Skip to main content
Erschienen in: HNO 11/2020

05.06.2020 | Hörimplantate | OP-Techniken

Implantation eines neuen, aktiven, knochenverankerten elektronischen Hörimplantats mit verkleinerter Geometrie

verfasst von: Prof. Dr. med. S. K. Plontke, G. Götze, C. Wenzel, T. Rahne, R. Mlynski

Erschienen in: HNO | Ausgabe 11/2020

Einloggen, um Zugang zu erhalten

Zusammenfassung

Im vorliegenden Beitrag wird die Technik der Implantation eines neuen aktiven, transkutanen, knochenverankerten Hörimplantats beschrieben. Das Hörimplantat basiert technisch auf einem System, das bereits seit 2012 zuverlässig im Einsatz ist. Die Geometrie des neuen Systems ist an die Erfahrungen mit vorangegangenen Implantaten angepasst. Die Op. ist standardisiert und sicher durchführbar. Aufgrund der optimierten Bauform mit verbesserter Passfähigkeit im Schläfenbein erscheint eine spezielle, detaillierte präoperative Planung der Implantation nur noch in Fällen mit besonderen anatomischen Gegebenheiten, wie z. B. bei Kindern, bei Fehlbildungen, bei schlechter Pneumatisation des Schläfenbeins und nach Anlage einer offenen Mastoidhöhle notwendig.
Literatur
1.
Zurück zum Zitat Anonymous MED-EL Medical Electronics. Bonebridge (BCI 602) Surgical Guide V 2.0 (2019). In: MED-EL, Innsbruck, Austria Anonymous MED-EL Medical Electronics. Bonebridge (BCI 602) Surgical Guide V 2.0 (2019). In: MED-EL, Innsbruck, Austria
2.
Zurück zum Zitat Arnold H, Schulze M, Wolpert S et al (2018) Positioning a novel transcutaneous bone conduction hearing implant: a systematic anatomical and radiological study to standardize the retrosigmoid approach, correlating navigation-guided, and landmark-based surgery. Otol Neurotol 39:458–466CrossRef Arnold H, Schulze M, Wolpert S et al (2018) Positioning a novel transcutaneous bone conduction hearing implant: a systematic anatomical and radiological study to standardize the retrosigmoid approach, correlating navigation-guided, and landmark-based surgery. Otol Neurotol 39:458–466CrossRef
3.
Zurück zum Zitat Baumgartner WD, Hamzavi JS, Boheim K et al (2016) A new transcutaneous bone conduction hearing implant: short-term safety and efficacy in children. Otol Neurotol 37:713–720CrossRef Baumgartner WD, Hamzavi JS, Boheim K et al (2016) A new transcutaneous bone conduction hearing implant: short-term safety and efficacy in children. Otol Neurotol 37:713–720CrossRef
4.
Zurück zum Zitat Beutner D, Delb W, Frenzel H et al (2018) Guideline “Implantable hearing aids”-short version : German S2k guideline of the Working Group of German-speaking Audiologists, Neurootologists and Otologists (ADANO), of the German Society of Oto-Rhino-Laryngology, Head and Neck Surgery (DGHNO) in collaboration with the German Society of Audiology (DGA), the German Society of Phoniatrics and Pediatric Audiology (DGPP), and patient representatives. HNO 66:654–659CrossRef Beutner D, Delb W, Frenzel H et al (2018) Guideline “Implantable hearing aids”-short version : German S2k guideline of the Working Group of German-speaking Audiologists, Neurootologists and Otologists (ADANO), of the German Society of Oto-Rhino-Laryngology, Head and Neck Surgery (DGHNO) in collaboration with the German Society of Audiology (DGA), the German Society of Phoniatrics and Pediatric Audiology (DGPP), and patient representatives. HNO 66:654–659CrossRef
5.
6.
Zurück zum Zitat Canis M, Ihler F, Blum J et al (2013) CT-assisted navigation for retrosigmoidal implantation of the Bonebridge. HNO 61(12):1038–1044CrossRef Canis M, Ihler F, Blum J et al (2013) CT-assisted navigation for retrosigmoidal implantation of the Bonebridge. HNO 61(12):1038–1044CrossRef
7.
Zurück zum Zitat Cho B, Matsumoto N, Mori M et al (2014) Image-guided placement of the bonebridge without surgical navigation equipment. Int J Comput Assist Radiol Surg 9:845–855CrossRef Cho B, Matsumoto N, Mori M et al (2014) Image-guided placement of the bonebridge without surgical navigation equipment. Int J Comput Assist Radiol Surg 9:845–855CrossRef
8.
Zurück zum Zitat Edmiston RC, Aggarwal R, Green KM (2015) Bone conduction implants—a rapidly developing field. J Laryngol Otol 129:936–940CrossRef Edmiston RC, Aggarwal R, Green KM (2015) Bone conduction implants—a rapidly developing field. J Laryngol Otol 129:936–940CrossRef
9.
Zurück zum Zitat Frenzel H, Hanke F, Beltrame M et al (2010) Application of the vibrant soundbridge in bilateral congenital atresia in toddlers. Acta Otolaryngol 130:966–970CrossRef Frenzel H, Hanke F, Beltrame M et al (2010) Application of the vibrant soundbridge in bilateral congenital atresia in toddlers. Acta Otolaryngol 130:966–970CrossRef
10.
Zurück zum Zitat Fussey JM, Harterink E, Gill J et al (2018) Clinical outcomes following Cochlear BIA300 bone anchored hearing aid implantation in children. Int J Pediatr Otorhinolaryngol 111:89–92CrossRef Fussey JM, Harterink E, Gill J et al (2018) Clinical outcomes following Cochlear BIA300 bone anchored hearing aid implantation in children. Int J Pediatr Otorhinolaryngol 111:89–92CrossRef
11.
Zurück zum Zitat Kiringoda R, Lustig LR (2013) A meta-analysis of the complications associated with osseointegrated hearing aids. Otol Neurotol 34:790–794CrossRef Kiringoda R, Lustig LR (2013) A meta-analysis of the complications associated with osseointegrated hearing aids. Otol Neurotol 34:790–794CrossRef
12.
Zurück zum Zitat Kong TH, Park YA, Seo YJ (2017) Image-guided implantation of the Bonebridge with a surgical navigation: a feasibility study. Int J Surg Case Rep 30:112–117CrossRef Kong TH, Park YA, Seo YJ (2017) Image-guided implantation of the Bonebridge with a surgical navigation: a feasibility study. Int J Surg Case Rep 30:112–117CrossRef
13.
Zurück zum Zitat Law EK, Bhatia KS, Tsang WS et al (2016) CT pre-operative planning of a new semi-implantable bone conduction hearing device. Eur Radiol 26:1686–1695CrossRef Law EK, Bhatia KS, Tsang WS et al (2016) CT pre-operative planning of a new semi-implantable bone conduction hearing device. Eur Radiol 26:1686–1695CrossRef
14.
Zurück zum Zitat Magele A, Schoerg P, Stanek B et al (2019) Active transcutaneous bone conduction hearing implants: systematic review and meta-analysis. PLoS ONE 14:e221484CrossRef Magele A, Schoerg P, Stanek B et al (2019) Active transcutaneous bone conduction hearing implants: systematic review and meta-analysis. PLoS ONE 14:e221484CrossRef
15.
Zurück zum Zitat Matsumoto N, Takumi Y, Cho B et al (2015) Template-guided implantation of the Bonebridge: clinical experience. Eur Arch Otorhinolaryngol 272:3669–3675CrossRef Matsumoto N, Takumi Y, Cho B et al (2015) Template-guided implantation of the Bonebridge: clinical experience. Eur Arch Otorhinolaryngol 272:3669–3675CrossRef
16.
Zurück zum Zitat Mertens G, Desmet J, Snik AF et al (2014) An experimental objective method to determine maximum output and dynamic range of an active bone conduction implant: the Bonebridge. Otol Neurotol 35:1126–1130CrossRef Mertens G, Desmet J, Snik AF et al (2014) An experimental objective method to determine maximum output and dynamic range of an active bone conduction implant: the Bonebridge. Otol Neurotol 35:1126–1130CrossRef
17.
Zurück zum Zitat Plontke SK, Radetzki F, Seiwerth I et al (2014) Individual computer-assisted 3D planning for surgical placement of a new bone conduction hearing device. Otol Neurotol 35:1251–1257CrossRef Plontke SK, Radetzki F, Seiwerth I et al (2014) Individual computer-assisted 3D planning for surgical placement of a new bone conduction hearing device. Otol Neurotol 35:1251–1257CrossRef
18.
Zurück zum Zitat Rader T, Stover T, Lenarz T et al (2018) Retrospective analysis of hearing-impaired adult patients treated with an active transcutaneous bone conduction implant. Otol Neurotol 39:874–881CrossRef Rader T, Stover T, Lenarz T et al (2018) Retrospective analysis of hearing-impaired adult patients treated with an active transcutaneous bone conduction implant. Otol Neurotol 39:874–881CrossRef
19.
Zurück zum Zitat Rahne T, Plontke SK (2016) Device-based treatment of mixed hearing loss: an audiological comparison of current hearing systems. HNO 64:91–100CrossRef Rahne T, Plontke SK (2016) Device-based treatment of mixed hearing loss: an audiological comparison of current hearing systems. HNO 64:91–100CrossRef
20.
Zurück zum Zitat Rahne T, Schilde S, Seiwerth I et al (2016) Mastoid dimensions in children and young adults: consequences for the geometry of transcutaneous bone-conduction implants. Otol Neurotol 37:57–61CrossRef Rahne T, Schilde S, Seiwerth I et al (2016) Mastoid dimensions in children and young adults: consequences for the geometry of transcutaneous bone-conduction implants. Otol Neurotol 37:57–61CrossRef
21.
Zurück zum Zitat Reinfeldt S, Hakansson B, Taghavi H et al (2015) New developments in bone-conduction hearing implants: a review. Med Devices 8:79–93CrossRef Reinfeldt S, Hakansson B, Taghavi H et al (2015) New developments in bone-conduction hearing implants: a review. Med Devices 8:79–93CrossRef
22.
Zurück zum Zitat Reinfeldt S, Ostli P, Hakansson B et al (2015) Study of the feasible size of a bone conduction implant transducer in the temporal bone. Otol Neurotol 36:631–637CrossRef Reinfeldt S, Ostli P, Hakansson B et al (2015) Study of the feasible size of a bone conduction implant transducer in the temporal bone. Otol Neurotol 36:631–637CrossRef
23.
Zurück zum Zitat Salcher R, Zimmermann D, Giere T et al (2017) Audiological results in SSD with an active transcutaneous bone conduction implant at a retrosigmoidal position. Otol Neurotol 38:642–647CrossRef Salcher R, Zimmermann D, Giere T et al (2017) Audiological results in SSD with an active transcutaneous bone conduction implant at a retrosigmoidal position. Otol Neurotol 38:642–647CrossRef
24.
Zurück zum Zitat Sardiwalla Y, Jufas N, Morris DP (2018) Long term follow-up demonstrating stability and patient satisfaction of minimally invasive punch technique for percutaneous bone anchored hearing devices. J Otolaryngol Head Neck Surg 47:71CrossRef Sardiwalla Y, Jufas N, Morris DP (2018) Long term follow-up demonstrating stability and patient satisfaction of minimally invasive punch technique for percutaneous bone anchored hearing devices. J Otolaryngol Head Neck Surg 47:71CrossRef
25.
Zurück zum Zitat Schilde S, Plontke SK, Rahne T (2017) A three-dimensional geometric-morphometric study to quantify temporal bone growth and its consequences for the success of implanting bone anchored hearing devices. Otol Neurotol 38:721–729CrossRef Schilde S, Plontke SK, Rahne T (2017) A three-dimensional geometric-morphometric study to quantify temporal bone growth and its consequences for the success of implanting bone anchored hearing devices. Otol Neurotol 38:721–729CrossRef
26.
Zurück zum Zitat Sprinzl GM, Wolf-Magele A (2016) The Bonebridge bone conduction hearing implant: indication criteria, surgery and a systematic review of the literature. Clin Otolaryngol 41:131–143CrossRef Sprinzl GM, Wolf-Magele A (2016) The Bonebridge bone conduction hearing implant: indication criteria, surgery and a systematic review of the literature. Clin Otolaryngol 41:131–143CrossRef
27.
Zurück zum Zitat Takumi Y, Matsumoto N, Cho B et al (2014) A clinical experience of ‘STAMP’ plate-guided Bonebridge implantation. Acta Otolaryngol 134:1042–1046CrossRef Takumi Y, Matsumoto N, Cho B et al (2014) A clinical experience of ‘STAMP’ plate-guided Bonebridge implantation. Acta Otolaryngol 134:1042–1046CrossRef
28.
Zurück zum Zitat Thomas JP, Van Ackeren K, Dazert S et al (2018) Transmastoid implantability of an active transcutaneous bone conduction implant in adults with regard to the underlying pathology: a radiological simulation study. Acta Otolaryngol 138:530–536CrossRef Thomas JP, Van Ackeren K, Dazert S et al (2018) Transmastoid implantability of an active transcutaneous bone conduction implant in adults with regard to the underlying pathology: a radiological simulation study. Acta Otolaryngol 138:530–536CrossRef
29.
Zurück zum Zitat Todt I, Lamecker H, Ramm H et al (2014) A computed tomographic data-based vibrant bonebridge visualization tool. Cochlear Implants Int 15(Suppl 1):S72–S74CrossRef Todt I, Lamecker H, Ramm H et al (2014) A computed tomographic data-based vibrant bonebridge visualization tool. Cochlear Implants Int 15(Suppl 1):S72–S74CrossRef
30.
Zurück zum Zitat Todt I, Lamecker H, Ramm H et al (2014) Development of a computed tomography data-based Vibrant Bonebridge viewer. HNO 62:439–442CrossRef Todt I, Lamecker H, Ramm H et al (2014) Development of a computed tomography data-based Vibrant Bonebridge viewer. HNO 62:439–442CrossRef
31.
Zurück zum Zitat Vickers D, Canas A, Degun A et al (2018) Evaluating the effectiveness and reliability of the vibrant soundbridge and Bonebridge auditory implants in clinical practice: study design and methods for a multi-centre longitudinal observational study. Contemp Clin Trials Commun 10:137–140CrossRef Vickers D, Canas A, Degun A et al (2018) Evaluating the effectiveness and reliability of the vibrant soundbridge and Bonebridge auditory implants in clinical practice: study design and methods for a multi-centre longitudinal observational study. Contemp Clin Trials Commun 10:137–140CrossRef
32.
Zurück zum Zitat Wagner L, Honig E, Frohlich L et al (2019) Optimal retention force of audio processor magnets. Otol Neurotol 40:e482–e487CrossRef Wagner L, Honig E, Frohlich L et al (2019) Optimal retention force of audio processor magnets. Otol Neurotol 40:e482–e487CrossRef
33.
Zurück zum Zitat Wenzel C, Schilde S, Plontke SK et al (2020) Changes in Bone Conduction Implant Geometry Improve the Bone Fit in Healthy Mastoids of Children and Young Adults. Otol Neurotol [in press] Wenzel C, Schilde S, Plontke SK et al (2020) Changes in Bone Conduction Implant Geometry Improve the Bone Fit in Healthy Mastoids of Children and Young Adults. Otol Neurotol [in press]
34.
Zurück zum Zitat Wimmer W, Gerber N, Guignard J et al (2015) Topographic bone thickness maps for Bonebridge implantations. Eur Arch Otorhinolaryngol 272:1651–1658CrossRef Wimmer W, Gerber N, Guignard J et al (2015) Topographic bone thickness maps for Bonebridge implantations. Eur Arch Otorhinolaryngol 272:1651–1658CrossRef
35.
Zurück zum Zitat Zernotti ME, Sarasty AB (2015) Active bone conduction prosthesis: Bonebridge(TM). Int Arch Otorhinolaryngol 19:343–348CrossRef Zernotti ME, Sarasty AB (2015) Active bone conduction prosthesis: Bonebridge(TM). Int Arch Otorhinolaryngol 19:343–348CrossRef
Metadaten
Titel
Implantation eines neuen, aktiven, knochenverankerten elektronischen Hörimplantats mit verkleinerter Geometrie
verfasst von
Prof. Dr. med. S. K. Plontke
G. Götze
C. Wenzel
T. Rahne
R. Mlynski
Publikationsdatum
05.06.2020
Verlag
Springer Medizin
Schlagwort
Hörimplantate
Erschienen in
HNO / Ausgabe 11/2020
Print ISSN: 0017-6192
Elektronische ISSN: 1433-0458
DOI
https://doi.org/10.1007/s00106-020-00876-3

Weitere Artikel der Ausgabe 11/2020

HNO 11/2020 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.