Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 1/2017

06.02.2017 | Original Article

Impaired Tissue Oxygenation in Metabolic Syndrome Requires Increased Microvascular Perfusion Heterogeneity

verfasst von: P. Mason McClatchey, Fan Wu, I. Mark Olfert, Christopher G. Ellis, Daniel Goldman, Jane E. B. Reusch, Jefferson C. Frisbee

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Metabolic syndrome (MS) in obese Zucker rats (OZR) is associated with impaired skeletal muscle performance and blunted hyperemia. Studies suggest that reduced O2 diffusion capacity is required to explain compromised muscle performance and that heterogeneous microvascular perfusion distribution is critical. We modeled tissue oxygenation during muscle contraction in control and OZR skeletal muscle using physiologically realistic relationships. Using a network model of Krogh cylinders with increasing perfusion asymmetry and increased plasma skimming, we predict increased perfusion heterogeneity and decreased muscle oxygenation in OZR, with partial recovery following therapy. Notably, increasing O2 delivery had less impact on VO2 than equivalent decreases in O2 delivery, providing a mechanism for previous empirical work associating perfusion heterogeneity and impaired O2 extraction. We demonstrate that increased skeletal muscle perfusion asymmetry is a defining characteristic of MS and must be considered to effectively model and understand blood-tissue O2 exchange in this model of human disease.
Literatur
1.
Zurück zum Zitat Boudreau, D. M., Malone, D. C., Raebel, M. A., Fishman, P. A., Nichols, G. A., Feldstein, A. C., Boscoe, A. N., Ben-Joseph, R. H., Magid, D. J., & Okamoto, L. J. (2009). Health care utilization and costs by metabolic syndrome risk factors. Metabolic Syndrome and Related Disorders, 7(4), 305–314.CrossRefPubMed Boudreau, D. M., Malone, D. C., Raebel, M. A., Fishman, P. A., Nichols, G. A., Feldstein, A. C., Boscoe, A. N., Ben-Joseph, R. H., Magid, D. J., & Okamoto, L. J. (2009). Health care utilization and costs by metabolic syndrome risk factors. Metabolic Syndrome and Related Disorders, 7(4), 305–314.CrossRefPubMed
2.
Zurück zum Zitat Shamseddeen, H., Getty, J. Z., Hamdallah, I. N., & Ali, M. R. (2011). Epidemiology and economic impact of obesity and type 2 diabetes. The Surgical Clinics of North America, 91(6), 1163–1172.CrossRefPubMed Shamseddeen, H., Getty, J. Z., Hamdallah, I. N., & Ali, M. R. (2011). Epidemiology and economic impact of obesity and type 2 diabetes. The Surgical Clinics of North America, 91(6), 1163–1172.CrossRefPubMed
3.
Zurück zum Zitat Aleixandre de Artiñano, A., & Miguel Castro, M. (2009). Experimental rat models to study the metabolic syndrome. The British Journal of Nutrition, 102(9), 1246–1253.CrossRefPubMed Aleixandre de Artiñano, A., & Miguel Castro, M. (2009). Experimental rat models to study the metabolic syndrome. The British Journal of Nutrition, 102(9), 1246–1253.CrossRefPubMed
4.
Zurück zum Zitat Fellmann, L., Nascimento, A. R., Tibiriça, E., & Bousquet, P. (2013). Murine models for pharmacological studies of the metabolic syndrome. Pharmacology & Therapeutics, 137(3), 331–340.CrossRef Fellmann, L., Nascimento, A. R., Tibiriça, E., & Bousquet, P. (2013). Murine models for pharmacological studies of the metabolic syndrome. Pharmacology & Therapeutics, 137(3), 331–340.CrossRef
5.
Zurück zum Zitat Tofovic, S. P., & Jackson, E. K. (2003). Rat models of the metabolic syndrome. Methods in Molecular Medicine, 86, 29–46.PubMed Tofovic, S. P., & Jackson, E. K. (2003). Rat models of the metabolic syndrome. Methods in Molecular Medicine, 86, 29–46.PubMed
6.
Zurück zum Zitat Myers, J., Prakash, M., Froelicher, V., Do, D., Partington, S., & Atwood, J. E. (2002). Exercise capacity and mortality among men referred for exercise testing. The New England Journal of Medicine, 346(11), 793–801.CrossRefPubMed Myers, J., Prakash, M., Froelicher, V., Do, D., Partington, S., & Atwood, J. E. (2002). Exercise capacity and mortality among men referred for exercise testing. The New England Journal of Medicine, 346(11), 793–801.CrossRefPubMed
7.
Zurück zum Zitat Church, T. S., Cheng, Y. J., Earnest, C. P., Barlow, C. E., Gibbons, L. W., Priest, E. L., & Blair, S. N. (2004). Exercise capacity and body composition as predictors of mortality among men with diabetes. Diabetes Care, 27(1), 83–88.CrossRefPubMed Church, T. S., Cheng, Y. J., Earnest, C. P., Barlow, C. E., Gibbons, L. W., Priest, E. L., & Blair, S. N. (2004). Exercise capacity and body composition as predictors of mortality among men with diabetes. Diabetes Care, 27(1), 83–88.CrossRefPubMed
8.
Zurück zum Zitat Fang, Z. Y., Sharman, J., Prins, J. B., & Marwick, T. H. (2005). Determinants of exercise capacity in patients with type 2 diabetes. Diabetes Care, 28(7), 1643–1648.CrossRefPubMed Fang, Z. Y., Sharman, J., Prins, J. B., & Marwick, T. H. (2005). Determinants of exercise capacity in patients with type 2 diabetes. Diabetes Care, 28(7), 1643–1648.CrossRefPubMed
9.
Zurück zum Zitat Regensteiner, J. G., Sippel, J., McFarling, E. T., Wolfel, E. E., & Hiatt, W. R. (1995). Effects of non-insulin-dependent diabetes on oxygen consumption during treadmill exercise. Medicine and Science in Sports and Exercise, 27(6), 875–881.CrossRefPubMed Regensteiner, J. G., Sippel, J., McFarling, E. T., Wolfel, E. E., & Hiatt, W. R. (1995). Effects of non-insulin-dependent diabetes on oxygen consumption during treadmill exercise. Medicine and Science in Sports and Exercise, 27(6), 875–881.CrossRefPubMed
10.
Zurück zum Zitat Wong, C. Y., O’Moore-Sullivan, T., Fang, Z. Y., Haluska, B., Leano, R., & Marwick, T. H. (2005). Myocardial and vascular dysfunction and exercise capacity in the metabolic syndrome. American Journal of Cardiology, 96(12), 1686–1691.CrossRefPubMed Wong, C. Y., O’Moore-Sullivan, T., Fang, Z. Y., Haluska, B., Leano, R., & Marwick, T. H. (2005). Myocardial and vascular dysfunction and exercise capacity in the metabolic syndrome. American Journal of Cardiology, 96(12), 1686–1691.CrossRefPubMed
11.
Zurück zum Zitat Frisbee, J. C., Goodwill, A. G., Butcher, J. T., & Olfert, I. M. (2011). Divergence between arterial perfusion and fatigue resistance in skeletal muscle in the metabolic syndrome. Experimental Physiology, 96(3), 369–383.CrossRefPubMed Frisbee, J. C., Goodwill, A. G., Butcher, J. T., & Olfert, I. M. (2011). Divergence between arterial perfusion and fatigue resistance in skeletal muscle in the metabolic syndrome. Experimental Physiology, 96(3), 369–383.CrossRefPubMed
12.
Zurück zum Zitat Lalande, S., Gusso, S., Hofman, P. L., & Baldi, J. C. (2008). Reduced leg blood flow during submaximal exercise in type 2 diabetes. Medicine and Science in Sports and Exercise, 40(4), 612–617.CrossRefPubMed Lalande, S., Gusso, S., Hofman, P. L., & Baldi, J. C. (2008). Reduced leg blood flow during submaximal exercise in type 2 diabetes. Medicine and Science in Sports and Exercise, 40(4), 612–617.CrossRefPubMed
13.
Zurück zum Zitat Baldi, J. C., Aoina, J. L., Oxenham, H. C., Bagg, W., & Doughty, R. N. (2003). Reduced exercise arteriovenous O2 difference in type 2 diabetes. Journal of Applied Physiology, 94(3), 1033–1038.CrossRefPubMed Baldi, J. C., Aoina, J. L., Oxenham, H. C., Bagg, W., & Doughty, R. N. (2003). Reduced exercise arteriovenous O2 difference in type 2 diabetes. Journal of Applied Physiology, 94(3), 1033–1038.CrossRefPubMed
14.
Zurück zum Zitat Boushel, R., Gnaiger, E., Calbet, J. A., Gonzalez-Alonso, J., Wright-Paradis, C., Sondergaard, H., Ara, I., Helge, J. W., & Saltin, B. (2011). Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans. Mitochondrion, 11(2), 303–307.CrossRefPubMed Boushel, R., Gnaiger, E., Calbet, J. A., Gonzalez-Alonso, J., Wright-Paradis, C., Sondergaard, H., Ara, I., Helge, J. W., & Saltin, B. (2011). Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans. Mitochondrion, 11(2), 303–307.CrossRefPubMed
15.
Zurück zum Zitat Frisbee, J. C., & Delp, M. D. (2006). Vascular function in the metabolic syndrome and the effects on skeletal muscle perfusion: lessons from the obese Zucker rat. Essays in Biochemistry, 42, 145–161.CrossRefPubMed Frisbee, J. C., & Delp, M. D. (2006). Vascular function in the metabolic syndrome and the effects on skeletal muscle perfusion: lessons from the obese Zucker rat. Essays in Biochemistry, 42, 145–161.CrossRefPubMed
16.
Zurück zum Zitat Frisbee, J. C., Butcher, J. T., Frisbee, S. J., Olfert, I. M., Chantler, P. D., Tabone, L. E., d’Audiffret, A. C., Shrader, C. D., Goodwill, A. G., Stapleton, P. A., Brooks, S. D., Brock, R. W., & Lombard, J. H. (2016). Increased peripheral vascular disease risk progressively constrains perfusion adaptability in the skeletal muscle microcirculation. American Journal of Physiology. Heart and Circulatory Physiology, 310(4), H488–H504.CrossRefPubMed Frisbee, J. C., Butcher, J. T., Frisbee, S. J., Olfert, I. M., Chantler, P. D., Tabone, L. E., d’Audiffret, A. C., Shrader, C. D., Goodwill, A. G., Stapleton, P. A., Brooks, S. D., Brock, R. W., & Lombard, J. H. (2016). Increased peripheral vascular disease risk progressively constrains perfusion adaptability in the skeletal muscle microcirculation. American Journal of Physiology. Heart and Circulatory Physiology, 310(4), H488–H504.CrossRefPubMed
17.
Zurück zum Zitat Frisbee, J. C., Wu, F., Goodwill, A. G., Butcher, J. T., & Beard, D. A. (2011). Spatial heterogeneity in skeletal muscle microvascular blood flow distribution is increased in the metabolic syndrome. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 301(4), R975–R986.CrossRefPubMedPubMedCentral Frisbee, J. C., Wu, F., Goodwill, A. G., Butcher, J. T., & Beard, D. A. (2011). Spatial heterogeneity in skeletal muscle microvascular blood flow distribution is increased in the metabolic syndrome. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 301(4), R975–R986.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Frisbee JC, Goodwill, AG, Frisbee, SJ, Butcher, JT, Wu F, Chantler, PD. Microvascular perfusion heterogeneity contributes to peripheral vascular disease in metabolic syndrome. J Physiol, 2014, 1–11 Frisbee JC, Goodwill, AG, Frisbee, SJ, Butcher, JT, Wu F, Chantler, PD. Microvascular perfusion heterogeneity contributes to peripheral vascular disease in metabolic syndrome. J Physiol, 2014, 1–11
19.
Zurück zum Zitat Wu, F., Beard, D. A., & Frisbee, J. C. (2011). Computational analyses of intravascular tracer washout reveal altered capillary-level flow distributions in obese Zucker rats. The Journal of Physiology, 589(Pt 18), 4527–4543.CrossRefPubMedPubMedCentral Wu, F., Beard, D. A., & Frisbee, J. C. (2011). Computational analyses of intravascular tracer washout reveal altered capillary-level flow distributions in obese Zucker rats. The Journal of Physiology, 589(Pt 18), 4527–4543.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Krogh, A. (1918). The rate of diffusion of gases through animal tissue with some remarks on the coefficient of invasion. The Journal of Physiology, 52, 391–409.CrossRef Krogh, A. (1918). The rate of diffusion of gases through animal tissue with some remarks on the coefficient of invasion. The Journal of Physiology, 52, 391–409.CrossRef
21.
Zurück zum Zitat McGuire, B. J., & Secomb, T. W. (2004). Theoretical predictions of maximal oxygen consumption in hypoxia: effects of transport limitations. Respiratory Physiology & Neurobiology, 143(1), 87–97.CrossRef McGuire, B. J., & Secomb, T. W. (2004). Theoretical predictions of maximal oxygen consumption in hypoxia: effects of transport limitations. Respiratory Physiology & Neurobiology, 143(1), 87–97.CrossRef
22.
Zurück zum Zitat Pries, A. R., Ley, K., Claassen, M., & Gaehtgens, P. (1989). Red cell distribution at microvascular bifurcations. Microvascular Research, 38(1), 81–101.CrossRefPubMed Pries, A. R., Ley, K., Claassen, M., & Gaehtgens, P. (1989). Red cell distribution at microvascular bifurcations. Microvascular Research, 38(1), 81–101.CrossRefPubMed
23.
Zurück zum Zitat Murray, C. D. (1926). The physiological principle of minimum work I. The vascular system and the cost of blood volume. Proceedings of the National Academy of Sciences, 12(3), 207–214.CrossRef Murray, C. D. (1926). The physiological principle of minimum work I. The vascular system and the cost of blood volume. Proceedings of the National Academy of Sciences, 12(3), 207–214.CrossRef
24.
25.
Zurück zum Zitat McClatchey, P.M., Schafer, M., Hunter, K.S., & Reusch, J.E. The endothelial glycocalyx promotes homogeneous blood flow distribution within the microvasculature. Am J Physiol Heart Circ Physiol, 2016, ajpheart-00132. McClatchey, P.M., Schafer, M., Hunter, K.S., & Reusch, J.E. The endothelial glycocalyx promotes homogeneous blood flow distribution within the microvasculature. Am J Physiol Heart Circ Physiol, 2016, ajpheart-00132.
27.
Zurück zum Zitat Kiwull-Schone, H., Heidrun, B. G., & Kiwull, P. (1987). The effects of CO2 and fixed acid on the O2-Hb affinity of rabbit and cat blood. Pflügers Archiv, 408(5), 451–457.CrossRefPubMed Kiwull-Schone, H., Heidrun, B. G., & Kiwull, P. (1987). The effects of CO2 and fixed acid on the O2-Hb affinity of rabbit and cat blood. Pflügers Archiv, 408(5), 451–457.CrossRefPubMed
28.
Zurück zum Zitat Beard, D. A., Schenkman, K. A., & Feigl, E. O. (2003). Myocardial oxygenation in isolated hearts predicted by an anatomically realistic microvascular transport model. American Journal of Physiology. Heart and Circulatory Physiology, 285(5), H1826–H1836.CrossRefPubMed Beard, D. A., Schenkman, K. A., & Feigl, E. O. (2003). Myocardial oxygenation in isolated hearts predicted by an anatomically realistic microvascular transport model. American Journal of Physiology. Heart and Circulatory Physiology, 285(5), H1826–H1836.CrossRefPubMed
29.
Zurück zum Zitat Goldman, D., and Popel, A.S. Computational modelling of oxygen transport from complex capillary networks, 1999, In Oxygen transport to tissue XXI, Springer US, pp. 555–563 Goldman, D., and Popel, A.S. Computational modelling of oxygen transport from complex capillary networks, 1999, In Oxygen transport to tissue XXI, Springer US, pp. 555–563
30.
Zurück zum Zitat Skalak, T. C., & Schmid-Schonbein, G. W. (1986). The microvasculature in skeletal muscle. IV. A model of the capillary network. Microvascular Research, 32(3), 333–347.CrossRefPubMed Skalak, T. C., & Schmid-Schonbein, G. W. (1986). The microvasculature in skeletal muscle. IV. A model of the capillary network. Microvascular Research, 32(3), 333–347.CrossRefPubMed
31.
Zurück zum Zitat Honig, C. R., Feldstein, M. L., & Frierson, J. L. (1977). Capillary lengths, anastomoses, and estimated capillary transit times in skeletal muscle. American Journal of Physiology—Heart and Circulatory Physiology, 233(1), H122–H129. Honig, C. R., Feldstein, M. L., & Frierson, J. L. (1977). Capillary lengths, anastomoses, and estimated capillary transit times in skeletal muscle. American Journal of Physiology—Heart and Circulatory Physiology, 233(1), H122–H129.
32.
Zurück zum Zitat Prieto, D., Contreras, C., & Sánchez, A. (2014). Endothelial dysfunction, obesity and insulin resistance. Current Vascular Pharmacology, 12(3), 412–426.CrossRefPubMed Prieto, D., Contreras, C., & Sánchez, A. (2014). Endothelial dysfunction, obesity and insulin resistance. Current Vascular Pharmacology, 12(3), 412–426.CrossRefPubMed
33.
Zurück zum Zitat Frisbee, J. C. (2001). Impaired dilation of skeletal muscle microvessels to reduced oxygen tension in diabetic obese Zucker rats. American Journal of Physiology. Heart and Circulatory Physiology, 281(4), H1568–H1574.PubMed Frisbee, J. C. (2001). Impaired dilation of skeletal muscle microvessels to reduced oxygen tension in diabetic obese Zucker rats. American Journal of Physiology. Heart and Circulatory Physiology, 281(4), H1568–H1574.PubMed
34.
Zurück zum Zitat Frisbee, J. C., Goodwill, A. G., Frisbee, S. J., Butcher, J. T., Brock, R. W., Olfert, I. M., DeVallance, E. R., & Chantler, P. D. (2014). Distinct temporal phases of microvascular rarefaction in skeletal muscle of obese Zucker rats. American Journal of Physiology. Heart and Circulatory Physiology, 307(12), H1714–H1728.CrossRefPubMedPubMedCentral Frisbee, J. C., Goodwill, A. G., Frisbee, S. J., Butcher, J. T., Brock, R. W., Olfert, I. M., DeVallance, E. R., & Chantler, P. D. (2014). Distinct temporal phases of microvascular rarefaction in skeletal muscle of obese Zucker rats. American Journal of Physiology. Heart and Circulatory Physiology, 307(12), H1714–H1728.CrossRefPubMedPubMedCentral
Metadaten
Titel
Impaired Tissue Oxygenation in Metabolic Syndrome Requires Increased Microvascular Perfusion Heterogeneity
verfasst von
P. Mason McClatchey
Fan Wu
I. Mark Olfert
Christopher G. Ellis
Daniel Goldman
Jane E. B. Reusch
Jefferson C. Frisbee
Publikationsdatum
06.02.2017
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 1/2017
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-017-9732-6

Weitere Artikel der Ausgabe 1/2017

Journal of Cardiovascular Translational Research 1/2017 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.