Skip to main content
Erschienen in: Journal of Cardiothoracic Surgery 1/2019

Open Access 01.12.2019 | Research article

Impact of patients´ age on short and long-term outcome after carotid endarterectomy and simultaneous coronary artery bypass grafting

verfasst von: Mona Salehi Ravesh, Rene Rusch, Christine Friedrich, Christoph Teickner, Rouven Berndt, Assad Haneya, Jochen Cremer, Thomas Pühler

Erschienen in: Journal of Cardiothoracic Surgery | Ausgabe 1/2019

Abstract

Background

The purpose of this study was to investigate whether age has an effect on short and long-term outcome in patients who undergo simultaneous coronary artery bypass grafting (CABG) and carotid endarterectomy.

Methods

From 2005 to 2017, 186 consecutive elective patients underwent CABG and synchronous endarterectomy at our institution. Patients were retrospectively classified according to age into 2 groups: patients above 70 years (elderly group: n = 97, 76.1 ± 3.9 years) and patients below 70 years (younger group: n = 89, 63.2 ± 4.8 years).

Results

The European System for Cardiac Operative Risk Evaluation (EuroSCORE) II, 4.4% vs. 2.5%; p < 0.001) and Society of Thoracic Surgeons (STS) score (0.7% vs. 1.6%; p < 0.001) were significantly higher in the elderly group. Otherwise, there was no difference between the two groups concerning important preoperative risk factors or the intraoperative data. Postoperatively, the incidence of temporary dialysis was significantly higher in the elderly group (14.4% vs. 3.4%; p = 0.009). The rate of tracheotomy (16.5% vs. 2.2%; p = 0.001), of re-intubation (7.9% vs. 18.6%; p = 0.033) and drainage loss (600 ml vs. 800 ml; p = 0.035) was significantly higher in this elderly group. Neurological complications and 30-day mortality were comparable. Long-term survival was satisfactory for both groups. Nevertheless, 5-year survival rates (63% vs. 85%) were significantly lower in the elderly group (p = 0.003). Logistic regression analysis identified chronic obstructive pulmonary disease (COPD) and arrhythmia as significant risk factors for 30-day-mortality, but not age.

Conclusions

CABG in combination with synchronous endarterectomy can also be performed with satisfactory results in elderly patients.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s13019-019-0928-5) contains supplementary material, which is available to authorized users.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CABG
Coronary artery bypass grafting
CAD
Coronary artery disease
CAS
Carotid artery stenting
CEA
Carotid endarterectomy
COPD
Chronic obstructive pulmonary disease
NYHA
New York Heart Association

Background

Coronary artery disease (CAD) is the most common type of heart disease and cause of mortality in the developed countries [1]. According to global and regional projections of mortality and burden of disease from 2002 to 2030, CAD will remain the leading cause of death in these countries for the next years to come [2]. In 2013, stroke was the second most common cause of death worldwide after ischemic heart disease [3]. Extracranial internal carotid artery stenosis is associated with around 8% of all ischemic strokes [4]. Significant coronary artery stenosis is a frequent additional finding in patients with repeat carotid artery stenosis (≥75%) [5]. Predictors of coincidence of CAD and carotid artery stenosis are advanced age, smoking, obesity, diabetes mellitus, arterial hypertension, and hyperlipidemia [6]. The presence of an additional carotid stenosis makes planning for the surgical treatment of CAD complicated. There are two surgical strategies (simultaneous and staged) for the treatment of concomitant carotid and coronary stenosis. On one hand, the staged surgical strategy is associated with a high risk of myocardial infarction if the carotid endarterectomy (CEA) or carotid artery stenting (CAS) is performed prior to coronary artery bypass grafting (CABG). On the other hand, this strategy is associated with an ischemic stroke if the CABG is carried out before the CEA/CAS [7, 8]. The period between the CEA/CAS and CABG is usually between 9 and 70 days [9]. The combined approach for CAE and CABG was reported for the first time in the 1970s [10, 11]. The simultaneous („same-day“) strategy for CAS and CABG was first presented in the multicenter and prospective SHARP study as a new successful treatment approach in 2009. In the simultaneous strategy, patients underwent CABG immediately after CAE or CAS. [12]. The optimal operative strategy for patients with concomitant carotid and coronary artery stenosis is still controversial and widely debated [1315]. The CAS was introduced as a minimally invasive endovascular alternative to CEA, particularly for high-risk patients with an advanced age of > 80 years [16]. Recently published results from the CREST and ACT1 trial have demonstrated similar long-term outcomes for CAS and CEA surgical approaches with respect to the risk of stroke, myocardial infarction, or death [17, 18]. Apart from the surgical strategies employed for the treatment of coronary and carotid stenosis, many studies have shown a significantly greater postoperative risk of stroke and death in patients with an advanced age than in younger patients [13, 19, 20].
The purpose of this study was to investigate whether age has an effect on outcome in patients who undergo simultaneous coronary artery bypass grafting and carotid endarterectomy.

Methods

Patients and study design

In our center, 186 consecutive elective adult patients had a simultaneous CABG and CAE between January 2005 and December 2017. Patients were divided into two groups: younger than and equal to or older than 70 years. The younger group consisted of 89 patients (63.2 ± 4.8 years) and the elderly group of 97 patients (76.1 ± 3.9 years).
In framework of our standard clinical concept, the extracranial cardotid arteries of each patient is examined first using ultrasound, before a CABG operation. If there is a suspicious of carotid artery stenosis, the patient is additionally examined using computed tomography (CT) or magnetic resonance imaging (MRI). After the confirmation of the indication, the patient will prepared for the simoultanous surgical procedure.
The study population included all patients who underwent elective isolated CABG surgery with CAE. Exclusion criteria for this study were combined procedures or off-pump surgery.
All clinical data were collected prospectively on admission and during the in-hospital stay. We retrieved the data retrospectively by reviewing the hospital records. Primary end points were intraoperative and 30-day mortality, as well as long-term survival. Secondary end points were postoperative course (ventilation time, drainage loss, acute renal failure, neurologic complications). Patients were followed up directly in our out-patient clinic, seen by their general practitioner, or contacted directly by telephone or e mail.
Detailed information about the used surgical technique and statistical analysis in this work are available in the Additional file 1.

Results

Demographics and preoperative characteristics

Relevant demographics and preoperative data of patients are given in Table 1. The patients in the elderly group were significantly older than the patients in the younger group (76.1 ± 3.9 vs. 63.2 ± 4.8, p < 0.001). The logistic EuroScore II (4.4% vs. 2.5%; p < 0.001) and STS score (1.6 vs. 0.7; p < 0.001) were significantly higher in the elderly group. The median creatinine value in the elderly group was significantly higher (1.1 vs. 0.9 mg/dl, p < 0.003). There was no difference between the two groups concerning the preoperative risk factors or clinical presentation.
Table 1
Baseline and preoperative characteristics
Variable
Total number N = 186
Age < 70 years N = 89
Age ≥ 70 years N = 97
p-value
Age (years)
70.0 ± 7.8
63.2 ± 4.8
76.1 ± 3.9
< 0.001
70.0 (64.8;76.3)
64.0 (60.0;67.0)
76.0 (73.0;79.0)
Female gender, (%)
40 (21.5)
21 (23.6)
19 (19.6)
0.506
BMI (kg/m2)
27.7 ± 4.8
27.6 ± 4.4
27.8 ± 5.2
0.833
Logistic EuroScore ll (%)
3.4 (2.3;6.2)
2.5 (1.8;4.5)
4.4 (3.1;7.2)
< 0.001
STS-Score (%)
1.0 (0.6;1.8)
0.7 (0.5;0.9)
1.6 (1.0;2.5)
< 0.001
COPD, n (%)
23 (12.4)
12 (13.5)
11 (11.3)
0.657
Creatinine (mg/dl)
1.07 (0.84;1.21)
0.9 (0.8;1.1)
1.1 (0.9;1.3)
0.003
Dialysis, n (%)
3 (1.6)
1 (1.1)
2 (2.1)
0.622
Diabetes mellitus, (%)
61 (32.8)
31 (34.8)
30 (30.9)
0.571
IDDM, n (%)
25 (13.4)
13 (14.6)
12 (12.4)
0.655
Hyperlipidemia, (%)
137 (73.7)
67 (75.3)
70 (72.2)
0.630
Arterial hypertension, (%)
159 (85.5)
73 (82.0)
86 (88.7)
0.199
Pulmonary hypertension
12 (6.5)
4 (4.5)
8 (8.2)
0.298
PAVK, n (%)
54 (29.0)
28 (31.5)
26 (26.8)
0.485
Carotid stenosis, right side, (%)
 1 = < 50%
57 (30.6)
26 (29.2)
31 (32.0)
0.523
 2 = 50–69%
13 (7.0)
8 (9.0)
5 (5.2)
 3 = 70–89%
63 (33.9)
27 (30.3)
36 (37.1)
 4= > 90%
53 (28.5)
28 (31.5)
25 (25.8)
Carotid stenosis, left side, n (%)
 1 = < 50%
55 (29.6)
25 (28.1)
30 (30.9)
0.993
 2 = 50–69%
16 (8.6)
8 (9.0)
8 (8.2)
 3 = 70–89%
71 (38.2)
34 (38.2)
37 (38.1)
 4 = > 90%
44 (23.7)
22 (24.7)
22 (22.7)
Symptomatic carotid stenosis, n (%)
48 (25.8)
26 (29.2)
22 (22.7)
0.309
Neurological diseases, n (%)
10 (5.4)
7 (7.9)
3 (3.1)
0.198
Cerebral ischemia, n (%)
 TIA
6 (3.2)
4 (4.5)
2 (2.1)
 PRIND
1 (0.5)
0
1 (1.0)
 Apoplexy
30 (16.1)
18 (20.2)
12 (12.4)
Classification, n (%)
 One-vessel disease
7 (3.8)
5 (5.6)
2 (2.1)
 Two-vessel disease
21 (11.3)
8 (9.0)
13 (13.4)
 Three-vessel disease
158 (84.9)
76 (85.4)
82 (84.5)
Angina pectoris, n (%)
124 (66.7)
60 (67.4)
64 (66.0)
0.836
EF (%)
55.0 ± 16.3
56.8 ± 16.3
53.4 ± 16.2
0.264
Rhythm
 Atrial fibrillation, n (%)
25 (13.4)
3 (3.4)
22 (22.7)
 Pacemaker, n (%)
4 (2.2)
1 (1.1)
3 (3.1)
Acute myocardial infarction, n (%)
41 (22.2)
16 (18.0)
25 (26.0)
0.187
Previous heart surgery
9 (4.8)
6 (6.7)
3 (3.1)
0.315
Previous PCI, n (%)
35 (18.8)
18 (20.2%)
17 (17.5%)
0.638
CPR, n (%)
1 (0.5)
1 (1.1)
0
0.478
BMI body mass index, COPD chronic obstructive pulmonary disease, CPR cardiopulmonary resuscitation, EF ejection fraction, IDDM insulin-dependent diabetes mellitus, PAVK peripheral artery occlusive disease, PCI percutaneous coronary intervention, PRIND persistent reversible ischemic neurologic deficit, STS score society of thoracic surgeons score, TIA transient ischemia attack
The significant p-value are marked in bold

Intraoperative data

The procedure time for the CEA in the younger group was significantly longer than that in the elderly group, but without clinical relevance (88 min vs. 80 min; p = 0.018). The intraoperatively administered number of red blood cell (RBC) units was higher in the elderly group, although this difference was not statistically significant (3.5 ± 2.3 vs. 2.3 ± 1.9, p = 0.052). Otherwise no significant differences were noted between the two groups with regard to intraoperative data. The number of distal anastomoses, the extracorporeal circulation time and the cross-clamp time were similar in both groups (Table 2).
Table 2
Operation and intraoperative findings
Variable
Total N = 186
Age < 70 years N = 89
Age ≥ 70 years N = 97
p-value
Urgency status of operations
 Elective, (%)
158 (84.9)
76 (85.4)
82 (84.5)
 Urgent, (%)
24 (12.9)
11 (12.4)
13 (13.4)
 Emergency, (%)
4 (2.2)
2 (2.2)
2 (2.1)
Operated carotid side
 1 = right side, (%)
91 (48.9)
48 (53.9)
43 (44.3)
0.191
 2 = left side, (%)
95 (51.1)
41 (46.1)
54 (55.7)
Carotid operation technique
 1 = Clamping, (%)
113 (60.8)
54 (60.7)
59 (60.8)
0.983
 2 = Shunt, (%)
73 (39.2)
35 (39.3)
38 (39.2)
Procedure time for CEA (min)
85.0 (61.5;180.0)
88.0 (70.0;215.0)
80.0 (60.0;101.0)
0.018
Procedure time for CABG (min)
271.0 (230.0;317)
271.0 (234.0;313.5)
272.0 (225.0;319.8)
0.844
Number of distal anastomoses
3.0 (3.0;4.0)
3.0 (3.0;4.0)
3.0 (2.0;4.0)
0.303
Bypass time (min)
126.4 ± 42.1
124.0 ± 41.0
128.6 ± 43.2
0.469
Aortic cross clamp time (min)
74.7 ± 35.0
70.1 ± 35.8
78.3 ± 34.1
0.157
RBC, units
3.0 ± 2.2
2.3 ± 1.9
3.5 ± 2.3
0.052
FFP, units
0.0 (0.0;0.0)
0.0 (0.0;0.0)
0.0 (0.0;0.0)
0.477
Platelet, units
0.0 (0.0;1.0)
0.0 (0.0;1.0)
0.0 (0.0;1.0)
0.431
CABG coronary artery bypass grafting, CEA carotid endarterectomy, FFP fresh frozen plasma, RBC red blood concentrate
The significant p-value are marked in bold

Postoperative data

The incidence of postoperative temporary dialysis was significantly higher in the elderly group (14.4% vs. 3.4%; p = 0.009, Table 3). The 48-h drainage loss was significantly higher in the elderly group (800 [440; 1700] ml, vs. 600 [300; 1075] ml, p = 0.035). However, the postoperatively administered number of RBC units was similar in both groups. Pulmonary infections occurred more frequently in the elderly group (12.4% vs. 4.5%; p = 0.052). Consequently, the incidence rate of re-intubation (18.6% vs. 7.9%; p = 0.033) and tracheotomy (16.5% vs. 2.2%; p = 0.001) were significantly higher in the elderly group. Other factors determining ICU stay, such as postoperative neurological complications (6.2% vs. 3.4%; p = 0.501) or sternal wound infection (7.2% vs. 3.4%; p = 0.335), were comparable.
Table 3
Postoperative incidents and outcomes
Variable
Total N = 186
Age < 70 years N = 89
Age ≥ 70 years N = 97
p-value
Rhythm
 Atrial fibrillation (%)
18 (9.7)
5 (5.6)
13 (13.5)
 Pacemaker (%)
8 (4.3)
4 (4.5)
4 (4.2)
ICU (days)
2.0 (1.0;4.0)
1.0 (1.0;4.0)
2.0 (1.0;6.0)
0.122
Ventilation (hours)
17.0 (12.0;40.0)
17.0 (12.0;24.5)
17.5 (12.3;60.0)
0.290
Temporary dialysis, (%)
17 (9.1)
3 (3.4)
14 (14.4)
0.009
RBC, units
2.0 (2.0;4.0)
2.0 (2.0;4.0)
2.0 (2.0;4.0)
0.407
FFP, units
0.0 (0.0;4.0)
0.0 (0.0;2.0)
0.0 (0.0;4.0)
0.326
Platelet, units
0.0 (0.0;0.0)
0.0 (0.0;0.5)
0.0 (0.0;0.3)
0.990
Drainage blood (ml)
700.0 (400.0;1500.0)
600.0 (300.0;1075.0)
800.0 (440.0;1700.0)
0.035
Pulmonary infections, (%)
16 (8.6)
4 (4.5)
12 (12.4)
0.052
Perioperative myocardial infarction, (%)
8 (4.3)
1 (1.1)
7 (7.2)
0.066
Reexploration for bleeding, (%)
11 (5.9)
7 (7.9)
4 (4.1)
0.280
Sternal wound infection, (%)
9 (4.8)
4 (4.5)
5 (5.2)
1.000
Re-intubation, (%)
25 (13.4)
7 (7.9)
18 (18.6)
0.033
Tracheotomy, (%)
18 (9.7)
2 (2.2)
16 (16.5)
0.001
Stroke (CT proved), (%)
9 (4.8)
3 (3.4)
6 (6.2)
0.501
30d-MACCE, (%)
17 (9.4)
5 (5.8)
12 (12.8)
0.111
30-day mortality (%)
9 (5.1%)
2 (2.3%)
7 (7.6%)
0.171
CT computed tomography, ECMO extracorporeal membrane oxygenation, FFP fresh frozen plasma, ICU intensive care unit, IMC intermediate care station, MACCE major adverse cardiac and cerebrovascular events RBC: red blood concentrate
The significant p-value are marked in bold
The 30-day mortality in the elderly group in Table 3 was slightly higher than in the younger group, but not significantly (7.6% vs. 2.3%, p = 0.171). There was no difference between the two groups concerning 30-day major adverse cardiac and cerebrovascular events (MACCE, 12.8% vs. 5.8%, p = 0.111).
Long-term survival was satisfactory in both groups. Nevertheless, one-year (78% vs. 92%), 3-year (75% vs. 87%) and 5-year (63% vs. 85%) survival rates were significantly lower in the elderly group (p = 0.003) (Fig. 1). The Logistic regression analysis identified preoperative COPD and arrhythmia (atrial fibrillation or pacer) as significant risk factors for 30-day-mortality with odds ratios of 5.7 (CI 1.2–26.9) and 7.1 (CI 1.6–31.7), respectively (Table 4).
Table 4
Predictors for 30-day mortality
Variable
Odds Ratio
95% Confidence interval
p-value
COPD
5.684
1.202–26.878
0.028
Arrhythmia (AF or pacer)
7.147
1.612–31.692
0.010

Discussion

In our single-center study, the effect of age on outcome in 186 patients who underwent simultaneous CABG and CAE was investigated. The patients were divided into two groups of younger than 70 and equal to or older than 70 years. The two groups were compared concerning their demographic, pre-, intra-, and postoperative data. There were no significant differences between the two patient groups concerning their pre- and intraoperative data, or their 30-day mortality and short-term major adverse cardiac and cerebrovascular events.
The optimal surgical approach (simultaneous or staged) for the treatment of patients with concomitant severe carotid and coronary stenosis is still the subject of controversial debate. In addition, with increasing age of the population, it is clinically relevant to clarify whether the postoperative risk of stroke and death in patients of an advanced age is higher than in younger patients.
In a larger analysis, Brott et al. . [17] evaluated the outcomes of 2502 patients at 117 centers within the framework of the CREST study every 6 months for up to 10 years. These patients (69.0 ± 8.9 years) had been randomly assigned to stenting or endarterectomy. Brott et al. did not find a significant difference between patient groups with respect to the risk of periprocedural stroke, myocardial infarction, or death and subsequent ipsilateral stroke. The rate of postprocedural ipsilateral stroke also did not differ between groups.
Feldman and colleagues [13] compared trends and outcomes of three approaches to carotid revascularization in the CABG population when performed during the same hospitalization: 1) combined CABG and CEA, 2) staged CEA and CABG, and 3) staged CAS and CABG. A total of 22,501 patients were included in this study. 15% of these patients were equal to/older than 80 years. A higher number of patients (15,402, 68.4%) underwent combined CABG and CAE, followed by staged CABG and CEA (6297, 28.0%), and staged CABG and CAS (802, 3.6%). The risk of stroke was lower in patients from the first and second groups compared with patients from the third group. The adjusted risk of death or stroke was similar in the 3 groups.
Sharma et al. [14] performed a meta-analysis of 12 studies comparing early outcomes of synchronous and staged approach of CABG and CAE. In these studies, a total of 17,469 and 7552 patients were included for the combined and staged approaches, respectively. The investigated endpoints were early mortality, major stroke, and major postoperative morbidity, myocardial infarction and stroke, and combined early mortality or stroke. Early events were compared using pooled estimates of risk ratios (random effects model) utilizing the inverse-variance method. The pooled analysis revealed no difference in early mortality (p = 0.27), postoperative stroke (p = 0.07), combined early mortality or stroke (p = 0.11), and combined endpoint of myocardial infarction or stroke (p = 0.2) between the two approaches.
The results of Brott et al., Feldman and Colleagues and Sharma et al. concerning the risk of periprocedural stroke, myocardial infarction are in line with our presented results.
In a retrospective single-center study, Wang et al. [21] reviewed the clinical data of octogenarians and younger patients to explore the association between age and outcome. Wang et al. reported that octogenarians are increasingly referred for elective cardiac surgery with more combined procedures (valve plus CABG or multiple valves) compared with younger patients (p < 0.001). The 30-day, 1-year and 5-year mortalities for octogenarians were 3.7, 10.8 and 29.0%, respectively. The octogenarians had higher adjusted 30-day (p = 0.018) and 1-year mortality (p < 0.001) compared to the younger group. Octogenarians had longer post-operative stays in ICU and hospital, and higher rates of ICU readmission (p < 0.001). After multi-variable adjustment, an age of older than or equal to 80 years was an independent predictor of death at 30 days and 1 year. In contrast to Wang et al., we did not find any differences between our patient groups concerning the post-operative stays in ICU and hospital, and also 30-day mortalities. But the one-year, 3-year and 5-year survival rates were significantly lower in our elderly group.
Alexander et al. [22] examined the predictors of in-hospital mortality in octogenarians, compared with the predictors in younger patients, who underwent cardiac surgery at 22 centers. Alexander et al. reported that octogenarians undergoing cardiac surgery had fewer comorbid illnesses, but higher disease severity and surgical urgency than younger patients. Octogenarians had significantly higher in-hospital mortality after cardiac surgery than younger patients: isolated CABG (8.1% vs. 3.0%), CABG and aortic valve replacement (10.1% vs. 7.9%), CABG and mitral valve replacement (19.6% vs. 12.2%). In addition, octogenarians had twice the incidence of postoperative stroke and renal failure. The preoperative clinical factors predicting CABG mortality in the very elderly were quite similar to those for younger patients. Of note, elderly patients without significant comorbidity had lower in-hospital mortality rates after CABG (4.2%) compared to those after combined CABG with aortic valve replacement (7%) and after combined CABG with mitral valve replacement (18.2%). Our elderly patient group showed a significant higher temporary dialysis, Drainage blood, re-intubation, and tracheotomy. Our data confirm the results of Alexader et al. regarding higher disease severity and surgical urgency in their elderly patient group.
Ohira et al. [23] investigated the relationship between age and both short- and long-term outcomes after off-pump CABG. They divided the patients into 3 groups: aged < 65 years (young), 65–74 years (early elderly), and > 75 years (late elderly), and retrospectively analyzed their clinical data. In-hospital mortality rates were similar among the groups. In logistic regression analysis, the risk factor for predicting major complications was the New York Heart Association (NYHA) classification (p = 0.001), and not age and preoperative myocardial infarction. The 10-year estimated rates free from cardiac death and cardiac events were not significantly different among the groups. In multivariate Cox models, independent risk factors predicting cardiac events were the NYHA classification, and ejection fraction, but not age. Ohira et al. reported that neither short- nor long-term cardiac outcomes after off-pump CABG are influenced by age at surgery.

Conclusions

In our study, CABG in combination with synchronous endarterectomy can be performed with satisfactory results, especially in the specific high-risk subgroup of patients of advanced age. The multivariate logistic regression analysis of clinically relevant parameters indicated that there is no significant effect of age on outcome in patients who undergo simultaneous CABG and CAE with single anesthesia. Based on our current results, we would recommend this surgical approach. However, further prospective, multi-center, and randomized clinical studies with a larger group of patients are required to investigate in detail the effect of age on patient outcome.

Limitations

The presented data were retrospective from a single center, and the sample size remains small.

Acknowledgements

We acknowledge financial support by Land Schleswig-Holstein within the funding programme Open Access Publikationsfonds.
The Institutional Ethics Committee approved the study protocol and authorized its conduct and follow-up (D456/18). Individual patient consent for inclusion in the study was obtained.
Not applicable.

Competing interests

The authors declare that they have no competing interest.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Tardif J-C. Coronary artery disease in 2010. Eur Heart J Suppl. 2010;12:C2–C10.CrossRef Tardif J-C. Coronary artery disease in 2010. Eur Heart J Suppl. 2010;12:C2–C10.CrossRef
2.
Zurück zum Zitat Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442.CrossRef Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442.CrossRef
3.
Zurück zum Zitat Feigin VL, Norrving B, Mensah GA. Global Burden of Stroke. Circ Res. 2017;120:439–48.CrossRef Feigin VL, Norrving B, Mensah GA. Global Burden of Stroke. Circ Res. 2017;120:439–48.CrossRef
4.
Zurück zum Zitat Flaherty ML, Kissela B, Khoury JC, Alwell K, Moomaw CJ, Woo D, et al. Carotid artery stenosis as a cause of stroke. Neuroepidemiology. 2013;40:36–41.CrossRef Flaherty ML, Kissela B, Khoury JC, Alwell K, Moomaw CJ, Woo D, et al. Carotid artery stenosis as a cause of stroke. Neuroepidemiology. 2013;40:36–41.CrossRef
5.
Zurück zum Zitat Faggioli GL, Curl GR, Ricotta JJ. The role of carotid screening before coronary artery bypass. J Vasc Surg. 1990;12:724–9 discussion 729-31.CrossRef Faggioli GL, Curl GR, Ricotta JJ. The role of carotid screening before coronary artery bypass. J Vasc Surg. 1990;12:724–9 discussion 729-31.CrossRef
6.
Zurück zum Zitat Steinvil A, Sadeh B, Bornstein NM, Havakuk O, Greenberg S, Arbel Y, et al. Impact of carotid atherosclerosis on the risk of adverse cardiac events in patients with and without coronary disease. Stroke. 2014;45:2311–7.CrossRef Steinvil A, Sadeh B, Bornstein NM, Havakuk O, Greenberg S, Arbel Y, et al. Impact of carotid atherosclerosis on the risk of adverse cardiac events in patients with and without coronary disease. Stroke. 2014;45:2311–7.CrossRef
7.
Zurück zum Zitat Dzierwa K, Pieniazek P, Musialek P, Piatek J, Tekieli L, Podolec P, et al. Treatment strategies in severe symptomatic carotid and coronary artery disease. Med Sci Monit. 2011;17:RA191–7.CrossRef Dzierwa K, Pieniazek P, Musialek P, Piatek J, Tekieli L, Podolec P, et al. Treatment strategies in severe symptomatic carotid and coronary artery disease. Med Sci Monit. 2011;17:RA191–7.CrossRef
8.
Zurück zum Zitat Santos A, Washington C, Rahbar R, Benckart D, Muluk S. Results of staged carotid endarterectomy and coronary artery bypass graft in patients with severe carotid and coronary disease. Ann Vasc Surg. 2012;26:102–6.CrossRef Santos A, Washington C, Rahbar R, Benckart D, Muluk S. Results of staged carotid endarterectomy and coronary artery bypass graft in patients with severe carotid and coronary disease. Ann Vasc Surg. 2012;26:102–6.CrossRef
9.
Zurück zum Zitat Naylor AR, Mehta Z, Rothwell PM. A systematic review and meta-analysis of 30-day outcomes following staged carotid artery stenting and coronary bypass. Eur J Vasc Endovasc Surg. 2009;37:379–87.CrossRef Naylor AR, Mehta Z, Rothwell PM. A systematic review and meta-analysis of 30-day outcomes following staged carotid artery stenting and coronary bypass. Eur J Vasc Endovasc Surg. 2009;37:379–87.CrossRef
10.
Zurück zum Zitat Bernhard VM, Johnson WD, Peterson JJ. Carotid artery stenosis. Association with surgery for coronary artery disease. Arch Surg. 1972;105:837–40.CrossRef Bernhard VM, Johnson WD, Peterson JJ. Carotid artery stenosis. Association with surgery for coronary artery disease. Arch Surg. 1972;105:837–40.CrossRef
11.
Zurück zum Zitat Okies JE, MacManus Q, Starr A. Myocardial revascularization and carotid endarterectomy: a combined approach. Ann Thorac Surg. 1977;23:560–3.CrossRef Okies JE, MacManus Q, Starr A. Myocardial revascularization and carotid endarterectomy: a combined approach. Ann Thorac Surg. 1977;23:560–3.CrossRef
12.
Zurück zum Zitat Versaci F, Reimers B, Del Giudice C, Schofer J, Giacomin A, Sacca S, et al. Simultaneous hybrid revascularization by carotid stenting and coronary artery bypass grafting: the SHARP study. JACC Cardiovasc Interv. 2009;2:393–401.CrossRef Versaci F, Reimers B, Del Giudice C, Schofer J, Giacomin A, Sacca S, et al. Simultaneous hybrid revascularization by carotid stenting and coronary artery bypass grafting: the SHARP study. JACC Cardiovasc Interv. 2009;2:393–401.CrossRef
13.
Zurück zum Zitat Feldman DN, Swaminathan RV, Geleris JD, Okin P, Minutello RM, Krishnan U, et al. Comparison of trends and in-hospital outcomes of concurrent carotid artery revascularization and coronary artery bypass graft surgery: the United States experience 2004 to 2012. JACC Cardiovasc Interv. 2017;10:286–98.CrossRef Feldman DN, Swaminathan RV, Geleris JD, Okin P, Minutello RM, Krishnan U, et al. Comparison of trends and in-hospital outcomes of concurrent carotid artery revascularization and coronary artery bypass graft surgery: the United States experience 2004 to 2012. JACC Cardiovasc Interv. 2017;10:286–98.CrossRef
14.
Zurück zum Zitat Sharma V, Deo SV, Park SJ, Joyce LD. Meta-analysis of staged versus combined carotid endarterectomy and coronary artery bypass grafting. Ann Thorac Surg. 2014;97:102–9.CrossRef Sharma V, Deo SV, Park SJ, Joyce LD. Meta-analysis of staged versus combined carotid endarterectomy and coronary artery bypass grafting. Ann Thorac Surg. 2014;97:102–9.CrossRef
15.
Zurück zum Zitat Mackey WC, Khabbaz K, Bojar R, O'Donnell TF. Simultaneous carotid endarterectomy and coronary bypass: perioperative risk and long-term survival. J Vasc Surg. 1996;24:58–64.CrossRef Mackey WC, Khabbaz K, Bojar R, O'Donnell TF. Simultaneous carotid endarterectomy and coronary bypass: perioperative risk and long-term survival. J Vasc Surg. 1996;24:58–64.CrossRef
16.
Zurück zum Zitat Yadav JS, Wholey MH, Kuntz RE, Fayad P, Katzen BT, Mishkel GJ, et al. Protected carotid-artery stenting versus endarterectomy in high-risk patients. N Engl J Med. 2004;351:1493–501.CrossRef Yadav JS, Wholey MH, Kuntz RE, Fayad P, Katzen BT, Mishkel GJ, et al. Protected carotid-artery stenting versus endarterectomy in high-risk patients. N Engl J Med. 2004;351:1493–501.CrossRef
17.
Zurück zum Zitat Brott TG, Howard G, Roubin GS, Meschia JF, Mackey A, Brooks W, et al. Long-term results of stenting versus endarterectomy for carotid-artery stenosis. N Engl J Med. 2016;374:1021–31.CrossRef Brott TG, Howard G, Roubin GS, Meschia JF, Mackey A, Brooks W, et al. Long-term results of stenting versus endarterectomy for carotid-artery stenosis. N Engl J Med. 2016;374:1021–31.CrossRef
18.
Zurück zum Zitat Rosenfield K, Matsumura JS, Chaturvedi S, Riles T, Ansel GM, Metzger DC, et al. Randomized trial of stent versus surgery for asymptomatic carotid stenosis. N Engl J Med. 2016;374:1011–20.CrossRef Rosenfield K, Matsumura JS, Chaturvedi S, Riles T, Ansel GM, Metzger DC, et al. Randomized trial of stent versus surgery for asymptomatic carotid stenosis. N Engl J Med. 2016;374:1011–20.CrossRef
19.
Zurück zum Zitat Lucas ML, Bonamigo TP, Weber ELS, Lucchese FA. Combined carotid endarterectomy and coronary artery bypass grafting. Analysis of the results. Arq Bras Cardiol. 2005;85:412–20.CrossRef Lucas ML, Bonamigo TP, Weber ELS, Lucchese FA. Combined carotid endarterectomy and coronary artery bypass grafting. Analysis of the results. Arq Bras Cardiol. 2005;85:412–20.CrossRef
20.
Zurück zum Zitat Merie C, Kober L, Olsen PS, Andersson C, Jensen JS, Torp-Pedersen C. Risk of stroke after coronary artery bypass grafting: effect of age and comorbidities. Stroke. 2012;43:38–43.CrossRef Merie C, Kober L, Olsen PS, Andersson C, Jensen JS, Torp-Pedersen C. Risk of stroke after coronary artery bypass grafting: effect of age and comorbidities. Stroke. 2012;43:38–43.CrossRef
21.
Zurück zum Zitat Wang W, Bagshaw SM, Norris CM, Zibdawi R, Zibdawi M, MacArthur R. Association between older age and outcome after cardiac surgery: a population-based cohort study. J Cardiothorac Surg. 2014;9:177.CrossRef Wang W, Bagshaw SM, Norris CM, Zibdawi R, Zibdawi M, MacArthur R. Association between older age and outcome after cardiac surgery: a population-based cohort study. J Cardiothorac Surg. 2014;9:177.CrossRef
22.
Zurück zum Zitat Alexander KP, Anstrom KJ, Muhlbaier LH, Grosswald RD, Smith PK, Jones RH, Peterson ED. Outcomes of cardiac surgery in patients or = 80 years: results from the National Cardiovascular Network. J Am Coll Cardiol. 2000;35:731–8.CrossRef Alexander KP, Anstrom KJ, Muhlbaier LH, Grosswald RD, Smith PK, Jones RH, Peterson ED. Outcomes of cardiac surgery in patients or = 80 years: results from the National Cardiovascular Network. J Am Coll Cardiol. 2000;35:731–8.CrossRef
23.
Zurück zum Zitat Ohira S, Doi K, Numata S, Yamazaki S, Yamamoto T, Fukuishi M, et al. Does age at operation influence the short- and long-term outcomes of off-pump coronary artery bypass grafting? Circ J. 2015;79:2177–85.CrossRef Ohira S, Doi K, Numata S, Yamazaki S, Yamamoto T, Fukuishi M, et al. Does age at operation influence the short- and long-term outcomes of off-pump coronary artery bypass grafting? Circ J. 2015;79:2177–85.CrossRef
Metadaten
Titel
Impact of patients´ age on short and long-term outcome after carotid endarterectomy and simultaneous coronary artery bypass grafting
verfasst von
Mona Salehi Ravesh
Rene Rusch
Christine Friedrich
Christoph Teickner
Rouven Berndt
Assad Haneya
Jochen Cremer
Thomas Pühler
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Journal of Cardiothoracic Surgery / Ausgabe 1/2019
Elektronische ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-019-0928-5

Weitere Artikel der Ausgabe 1/2019

Journal of Cardiothoracic Surgery 1/2019 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.