Skip to main content
main-content

30.04.2016 | Original Article | Ausgabe 4/2016

International Journal of Diabetes in Developing Countries 4/2016

Impact of selected pre-processing techniques on prediction of risk of early readmission for diabetic patients in India

Zeitschrift:
International Journal of Diabetes in Developing Countries > Ausgabe 4/2016
Autoren:
Reena Duggal, Suren Shukla, Sarika Chandra, Balvinder Shukla, Sunil Kumar Khatri

Abstract

Diabetes is associated with increased risk of hospital readmission. Predicting risk of readmission of diabetic patients can facilitate implementing appropriate plans to prevent these readmissions. But the real-world medical data is noisy, inconsistent, and incomplete. So before building the prediction model, it is essential to pre-process the data efficiently and make it appropriate for predictive modelling. The objective of this study is to assess the impact of selected pre-processing techniques on the prediction of risk of 30-day readmission among patients with diabetes in India. De-identified electronic medical records data was used from a reputed hospital in the National Capital Region in India and included diabetes patients ≥18 years old discharged from hospital in 2012 to 2015 (n = 9381). This paper focused on data pre-processing steps to improve readmission prediction outcomes. The impact of different pre-processing choices including feature selection, missing value imputation and data balancing on the classifier performance of logistic regression, Naïve Bayes, and decision tree was assessed on various performance metrics such as area under curve, precision, recall, and accuracy. This comprehensive experimental study, first time done from Indian healthcare perspective, offered empirical evidence that most proposed models with pre-processing techniques significantly outperform the baseline methods (without any pre-processing) with respect to selected evaluation criteria. Area under curve (AUC) was highly increased with the use of oversampling technique as data is skewed on class label Readmission. Recall was the biggest gainer with range increasing from 0.02–0.23 to 0.78–0.85, and there was also an increase in AUC from range 0.56–0.68 to 0.83–0.86 by using pre-processing approach. Data pre-processing has a significant effect on hospital readmission predictive accuracy for patients with diabetes, with certain schemes proving inferior to competitive approaches. In addition, it is found that the impact of pre-processing schemes varies by technique, signifying formulation of different best practices to aid better results of a specific technique.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Jetzt e.Med zum Sonderpreis bestellen!

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2016

International Journal of Diabetes in Developing Countries 4/2016 Zur Ausgabe
  1. Sie können e.Med Innere Medizin 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

  2. Sie können e.Med Allgemeinmedizin 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.