-induced CRF1 receptor desensitization. Biochemical and Biophysical Research Communications 298 (3): 303–308.CrossRefPubMed Dautzenberg, F.M., S. Wille, S. Braun, and R.L. Hauger. 2002. GRK3 regulation during CRF- and urocortin-induced CRF1 receptor desensitization. Biochemical and Biophysical Research Communications 298 (3): 303–308.CrossRefPubMed
13.
Zurück zum Zitat Schulz, R., A. Wehmeyer, and K. Schulz. 2002. Visualizing preference of G protein-coupled receptor kinase 3 for the process of kappa-opioid receptor sequestration. Molecular Pharmacology 61 (6): 1444–1452.CrossRefPubMed Schulz, R., A. Wehmeyer, and K. Schulz. 2002. Visualizing preference of G protein-coupled receptor kinase 3 for the process of kappa-opioid receptor sequestration. Molecular Pharmacology 61 (6): 1444–1452.CrossRefPubMed
14.
Zurück zum Zitat Bawa, T., G.F. Altememi, D.C. Eikenburg, and K.M. Standifer. 2003. Desensitization of alpha 2A adrenoceptor signalling by modest levels of adrenaline is facilitated by beta 2-adrenoceptor-dependent GRK3 up-regulation. British Journal of Pharmacology 138 (5): 921–931.CrossRefPubMedPubMedCentral Bawa, T., G.F. Altememi, D.C. Eikenburg, and K.M. Standifer. 2003. Desensitization of alpha 2A adrenoceptor signalling by modest levels of adrenaline is facilitated by beta 2-adrenoceptor-dependent GRK3 up-regulation. British Journal of Pharmacology 138 (5): 921–931.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Taneja, M., S. Salim, K. Saha, H.K. Happe, N. Qutna, F. Petty, et al. 2011. Differential effects of inescapable stress on locus coeruleus GRK3, alpha2-adrenoceptor and CRF1 receptor levels in learned helpless and non-helpless rats: a potential link to stress resilience. Behavioural Brain Research 221 (1): 25–33.CrossRefPubMedPubMedCentral Taneja, M., S. Salim, K. Saha, H.K. Happe, N. Qutna, F. Petty, et al. 2011. Differential effects of inescapable stress on locus coeruleus GRK3, alpha2-adrenoceptor and CRF1 receptor levels in learned helpless and non-helpless rats: a potential link to stress resilience. Behavioural Brain Research 221 (1): 25–33.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Belmonte, S.L., and B.C. Blaxall. 2011. G protein coupled receptor kinases as therapeutic targets in cardiovascular disease. Circulation Research 109 (3): 309–319.CrossRefPubMedPubMedCentral Belmonte, S.L., and B.C. Blaxall. 2011. G protein coupled receptor kinases as therapeutic targets in cardiovascular disease. Circulation Research 109 (3): 309–319.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Gainetdinov, R.R., R.T. Premont, M.G. Caron, and R.J. Lefkowitz. 2000. Reply: receptor specificity of G-protein-coupled receptor kinases. Trends in Pharmacological Sciences 21 (10): 366–367.CrossRefPubMed Gainetdinov, R.R., R.T. Premont, M.G. Caron, and R.J. Lefkowitz. 2000. Reply: receptor specificity of G-protein-coupled receptor kinases. Trends in Pharmacological Sciences 21 (10): 366–367.CrossRefPubMed
18.
Zurück zum Zitat Breye, M.D., and R.M. Breyer. 2000. Prostaglandin E receptors and the kidney. American Journal of Physiology. Renal Physiology 279 (1): F12–F23.CrossRef Breye, M.D., and R.M. Breyer. 2000. Prostaglandin E receptors and the kidney. American Journal of Physiology. Renal Physiology 279 (1): F12–F23.CrossRef
19.
Zurück zum Zitat Tsuboi, K., Y. Sugimoto, and A. Ichikawa. 2002. Prostanoid receptor subtypes. Prostaglandins & Other Lipid Mediators 68-69: 535–556.CrossRef Tsuboi, K., Y. Sugimoto, and A. Ichikawa. 2002. Prostanoid receptor subtypes. Prostaglandins & Other Lipid Mediators 68-69: 535–556.CrossRef
20.
Zurück zum Zitat Kunisch, E., A. Jansen, F. Kojima, I. Löffler, M. Kapoor, S. Kawai, et al. 2009. Prostaglandin E2 differentially modulates proinflammatory/prodestructive effects of TNF-alpha on synovial fibroblasts via specific E prostanoid receptors/cAMP. Journal of Immunology 183 (2): 1328–1336.CrossRef Kunisch, E., A. Jansen, F. Kojima, I. Löffler, M. Kapoor, S. Kawai, et al. 2009. Prostaglandin E2 differentially modulates proinflammatory/prodestructive effects of TNF-alpha on synovial fibroblasts via specific E prostanoid receptors/cAMP. Journal of Immunology 183 (2): 1328–1336.CrossRef
21.
Zurück zum Zitat Sheibanie, A.F., I. Tadmori, H. Jing, E. Vassiliou, and D. Ganea. 2004. Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. The FASEB Journal 18 (11): 1318–1320.CrossRefPubMed Sheibanie, A.F., I. Tadmori, H. Jing, E. Vassiliou, and D. Ganea. 2004. Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. The FASEB Journal 18 (11): 1318–1320.CrossRefPubMed
22.
Zurück zum Zitat Boniface, K., K.S. Bak-Jensen, Y. Li, W.M. Blumenschein, M.J. McGeachy, T.K. McClanahan, et al. 2009. Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. The Journal of Experimental Medicine 206 (3): 535–548.CrossRefPubMedPubMedCentral Boniface, K., K.S. Bak-Jensen, Y. Li, W.M. Blumenschein, M.J. McGeachy, T.K. McClanahan, et al. 2009. Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. The Journal of Experimental Medicine 206 (3): 535–548.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Nishigaki, N., M. Negishi, and A. Ichikawa. 1996. Two Gs-coupled prostaglandin E receptor subtypes, EP2 and EP4, differ in desensitization and sensitivity to the metabolic inactivation of the agonist. Molecular Pharmacology 50 (4): 1031–1037.PubMed Nishigaki, N., M. Negishi, and A. Ichikawa. 1996. Two Gs-coupled prostaglandin E receptor subtypes, EP2 and EP4, differ in desensitization and sensitivity to the metabolic inactivation of the agonist. Molecular Pharmacology 50 (4): 1031–1037.PubMed
24.
Zurück zum Zitat Yang, X.D., C. Wang, P. Zhou, J. Yu, J. Asenso, Y. Ma, et al. 2016. Absorption characteristic of paeoniflorin-6′-O-benzene sulfonate (CP-25) in in situ singlepass intestinal perfusion in rats. Xenobiotica 46 (9): 775–783.CrossRefPubMed Yang, X.D., C. Wang, P. Zhou, J. Yu, J. Asenso, Y. Ma, et al. 2016. Absorption characteristic of paeoniflorin-6′-O-benzene sulfonate (CP-25) in in situ singlepass intestinal perfusion in rats. Xenobiotica 46 (9): 775–783.CrossRefPubMed
25.
Zurück zum Zitat Chang, Y., X. Jia, F. Wei, C. Wang, X. Sun, S. Xu, et al. 2016. CP-25, a novel compound, protects against autoimmune arthritis by modulating immune mediators of inflammation and bone damage. Scientific Reports 6: 26239.CrossRefPubMedPubMedCentral Chang, Y., X. Jia, F. Wei, C. Wang, X. Sun, S. Xu, et al. 2016. CP-25, a novel compound, protects against autoimmune arthritis by modulating immune mediators of inflammation and bone damage. Scientific Reports 6: 26239.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Jia, X., F. Wei, X. Sun, Y. Chang, S. Xu, X. Yang, et al. 2016. CP-25 attenuates the inflammatory response of fibroblast-like synoviocytes co-cultured with BAFF-activated CD4(+) T cells. Journal of Ethnopharmacology 189: 194–201.CrossRefPubMed Jia, X., F. Wei, X. Sun, Y. Chang, S. Xu, X. Yang, et al. 2016. CP-25 attenuates the inflammatory response of fibroblast-like synoviocytes co-cultured with BAFF-activated CD4(+) T cells. Journal of Ethnopharmacology 189: 194–201.CrossRefPubMed
27.
Zurück zum Zitat Li, Y., K. Sheng, J. Chen, Y. Wu, F. Zhang, Y. Chang, et al. 2015. Regulation of PGE2 signaling pathways and TNF-alpha signaling pathways on the function of bone marrow-derived dendritic cells and the effects of CP-25. European Journal of Pharmacology 769: 8–21.CrossRefPubMed Li, Y., K. Sheng, J. Chen, Y. Wu, F. Zhang, Y. Chang, et al. 2015. Regulation of PGE2 signaling pathways and TNF-alpha signaling pathways on the function of bone marrow-derived dendritic cells and the effects of CP-25. European Journal of Pharmacology 769: 8–21.CrossRefPubMed
28.
Zurück zum Zitat Abd El-Rahman, R.S., G.M. Suddek, N.M. Gameil, and H.A. El-Kashef. 2011. Protective potential of MMR vaccine against complete Freund's adjuvant-induced inflammation in rats. Inflammopharmacology 19 (6): 343–348.CrossRefPubMed Abd El-Rahman, R.S., G.M. Suddek, N.M. Gameil, and H.A. El-Kashef. 2011. Protective potential of MMR vaccine against complete Freund's adjuvant-induced inflammation in rats. Inflammopharmacology 19 (6): 343–348.CrossRefPubMed
29.
Zurück zum Zitat Wooley, P.H. 1991. Animal models of rheumatoid arthritis. Current Opinion in Rheumatology 3 (3): 407–420.CrossRefPubMed Wooley, P.H. 1991. Animal models of rheumatoid arthritis. Current Opinion in Rheumatology 3 (3): 407–420.CrossRefPubMed
30.
Zurück zum Zitat Zhang, Z.R., H. Wu, R. Wang, S.P. Li, L. Dai, and W. Wang. 2017. Immune tolerance effect in mesenteric lymph node lymphocytes of geniposide on adjuvant arthritis rats. Phytotherapy Research 31 (8): 1249–1256.CrossRefPubMed Zhang, Z.R., H. Wu, R. Wang, S.P. Li, L. Dai, and W. Wang. 2017. Immune tolerance effect in mesenteric lymph node lymphocytes of geniposide on adjuvant arthritis rats. Phytotherapy Research 31 (8): 1249–1256.CrossRefPubMed
31.
Zurück zum Zitat Chang, Y., X. Sun, X. Jia, S. Xu, F. Wei, X. Yang, et al. 2015. Expression and effects of B-lymphocyte stimulator and its receptors in T cell-mediated autoimmune arthritis. International Immunopharmacology 24 (2): 451–457.CrossRefPubMed Chang, Y., X. Sun, X. Jia, S. Xu, F. Wei, X. Yang, et al. 2015. Expression and effects of B-lymphocyte stimulator and its receptors in T cell-mediated autoimmune arthritis. International Immunopharmacology 24 (2): 451–457.CrossRefPubMed
32.
Zurück zum Zitat Lian, X.F., Y.T. Yang, Z.H. Wang, Y. Yang, Y. Yang, Y.W. Shu, et al. 2013. Curcumin serves as a human kv1.3 blocker to inhibit effector memory T lymphocyte activities. Phytotherapy Research 27 (9): 1321–1327.CrossRefPubMed Lian, X.F., Y.T. Yang, Z.H. Wang, Y. Yang, Y. Yang, Y.W. Shu, et al. 2013. Curcumin serves as a human kv1.3 blocker to inhibit effector memory T lymphocyte activities. Phytotherapy Research 27 (9): 1321–1327.CrossRefPubMed
33.
Zurück zum Zitat Mebius, R.E., and G. Kraal. 2005. Structure and function of the spleen. Nature Reviews. Immunology 5 (8): 606–616.CrossRefPubMed Mebius, R.E., and G. Kraal. 2005. Structure and function of the spleen. Nature Reviews. Immunology 5 (8): 606–616.CrossRefPubMed
34.
Zurück zum Zitat McInnes, I.B., and G. Schett. 2011. The pathogenesis of rheumatoid arthritis. The New England Journal of Medicine 365 (23): 2205–2219.CrossRefPubMed McInnes, I.B., and G. Schett. 2011. The pathogenesis of rheumatoid arthritis. The New England Journal of Medicine 365 (23): 2205–2219.CrossRefPubMed
35.
Zurück zum Zitat Liu, Z., B. Li, X. Li, L. Zhang, and L. Lai. 2011. Identification of small-molecule inhibitors against human leukocyte antigen-death receptor 4 (HLA-DR4) through a comprehensive strategy. Journal of Chemical Information and Modeling 51 (2): 326–334.CrossRefPubMed Liu, Z., B. Li, X. Li, L. Zhang, and L. Lai. 2011. Identification of small-molecule inhibitors against human leukocyte antigen-death receptor 4 (HLA-DR4) through a comprehensive strategy. Journal of Chemical Information and Modeling 51 (2): 326–334.CrossRefPubMed
36.
Zurück zum Zitat Niu, Y., Q. Dong, and R. Li. 2017. Matrine regulates Th1/Th2 cytokine responses in rheumatoid arthritis by attenuating the NF-κB signaling. Cell Biology International 41 (6): 611–621.CrossRefPubMed Niu, Y., Q. Dong, and R. Li. 2017. Matrine regulates Th1/Th2 cytokine responses in rheumatoid arthritis by attenuating the NF-κB signaling. Cell Biology International 41 (6): 611–621.CrossRefPubMed
37.
Zurück zum Zitat Wu, H., W. Wei, L. Song, L. Zhang, Y. Chen, and X. Hu. 2007. Paeoniflorin induced immune tolerance of mesenteric lymph node lymphocytes via enhancing beta 2-adrenergic receptor desensitization in rats with adjuvant arthritis. International Immunopharmacology 7 (5): 662–673.CrossRefPubMed Wu, H., W. Wei, L. Song, L. Zhang, Y. Chen, and X. Hu. 2007. Paeoniflorin induced immune tolerance of mesenteric lymph node lymphocytes via enhancing beta 2-adrenergic receptor desensitization in rats with adjuvant arthritis. International Immunopharmacology 7 (5): 662–673.CrossRefPubMed
38.
Zurück zum Zitat Chen, J.Y., H.X. Wu, J.Y. Chen, L.L. Zhang, Q.T. Wang, W.Y. Sun, et al. 2012. Paeoniflorin inhibits proliferation of fibroblast-like synoviocytes through suppressing G-protein-coupled receptor kinase 2. Planta Medica 78 (7): 665–671.CrossRefPubMed Chen, J.Y., H.X. Wu, J.Y. Chen, L.L. Zhang, Q.T. Wang, W.Y. Sun, et al. 2012. Paeoniflorin inhibits proliferation of fibroblast-like synoviocytes through suppressing G-protein-coupled receptor kinase 2. Planta Medica 78 (7): 665–671.CrossRefPubMed
39.
Zurück zum Zitat Honda, T., E. Segi-Nishida, Y. Miyachi, and S. Narumiva. 2006. Prostacyclin-IP signaling and prostaglandin E2-EP2/EP4 signaling both mediate joint inflammation in mouse collagen-induced arthritis. The Journal of Experimental Medicine 203 (2): 325–335.CrossRefPubMedPubMedCentral Honda, T., E. Segi-Nishida, Y. Miyachi, and S. Narumiva. 2006. Prostacyclin-IP signaling and prostaglandin E2-EP2/EP4 signaling both mediate joint inflammation in mouse collagen-induced arthritis. The Journal of Experimental Medicine 203 (2): 325–335.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Abrahao, A.C., R.M. Castilho, C.H. Squarize, A.A. Molinolo, D. dos Santos-Pinto Jr., and J.S. Gutkind. 2010. A role for COX2-derived PGE2 and PGE2-receptor subtypes in head and neck squamous carcinoma cell proliferation. Oral Oncology 46 (12): 880–887.CrossRefPubMedPubMedCentral Abrahao, A.C., R.M. Castilho, C.H. Squarize, A.A. Molinolo, D. dos Santos-Pinto Jr., and J.S. Gutkind. 2010. A role for COX2-derived PGE2 and PGE2-receptor subtypes in head and neck squamous carcinoma cell proliferation. Oral Oncology 46 (12): 880–887.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Nataraj, C., D.W. Thomas, S.L. Tilley, M.T. Nguyen, R. Mannon, B.H. Koller, et al. 2001. Receptors for prostaglandin E(2) that regulate cellular immune responses in the mouse. The Journal of Clinical Investigation 108 (8): 1229–1235.CrossRefPubMedPubMedCentral Nataraj, C., D.W. Thomas, S.L. Tilley, M.T. Nguyen, R. Mannon, B.H. Koller, et al. 2001. Receptors for prostaglandin E(2) that regulate cellular immune responses in the mouse. The Journal of Clinical Investigation 108 (8): 1229–1235.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Kabashima, K., T. Saji, T. Murata, M. Nagamachi, T. Matsuoka, E. Segi, et al. 2002. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. The Journal of Clinical Investigation 109 (7): 883–893.CrossRefPubMedPubMedCentral Kabashima, K., T. Saji, T. Murata, M. Nagamachi, T. Matsuoka, E. Segi, et al. 2002. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. The Journal of Clinical Investigation 109 (7): 883–893.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Vang, T., K.M. Torgersen, V. Sundvold, M. Saxena, F.O. Levy, B.S. Skålhegg, et al. 2001. Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. The Journal of Experimental Medicine 193 (4): 497–507.CrossRefPubMedPubMedCentral Vang, T., K.M. Torgersen, V. Sundvold, M. Saxena, F.O. Levy, B.S. Skålhegg, et al. 2001. Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. The Journal of Experimental Medicine 193 (4): 497–507.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Vang, T., H. Abrahamsen, S. Myklebust, V. Horejsí, and K. Taskén. 2003. Combined spatial and enzymatic regulation of Csk by cAMP and protein kinase a inhibits T cell receptor signaling. The Journal of Biological Chemistry 278 (20): 17597–17600.CrossRefPubMed Vang, T., H. Abrahamsen, S. Myklebust, V. Horejsí, and K. Taskén. 2003. Combined spatial and enzymatic regulation of Csk by cAMP and protein kinase a inhibits T cell receptor signaling. The Journal of Biological Chemistry 278 (20): 17597–17600.CrossRefPubMed
45.
Zurück zum Zitat Bush, K.A., K.M. Farmer, J.S. Walker, and B.W. Kirkham. 2002. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis and Rheumatism 46 (3): 802–805.CrossRefPubMed Bush, K.A., K.M. Farmer, J.S. Walker, and B.W. Kirkham. 2002. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis and Rheumatism 46 (3): 802–805.CrossRefPubMed
46.
Zurück zum Zitat Nishigaki, N., M. Negishi, A. Honda, Y. Sugimoto, T. Namba, S. Narumiya, et al. 1995. Identification of prostaglandin E receptor ‘EP2’ cloned from mastocytoma cells EP4 subtype. FEBS Letters 1364 (3): 339–341.CrossRef Nishigaki, N., M. Negishi, A. Honda, Y. Sugimoto, T. Namba, S. Narumiya, et al. 1995. Identification of prostaglandin E receptor ‘EP2’ cloned from mastocytoma cells EP4 subtype. FEBS Letters 1364 (3): 339–341.CrossRef
47.
Zurück zum Zitat Jia, X.Y., Y. Chang, X.J. Sun, X. Dai, and W. Wei. 2014. The role of prostaglandin E2 receptor signaling of dendritic cells in rheumatoid arthritis. International Immunopharmacology 23 (1): 163–169.CrossRefPubMed Jia, X.Y., Y. Chang, X.J. Sun, X. Dai, and W. Wei. 2014. The role of prostaglandin E2 receptor signaling of dendritic cells in rheumatoid arthritis. International Immunopharmacology 23 (1): 163–169.CrossRefPubMed
48.
Zurück zum Zitat Kojima, F., H. Naraba, Y. Sasaki, M. Beppu, H. Aoki, and S. Kawai. 2003. Prostaglandin E2 is an enhancer of interleukin-1beta-induced expression of membrane-associated prostaglandin E synthase in rheumatoid synovial fibroblasts. Arthritis and Rheumatism 48 (10): 2819–2828.CrossRefPubMed Kojima, F., H. Naraba, Y. Sasaki, M. Beppu, H. Aoki, and S. Kawai. 2003. Prostaglandin E2 is an enhancer of interleukin-1beta-induced expression of membrane-associated prostaglandin E synthase in rheumatoid synovial fibroblasts. Arthritis and Rheumatism 48 (10): 2819–2828.CrossRefPubMed
49.
Zurück zum Zitat Li, Y., Y. Shen, P. Hohensinner, J. Ju, Z. Wen, S.B. Goodman, et al. 2016. Deficient activity of the nuclease MRE11A induces T cell aging and promotes arthritogenic effector functions in patients with rheumatoid arthritis. Immunity 45 (4): 903–916.CrossRefPubMedPubMedCentral Li, Y., Y. Shen, P. Hohensinner, J. Ju, Z. Wen, S.B. Goodman, et al. 2016. Deficient activity of the nuclease MRE11A induces T cell aging and promotes arthritogenic effector functions in patients with rheumatoid arthritis. Immunity 45 (4): 903–916.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Wang, C.J., F. Heuts, V. Ovcinnikovs, L. Wardzinski, C. Bowers, E.M. Schmidt, et al. 2015. CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement. Proceedings of the National Academy of Sciences of the United States of America 112 (2): 524–529.CrossRefPubMed Wang, C.J., F. Heuts, V. Ovcinnikovs, L. Wardzinski, C. Bowers, E.M. Schmidt, et al. 2015. CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement. Proceedings of the National Academy of Sciences of the United States of America 112 (2): 524–529.CrossRefPubMed
51.
Zurück zum Zitat Azuma, M., D. Ito, H. Yagita, K. Okumura, J.H. Phillips, L.L. Lanier, et al. 1993. B70 antigen is a second ligand for CTLA-4 and CD28. Nature 66 (6450): 76–79.CrossRef Azuma, M., D. Ito, H. Yagita, K. Okumura, J.H. Phillips, L.L. Lanier, et al. 1993. B70 antigen is a second ligand for CTLA-4 and CD28. Nature 66 (6450): 76–79.CrossRef
52.
Zurück zum Zitat Slavik, J.M., J.E. Hutchcroft, and B.E. Bierer. 1999. CD80 and CD86 are not equivalent in their ability to induce the tyrosine phosphorylation of CD28. The Journal of Biological Chemistry 274 (5): 3116–3124.CrossRefPubMed Slavik, J.M., J.E. Hutchcroft, and B.E. Bierer. 1999. CD80 and CD86 are not equivalent in their ability to induce the tyrosine phosphorylation of CD28. The Journal of Biological Chemistry 274 (5): 3116–3124.CrossRefPubMed
53.
Zurück zum Zitat Zhang, L.L., W. Wei, N.P. Wang, Q.T. Wang, J.Y. Chen, Y. Chen, et al. 2008. Paeoniflorin suppresses inflammatory mediator production and regulates G protein-coupled signaling in fibroblast-like synoviocytes of collagen induced arthritic rats. Inflammation Research 57 (8): 388–395.CrossRefPubMed Zhang, L.L., W. Wei, N.P. Wang, Q.T. Wang, J.Y. Chen, Y. Chen, et al. 2008. Paeoniflorin suppresses inflammatory mediator production and regulates G protein-coupled signaling in fibroblast-like synoviocytes of collagen induced arthritic rats. Inflammation Research 57 (8): 388–395.CrossRefPubMed
54.
Zurück zum Zitat Wang, Q., L. Wang, L. Wu, M. Zhang, S. Hu, R. Wang, et al. 2017. Paroxetine alleviates T lymphocyte activation and infiltration to joints of collagen-induced arthritis. Scientific Reports 7: 45364.CrossRefPubMedPubMedCentral Wang, Q., L. Wang, L. Wu, M. Zhang, S. Hu, R. Wang, et al. 2017. Paroxetine alleviates T lymphocyte activation and infiltration to joints of collagen-induced arthritis. Scientific Reports 7: 45364.CrossRefPubMedPubMedCentral
Metadaten
Titel
Immunomodulatory Effects of CP-25 on Splenic T Cells of Rats with Adjuvant Arthritis
verfasst von
Yang Wang
Chen-chen Han
Dongqian Cui
Ting-ting Luo
Yifan Li
Yuwen Zhang
Yang Ma
Wei Wei
Publikationsdatum
23.02.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0757-z

Weitere Artikel der Ausgabe 3/2018

Inflammation 3/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.