01.12.2017 | Research article | Ausgabe 1/2017 Open Access

Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization
- Zeitschrift:
- BMC Cancer > Ausgabe 1/2017
Electronic supplementary material
Background
Methods
Data and preprocessing
Problem formulation
The SRMF algorithm
Measurements of prediction performance
Experimental settings
Results
Similar cell lines are sensitive to similar drugs
Simulation study
10-fold cross-validation on GDSC and CCLE drug response datasets
Methods
|
Drug-averaged PCC_S/R
|
Drug-averaged RMSE_S/R
|
Drug-averaged RMSE_S/R
|
Drug-averaged RMSE
|
---|---|---|---|---|
SRMF (drug response + gene expression)
|
0.71 (±0.15)
|
1.73 (±0.46)
|
0.62 (±0.16)
|
1.43 (±0.36)
|
SRMF (drug response)
|
0.69 (±0.16)
|
1.72 (±0.48)
|
0.59 (±0.17)
|
1.45 (±0.39)
|
KBMF
|
0.59 (±0.14)
|
2.00 (±0.51)
|
0.49 (±0.14)
|
1.59 (±0.42)
|
DLN
|
0.55 (±0.14)
|
2.49 (±0.85)
|
0.44 (±0.13)
|
2.08 (±0.83)
|
RF
|
0.50 (±0.15)
|
2.23 (±0.66)
|
0.40 (±0.14)
|
1.69 (±0.50)
|
Methods
|
Drug-averaged PCC_S/R
|
Drug-averaged RMSE_S/R
|
Drug-averaged PCC
|
Drug-averaged RMSE
|
---|---|---|---|---|
SRMF (drug response + gene expression)
|
0.78 (±0.07)
|
0.74 (±0.23)
|
0.71 (±0.09)
|
0.57 (±0.18)
|
SRMF (drug response)
|
0.76 (±0.08)
|
0.75 (±0.23)
|
0.69 (±0.09)
|
0.60 (±0.23)
|
KBMF
|
0.65 (±0.10)
|
0.81 (±0.20)
|
0.71 (±0.10)
|
0.64 (±0.17)
|
DLN
|
0.71 (±0.06)
|
0.99 (±0.43)
|
0.64 (±0.06)
|
0.86 (±0.42)
|
RF
|
0.69 (±0.10)
|
0.79 (±0.26)
|
0.62 (±0.11)
|
0.61 (±0.20)
|