Skip to main content
Erschienen in: Journal of Gastrointestinal Cancer 3/2020

18.11.2019 | Review Article

Importance of the Microbiota Inhibitory Mechanism on the Warburg Effect in Colorectal Cancer Cells

verfasst von: Majid Eslami, Sina Sadrifar, Mohsen Karbalaei, Masoud Keikha, Nazarii M. Kobyliak, Bahman Yousefi

Erschienen in: Journal of Gastrointestinal Cancer | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Methods and Results

Colorectal cancer (CRC) is the third most common cancer in the world. Genetic backgrounds, lifestyle, and diet play an important role in CRC risk. The human gut microbiota has an influence on many features of human physiology such as metabolism, nutrient absorption, and immune function. Imbalance of the microbiota has been implicated in many disorders including CRC. It seems Warburg effect hypothesis corresponds to the early beginning of carcinogenesis because of eventual failure in the synthesis of a pyruvate dehydrogenase complex in cooperation with a supply of glucose in carbohydrates rich diets.
From investigation among previous publications, we attempted to make it clear importance of Warburg effect in tumors; it also discusses the mechanisms of probiotics in inhibiting tumor progression and reverse Warburg effect of probiotics in modulating the microbiota and CRC therapies. These effects were observed in some clinical trials, the application of probiotics as a therapeutic agent against CRC still requirements further investigation.

Conclusion

Fiber is fermented by colonic bacteria into SCFAs such as butyrate/acetate, which may play a vital role in normal homeostasis by promoting turnover of the colonic epithelium. Butyrate enters the nucleus and functions as a histone deacetylase inhibitor (HDACi). Because cancerous colonocytes undertake the Warburg effect pathway, their favored energy source is glucose instead of butyrate. Therefore, accumulation of moderate concentrations of butyrate in cancerous colonocytes and role as HDACi. Probiotics have been shown to play a protective role against cancer development by modulating intestinal microbiota and immune response.
Literatur
1.
2.
Zurück zum Zitat Liemburg-Apers DC, et al. Quantitative glucose and ATP sensing in mammalian cells. Pharm Res. 2011;28(11):2745.PubMedCrossRef Liemburg-Apers DC, et al. Quantitative glucose and ATP sensing in mammalian cells. Pharm Res. 2011;28(11):2745.PubMedCrossRef
3.
Zurück zum Zitat Winkler BS, Arnold MJ, Brassell MA, Sliter DR. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats. Invest Ophthalmol Vis Sci. 1997;38(1):62–71.PubMed Winkler BS, Arnold MJ, Brassell MA, Sliter DR. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats. Invest Ophthalmol Vis Sci. 1997;38(1):62–71.PubMed
4.
Zurück zum Zitat Pike LS, et al. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta (BBA)-Bioenergenet. 2011;1807(6):726–34.CrossRef Pike LS, et al. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta (BBA)-Bioenergenet. 2011;1807(6):726–34.CrossRef
5.
Zurück zum Zitat Nemoto S, Takeda K, Yu ZX, Ferrans VJ, Finkel T. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol. 2000;20(19):7311–8.PubMedPubMedCentralCrossRef Nemoto S, Takeda K, Yu ZX, Ferrans VJ, Finkel T. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol. 2000;20(19):7311–8.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Lam TK, Gutierrez-Juarez R, Pocai A, Rossetti L. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science. 2005;309(5736):943–7.PubMedCrossRef Lam TK, Gutierrez-Juarez R, Pocai A, Rossetti L. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science. 2005;309(5736):943–7.PubMedCrossRef
7.
Zurück zum Zitat Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.PubMedCrossRef Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.PubMedCrossRef
8.
Zurück zum Zitat Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325.PubMedCrossRef Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325.PubMedCrossRef
11.
Zurück zum Zitat Haber RS, Rathan A, Weiser KR, Pritsker A, Itzkowitz SH, Bodian C, et al. GLUT1 glucose transporter expression in colorectal carcinoma: a marker for poor prognosis. Cancer. 1998;83(1):34–40.PubMedCrossRef Haber RS, Rathan A, Weiser KR, Pritsker A, Itzkowitz SH, Bodian C, et al. GLUT1 glucose transporter expression in colorectal carcinoma: a marker for poor prognosis. Cancer. 1998;83(1):34–40.PubMedCrossRef
12.
Zurück zum Zitat Ferreira LM. Cancer metabolism: the Warburg effect today. Exp Mol Pathol. 2010;89(3):372–80.PubMedCrossRef Ferreira LM. Cancer metabolism: the Warburg effect today. Exp Mol Pathol. 2010;89(3):372–80.PubMedCrossRef
13.
Zurück zum Zitat Mathupala SP, Ko YH, Pedersen PL. The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta (BBA)-Bioenergenet. 2010;1797(6-7):1225–30.CrossRef Mathupala SP, Ko YH, Pedersen PL. The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta (BBA)-Bioenergenet. 2010;1797(6-7):1225–30.CrossRef
14.
Zurück zum Zitat Chiche J, Brahimi-Horn MC, Pouysségur J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med. 2010;14(4):771–94.PubMedCrossRef Chiche J, Brahimi-Horn MC, Pouysségur J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med. 2010;14(4):771–94.PubMedCrossRef
15.
Zurück zum Zitat Puglisi MA, Tesori V, Lattanzi W, Gasbarrini GB, Gasbarrini A. Colon cancer stem cells: controversies and perspectives. World J Gastroenterol. 2013;19(20):2997–3006.PubMedPubMedCentralCrossRef Puglisi MA, Tesori V, Lattanzi W, Gasbarrini GB, Gasbarrini A. Colon cancer stem cells: controversies and perspectives. World J Gastroenterol. 2013;19(20):2997–3006.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Kim J-w, Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 2006;66(18):8927–30.PubMedCrossRef Kim J-w, Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 2006;66(18):8927–30.PubMedCrossRef
17.
Zurück zum Zitat Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.PubMedCrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.PubMedCrossRef
19.
Zurück zum Zitat Haas P, et al. Effectiveness of whole grain consumption in the prevention of colorectal cancer: Meta-analysis of cohort studies. Int J Food Sci Nutr. 2009;60(sup6):1–13.PubMedCrossRef Haas P, et al. Effectiveness of whole grain consumption in the prevention of colorectal cancer: Meta-analysis of cohort studies. Int J Food Sci Nutr. 2009;60(sup6):1–13.PubMedCrossRef
20.
Zurück zum Zitat Donovan MG, et al. Mediterranean diet: prevention of colorectal cancer. Front Nutri. 2017;4:59.CrossRef Donovan MG, et al. Mediterranean diet: prevention of colorectal cancer. Front Nutri. 2017;4:59.CrossRef
21.
Zurück zum Zitat Aune D, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. Bmj. 2011;343:d6617.PubMedPubMedCentralCrossRef Aune D, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. Bmj. 2011;343:d6617.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Yousefi B, Eslami M, Ghasemian A, Kokhaei P, Salek Farrokhi A, Darabi N. Probiotics importance and their immunomodulatory properties. J Cell Physiol. 2019;234(6):8008–18.PubMedCrossRef Yousefi B, Eslami M, Ghasemian A, Kokhaei P, Salek Farrokhi A, Darabi N. Probiotics importance and their immunomodulatory properties. J Cell Physiol. 2019;234(6):8008–18.PubMedCrossRef
23.
Zurück zum Zitat Eslami M, et al. Are probiotics useful for therapy of Helicobacter pylori diseases? Comp Immunol Microbiol Infect Dis. 2019;64:99–108.PubMedCrossRef Eslami M, et al. Are probiotics useful for therapy of Helicobacter pylori diseases? Comp Immunol Microbiol Infect Dis. 2019;64:99–108.PubMedCrossRef
24.
Zurück zum Zitat Salek Farrokhi A, et al. Is it true that gut microbiota is considered as panacea in cancer therapy? J Cell Physiol. 2019;234(9):14941–50.CrossRef Salek Farrokhi A, et al. Is it true that gut microbiota is considered as panacea in cancer therapy? J Cell Physiol. 2019;234(9):14941–50.CrossRef
25.
Zurück zum Zitat Kobyliak N, et al. Probiotics for experimental obesity prevention: focus on strain dependence and viability of composition. Endokrynologia Polska. 2017;68(6):659–67.PubMed Kobyliak N, et al. Probiotics for experimental obesity prevention: focus on strain dependence and viability of composition. Endokrynologia Polska. 2017;68(6):659–67.PubMed
26.
Zurück zum Zitat Kobyliak N, Abenavoli L, Falalyeyeva T, Beregova T. Efficacy of probiotics and smectite in rats with non-alcoholic fatty liver disease. Ann Hepatol. 2018;17(1):153–61.PubMedCrossRef Kobyliak N, Abenavoli L, Falalyeyeva T, Beregova T. Efficacy of probiotics and smectite in rats with non-alcoholic fatty liver disease. Ann Hepatol. 2018;17(1):153–61.PubMedCrossRef
27.
Zurück zum Zitat Kobyliak N, Falalyeyeva T, Bodnar P, Beregova T. Probiotics supplemented with omega-3 fatty acids are more effective for hepatic steatosis reduction in an animal model of obesity. Probiot Antimicrobial Proteins. 2017;9(2):123–30.CrossRef Kobyliak N, Falalyeyeva T, Bodnar P, Beregova T. Probiotics supplemented with omega-3 fatty acids are more effective for hepatic steatosis reduction in an animal model of obesity. Probiot Antimicrobial Proteins. 2017;9(2):123–30.CrossRef
28.
Zurück zum Zitat Eslami M, et al. Importance of probiotics in the prevention and treatment of colorectal cancer. J Cell Physiol. 2019. Eslami M, et al. Importance of probiotics in the prevention and treatment of colorectal cancer. J Cell Physiol. 2019.
29.
Zurück zum Zitat Yousefi, B., et al. Probiotics can really cure an autoimmune disease? Gene Reports, 2019: p. 100364. Yousefi, B., et al. Probiotics can really cure an autoimmune disease? Gene Reports, 2019: p. 100364.
30.
Zurück zum Zitat Ghasemian A, et al. Probiotics and their increasing importance in human health and infection control. Rev Med Microbiol. 2018;29(4):153–8.CrossRef Ghasemian A, et al. Probiotics and their increasing importance in human health and infection control. Rev Med Microbiol. 2018;29(4):153–8.CrossRef
31.
32.
Zurück zum Zitat Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver R, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91(10):3527–61.PubMed Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver R, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91(10):3527–61.PubMed
33.
Zurück zum Zitat Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer. 2004;4(7):551–61.PubMedCrossRef Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer. 2004;4(7):551–61.PubMedCrossRef
34.
Zurück zum Zitat Bergers G, Benjamin LE. Angiogenesis: tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401–10.PubMedCrossRef Bergers G, Benjamin LE. Angiogenesis: tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401–10.PubMedCrossRef
35.
36.
Zurück zum Zitat Ouyang W, et al. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity. 2009;30(3):358–71.PubMedPubMedCentralCrossRef Ouyang W, et al. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity. 2009;30(3):358–71.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Milisav I, Poljšak B, Ribarič S. Reduced risk of apoptosis: mechanisms of stress responses. Apoptosis. 2017;22(2):265–83.PubMedCrossRef Milisav I, Poljšak B, Ribarič S. Reduced risk of apoptosis: mechanisms of stress responses. Apoptosis. 2017;22(2):265–83.PubMedCrossRef
39.
Zurück zum Zitat Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13(6):472–82.PubMedCrossRef Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13(6):472–82.PubMedCrossRef
40.
Zurück zum Zitat Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.PubMedCrossRef Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.PubMedCrossRef
41.
Zurück zum Zitat Yuan J, Glazer PM. Mutagenesis induced by the tumor microenvironment. Mutation Res/Fund Mol Mech Mutagen. 1998;400(1-2):439–46.CrossRef Yuan J, Glazer PM. Mutagenesis induced by the tumor microenvironment. Mutation Res/Fund Mol Mech Mutagen. 1998;400(1-2):439–46.CrossRef
42.
Zurück zum Zitat Goda N, Kanai M. Hypoxia-inducible factors and their roles in energy metabolism. Int J Hematol. 2012;95(5):457–63.PubMedCrossRef Goda N, Kanai M. Hypoxia-inducible factors and their roles in energy metabolism. Int J Hematol. 2012;95(5):457–63.PubMedCrossRef
43.
Zurück zum Zitat Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov. 2011;10(9):671–84.PubMedCrossRef Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov. 2011;10(9):671–84.PubMedCrossRef
44.
Zurück zum Zitat Makeeva EN, Makeev AM, Rodziller ID. Metabolism of monocarbon compounds during biological purification of sewage waters. Prikl Biokhim Mikrobiol. 1975;11(3):367–73.PubMed Makeeva EN, Makeev AM, Rodziller ID. Metabolism of monocarbon compounds during biological purification of sewage waters. Prikl Biokhim Mikrobiol. 1975;11(3):367–73.PubMed
45.
Zurück zum Zitat Clare CE, et al. One-carbon metabolism: linking nutritional biochemistry to epigenetic programming of long-term development. Ann Rev Anim Biosci. 2019;7(1):263–87.CrossRef Clare CE, et al. One-carbon metabolism: linking nutritional biochemistry to epigenetic programming of long-term development. Ann Rev Anim Biosci. 2019;7(1):263–87.CrossRef
46.
Zurück zum Zitat Chabner BA, Roberts TG Jr. Chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5(1):65–72.PubMedCrossRef Chabner BA, Roberts TG Jr. Chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5(1):65–72.PubMedCrossRef
47.
Zurück zum Zitat Innocenti F, Ratain M. Update on pharmacogenetics in cancer chemotherapy. Eur J Cancer. 2002;38(5):639–44.PubMedCrossRef Innocenti F, Ratain M. Update on pharmacogenetics in cancer chemotherapy. Eur J Cancer. 2002;38(5):639–44.PubMedCrossRef
48.
Zurück zum Zitat Schirch V, Szebenyi DM. Serine hydroxymethyltransferase revisited. Curr Opin Chem Biol. 2005;9(5):482–7.PubMedCrossRef Schirch V, Szebenyi DM. Serine hydroxymethyltransferase revisited. Curr Opin Chem Biol. 2005;9(5):482–7.PubMedCrossRef
49.
Zurück zum Zitat Yablokov VY, et al. Studies of the rates of thermal decomposition of glycine, alanine, and serine. Russ J Gen Chem. 2009;79(8):1704–6.CrossRef Yablokov VY, et al. Studies of the rates of thermal decomposition of glycine, alanine, and serine. Russ J Gen Chem. 2009;79(8):1704–6.CrossRef
51.
52.
Zurück zum Zitat Newsholme P, Procopio J, Lima MM, Pithon-Curi TC, Curi R. Glutamine and glutamate—their central role in cell metabolism and function. Cell Biochem Funct. 2003;21(1):1–9.PubMedCrossRef Newsholme P, Procopio J, Lima MM, Pithon-Curi TC, Curi R. Glutamine and glutamate—their central role in cell metabolism and function. Cell Biochem Funct. 2003;21(1):1–9.PubMedCrossRef
53.
Zurück zum Zitat Newsholme P, Lima MM, Procopio J, Pithon-Curi TC, Doi SQ, Bazotte RB, et al. Glutamine and glutamate as vital metabolites. Braz J Med Biol Res. 2003;36(2):153–63.PubMedCrossRef Newsholme P, Lima MM, Procopio J, Pithon-Curi TC, Doi SQ, Bazotte RB, et al. Glutamine and glutamate as vital metabolites. Braz J Med Biol Res. 2003;36(2):153–63.PubMedCrossRef
55.
Zurück zum Zitat Innocenti F, Iyer L, Ratain MJ. Pharmacogenomics of chemotherapeutic agents in cancer treatment. In: Licinio W, editor. Pharmacogenomics: the Search for Individualized Therapies. Weinheim: Wiley-VCH Verlag GmbH; 2002. Innocenti F, Iyer L, Ratain MJ. Pharmacogenomics of chemotherapeutic agents in cancer treatment. In: Licinio W, editor. Pharmacogenomics: the Search for Individualized Therapies. Weinheim: Wiley-VCH Verlag GmbH; 2002.
56.
Zurück zum Zitat Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 2013;493(7433):542–6.PubMedCrossRef Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 2013;493(7433):542–6.PubMedCrossRef
57.
Zurück zum Zitat Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.PubMedPubMedCentralCrossRef Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.PubMedCrossRef Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.PubMedCrossRef
62.
Zurück zum Zitat Chang C-H, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013;153(6):1239–51.PubMedPubMedCentralCrossRef Chang C-H, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013;153(6):1239–51.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Brand A, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016;24(5):657–71.PubMedCrossRef Brand A, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016;24(5):657–71.PubMedCrossRef
65.
Zurück zum Zitat Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19(5):698–711.PubMedCrossRef Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19(5):698–711.PubMedCrossRef
66.
Zurück zum Zitat Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res. 2013;69(1):52–60.PubMedCrossRef Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res. 2013;69(1):52–60.PubMedCrossRef
68.
Zurück zum Zitat Gonçalves P, Martel F. Butyrate and colorectal cancer: the role of butyrate transport. Curr Drug Metab. 2013;14(9):994–1008.PubMedCrossRef Gonçalves P, Martel F. Butyrate and colorectal cancer: the role of butyrate transport. Curr Drug Metab. 2013;14(9):994–1008.PubMedCrossRef
69.
Zurück zum Zitat Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov. 2013;12(11):829–46.PubMedCrossRef Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov. 2013;12(11):829–46.PubMedCrossRef
70.
Zurück zum Zitat Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell. 2012;48(4):612–26.PubMedPubMedCentralCrossRef Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell. 2012;48(4):612–26.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Forte A, de Sanctis R, Leonetti G, Manfredelli S, Urbano V, Bezzi M. Dietary chemoprevention of colorectal cancer. Ann Ital Chir. 2008;79(4):261–7.PubMed Forte A, de Sanctis R, Leonetti G, Manfredelli S, Urbano V, Bezzi M. Dietary chemoprevention of colorectal cancer. Ann Ital Chir. 2008;79(4):261–7.PubMed
72.
Zurück zum Zitat Kennedy KM, Dewhirst MW. Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 2010;6(1):127–48.PubMedCrossRef Kennedy KM, Dewhirst MW. Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 2010;6(1):127–48.PubMedCrossRef
73.
Zurück zum Zitat Encarnação J, et al. Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment. Cancer Metastasis Rev. 2015;34(3):465–78.PubMedCrossRef Encarnação J, et al. Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment. Cancer Metastasis Rev. 2015;34(3):465–78.PubMedCrossRef
74.
Zurück zum Zitat Garcia-Ramirez M, Rocchini C, Ausio J. Modulation of chromatin folding by histone acetylation. J Biol Chem. 1995;270(30):17923–8.PubMedCrossRef Garcia-Ramirez M, Rocchini C, Ausio J. Modulation of chromatin folding by histone acetylation. J Biol Chem. 1995;270(30):17923–8.PubMedCrossRef
75.
Zurück zum Zitat Medina V, Edmonds B, Young GP, James R, Appleton S, Zalewski PD. Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res. 1997;57(17):3697–707.PubMed Medina V, Edmonds B, Young GP, James R, Appleton S, Zalewski PD. Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res. 1997;57(17):3697–707.PubMed
76.
Zurück zum Zitat Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6(1):38–51.PubMedCrossRef Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6(1):38–51.PubMedCrossRef
77.
Zurück zum Zitat Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol-Gastrointest Liver Physiol. 2004;287(1):G7–G17.PubMedCrossRef Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol-Gastrointest Liver Physiol. 2004;287(1):G7–G17.PubMedCrossRef
78.
Zurück zum Zitat Wächtershäuser A, Stein J. Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr. 2000;39(4):164–71.PubMedCrossRef Wächtershäuser A, Stein J. Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr. 2000;39(4):164–71.PubMedCrossRef
79.
Zurück zum Zitat Kaisar MM, et al. Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling. Front Immunol. 2017;8:1429.PubMedPubMedCentralCrossRef Kaisar MM, et al. Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling. Front Immunol. 2017;8:1429.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Walker AW, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11(1):7.PubMedPubMedCentralCrossRef Walker AW, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11(1):7.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Greenhalgh K, Meyer KM, Aagaard KM, Wilmes P. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ Microbiol. 2016;18(7):2103–16.PubMedPubMedCentralCrossRef Greenhalgh K, Meyer KM, Aagaard KM, Wilmes P. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ Microbiol. 2016;18(7):2103–16.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Donohoe DR, Curry KP, Bultman SJ. Microbial oncotarget: bacterial-produced butyrate, chemoprevention and Warburg effect. Oncotarget. 2013;4(2):182.PubMedPubMedCentralCrossRef Donohoe DR, Curry KP, Bultman SJ. Microbial oncotarget: bacterial-produced butyrate, chemoprevention and Warburg effect. Oncotarget. 2013;4(2):182.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat den Besten G, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.CrossRef den Besten G, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.CrossRef
84.
Zurück zum Zitat Bultman SJ. Molecular pathways: gene–environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin Cancer Res. 2014;20(4):799–803.PubMedCrossRef Bultman SJ. Molecular pathways: gene–environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin Cancer Res. 2014;20(4):799–803.PubMedCrossRef
85.
Zurück zum Zitat Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. The role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–19.PubMedCrossRef Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. The role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–19.PubMedCrossRef
87.
Zurück zum Zitat Canani RB, Di Costanzo M, Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics. 2012;4(1):4.CrossRef Canani RB, Di Costanzo M, Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics. 2012;4(1):4.CrossRef
88.
Zurück zum Zitat Yagi A, Yu BP. Immune modulation by microbiota sources: effects of aloe vera gel and butyrate. J Gastroenterol Hepatol Res. 2018;7(5):2681–9.CrossRef Yagi A, Yu BP. Immune modulation by microbiota sources: effects of aloe vera gel and butyrate. J Gastroenterol Hepatol Res. 2018;7(5):2681–9.CrossRef
Metadaten
Titel
Importance of the Microbiota Inhibitory Mechanism on the Warburg Effect in Colorectal Cancer Cells
verfasst von
Majid Eslami
Sina Sadrifar
Mohsen Karbalaei
Masoud Keikha
Nazarii M. Kobyliak
Bahman Yousefi
Publikationsdatum
18.11.2019
Verlag
Springer US
Erschienen in
Journal of Gastrointestinal Cancer / Ausgabe 3/2020
Print ISSN: 1941-6628
Elektronische ISSN: 1941-6636
DOI
https://doi.org/10.1007/s12029-019-00329-3

Weitere Artikel der Ausgabe 3/2020

Journal of Gastrointestinal Cancer 3/2020 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.