Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 1/2019

02.01.2019 | Research Article

Improved compressed sensing reconstruction for \(^{19}\)F magnetic resonance imaging

verfasst von: Thomas Kampf, Volker J. F. Sturm, Thomas C. Basse-Lüsebrink, André Fischer, Lukas R. Buschle, Felix T. Kurz, Heinz-Peter Schlemmer, Christian H. Ziener, Sabine Heiland, Martin Bendszus, Mirko Pham, Guido Stoll, Peter M. Jakob

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Objective

In magnetic resonance imaging (MRI), compressed sensing (CS) enables the reconstruction of undersampled sparse data sets. Thus, partial acquisition of the underlying k-space data is sufficient, which significantly reduces measurement time. While 19F MRI data sets are spatially sparse, they often suffer from low SNR. This can lead to artifacts in CS reconstructions that reduce the image quality. We present a method to improve the image quality of undersampled, reconstructed CS data sets.

Materials and methods

Two resampling strategies in combination with CS reconstructions are presented. Numerical simulations are performed for low-SNR spatially sparse data obtained from 19F chemical-shift imaging measurements. Different parameter settings for undersampling factors and SNR values are tested and the error is quantified in terms of the root-mean-square error.

Results

An improvement in overall image quality compared to conventional CS reconstructions was observed for both strategies. Specifically spike artifacts in the background were suppressed, while the changes in signal pixels remained small.

Discussion

The proposed methods improve the quality of CS reconstructions. Furthermore, because resampling is applied during post-processing, no additional measurement time is required. This allows easy incorporation into existing protocols and application to already measured data.
Literatur
1.
Zurück zum Zitat Srinivas M, Heerschap A, Ahrens ET, Figdor CG, de Vries IJ (2010) (19)F MRI for quantitative in vivo cell tracking. Trends Biotechnol 28(7):363–370CrossRefPubMedPubMedCentral Srinivas M, Heerschap A, Ahrens ET, Figdor CG, de Vries IJ (2010) (19)F MRI for quantitative in vivo cell tracking. Trends Biotechnol 28(7):363–370CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Yu JX, Hallac RR, Chiguru S, Mason RP (2013) New frontiers and developing applications in 19F NMR. Prog Nucl Magn Reson Spectrosc 70:25–49CrossRefPubMed Yu JX, Hallac RR, Chiguru S, Mason RP (2013) New frontiers and developing applications in 19F NMR. Prog Nucl Magn Reson Spectrosc 70:25–49CrossRefPubMed
3.
Zurück zum Zitat Zhong J, Mills PH, Hitchens TK, Ahrens ET (2013a) Accelerated fluorine-19 MRI cell tracking using compressed sensing. Magn Reson Med 69(6):1683–1690CrossRefPubMed Zhong J, Mills PH, Hitchens TK, Ahrens ET (2013a) Accelerated fluorine-19 MRI cell tracking using compressed sensing. Magn Reson Med 69(6):1683–1690CrossRefPubMed
4.
Zurück zum Zitat Schirra C, Brunner D, Keupp J, Razavi R, Schaeffter T, Kozerke S (2009) Compressed sensing for highly accelerated 3D visualization of 19F-catheters. In: Proceedings of the 17th annual meeting of the ISMRM, Honolulu, Hawaii, USA, 4405 Schirra C, Brunner D, Keupp J, Razavi R, Schaeffter T, Kozerke S (2009) Compressed sensing for highly accelerated 3D visualization of 19F-catheters. In: Proceedings of the 17th annual meeting of the ISMRM, Honolulu, Hawaii, USA, 4405
5.
Zurück zum Zitat Ye YX, Basse-Lusebrink TC, Arias-Loza PA, Kocoski V, Kampf T, Gan Q, Bauer E, Sparka S, Helluy X, Hu K, Hiller KH, Boivin-Jahns V, Jakob PM, Jahns R, Bauer WR (2013) Monitoring of monocyte recruitment in reperfused myocardial infarction with intramyocardial hemorrhage and microvascular obstruction by combined fluorine 19 and proton cardiac magnetic resonance imaging. Circulation 128(17):1878–1888CrossRefPubMed Ye YX, Basse-Lusebrink TC, Arias-Loza PA, Kocoski V, Kampf T, Gan Q, Bauer E, Sparka S, Helluy X, Hu K, Hiller KH, Boivin-Jahns V, Jakob PM, Jahns R, Bauer WR (2013) Monitoring of monocyte recruitment in reperfused myocardial infarction with intramyocardial hemorrhage and microvascular obstruction by combined fluorine 19 and proton cardiac magnetic resonance imaging. Circulation 128(17):1878–1888CrossRefPubMed
6.
Zurück zum Zitat Hertlein T, Sturm V, Jakob P, Ohlsen K (2013) 19F magnetic resonance imaging of perfluorocarbons for the evaluation of response to antibiotic therapy in a Staphylococcus aureus infection model. PLoS ONE 8(5):e64440CrossRefPubMedPubMedCentral Hertlein T, Sturm V, Jakob P, Ohlsen K (2013) 19F magnetic resonance imaging of perfluorocarbons for the evaluation of response to antibiotic therapy in a Staphylococcus aureus infection model. PLoS ONE 8(5):e64440CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Weise G, Basse-Lusebrink TC, Kleinschnitz C, Kampf T, Jakob PM, Stoll G (2011) In vivo imaging of stepwise vessel occlusion in cerebral photothrombosis of mice by 19F MRI. PLoS ONE 6(12):e28143CrossRefPubMedPubMedCentral Weise G, Basse-Lusebrink TC, Kleinschnitz C, Kampf T, Jakob PM, Stoll G (2011) In vivo imaging of stepwise vessel occlusion in cerebral photothrombosis of mice by 19F MRI. PLoS ONE 6(12):e28143CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Goette MJ, Keupp J, Rahmer J, Lanza GM, Wickline SA, Caruthers SD (2015) Balanced UTE-SSFP for 19F MR imaging of complex spectra. Magn Reson Med 74(2):537–543CrossRefPubMed Goette MJ, Keupp J, Rahmer J, Lanza GM, Wickline SA, Caruthers SD (2015) Balanced UTE-SSFP for 19F MR imaging of complex spectra. Magn Reson Med 74(2):537–543CrossRefPubMed
9.
Zurück zum Zitat Schmid F, Holtke C, Parker D, Faber C (2013) Boosting (19) F MRI-SNR efficient detection of paramagnetic contrast agents using ultrafast sequences. Magn Reson Med 69(4):1056–1062CrossRefPubMed Schmid F, Holtke C, Parker D, Faber C (2013) Boosting (19) F MRI-SNR efficient detection of paramagnetic contrast agents using ultrafast sequences. Magn Reson Med 69(4):1056–1062CrossRefPubMed
10.
Zurück zum Zitat van Heeswijk RB, Colotti R, Darcot E, Delacoste J, Pellegrin M, Piccini D, Hernando D (2018) Chemical shift encoding (CSE) for sensitive fluorine-19 MRI of perfluorocarbons with complex spectra. Magn Reson Med 79(5):2724–2730CrossRefPubMed van Heeswijk RB, Colotti R, Darcot E, Delacoste J, Pellegrin M, Piccini D, Hernando D (2018) Chemical shift encoding (CSE) for sensitive fluorine-19 MRI of perfluorocarbons with complex spectra. Magn Reson Med 79(5):2724–2730CrossRefPubMed
11.
Zurück zum Zitat Ludwig KD, Hernando D, Roberts NT, van Heeswijk RB, Fain SB (2018) A chemical shift encoding (CSE) approach for spectral selection in fluorine-19 MRI. Magn Reson Med 79(4):2183–2189CrossRefPubMed Ludwig KD, Hernando D, Roberts NT, van Heeswijk RB, Fain SB (2018) A chemical shift encoding (CSE) approach for spectral selection in fluorine-19 MRI. Magn Reson Med 79(4):2183–2189CrossRefPubMed
12.
Zurück zum Zitat Fischer A, Basse-Lüsebrink T, Kampf T, Ladewig G, Blaimer M, Breuer F, Stoll G, Bauer W, Jakob P (2009) Improved sensitivity in 19F cellular imaging using non-convex compressed sensing. In: Proceedings of the 17th annual meeting of the ISMRM, Honolulu, Hawaii, USA, p 3154 Fischer A, Basse-Lüsebrink T, Kampf T, Ladewig G, Blaimer M, Breuer F, Stoll G, Bauer W, Jakob P (2009) Improved sensitivity in 19F cellular imaging using non-convex compressed sensing. In: Proceedings of the 17th annual meeting of the ISMRM, Honolulu, Hawaii, USA, p 3154
13.
Zurück zum Zitat Kampf T, Fischer A, Basse-Lüsebrink T, Ladewig G, Breuer F, Stoll G, Jakob P, Bauer W (2010) Application of compressed sensing to in vivo 3D 19F CSI. J Magn Reson 207(2):262–273CrossRefPubMed Kampf T, Fischer A, Basse-Lüsebrink T, Ladewig G, Breuer F, Stoll G, Jakob P, Bauer W (2010) Application of compressed sensing to in vivo 3D 19F CSI. J Magn Reson 207(2):262–273CrossRefPubMed
14.
Zurück zum Zitat Basse-Luesebrink T, Fischer A, Kampf T, Sturm V, Ladewig G, Stoll G, Jakob P (2010a) 19f-compressed-sensing-CISS: Elimination of banding artifacts in 19F BSSFP MRI/CSI without sacrificing time. In: Proceedings of the 18th annual meeting of the international society for magnetic resonance in medicine, p 4888 Basse-Luesebrink T, Fischer A, Kampf T, Sturm V, Ladewig G, Stoll G, Jakob P (2010a) 19f-compressed-sensing-CISS: Elimination of banding artifacts in 19F BSSFP MRI/CSI without sacrificing time. In: Proceedings of the 18th annual meeting of the international society for magnetic resonance in medicine, p 4888
15.
Zurück zum Zitat Zhong J, Mills PH, Hitchens TK, Ahrens ET (2013b) Accelerated fluorine-19 MRI cell tracking using compressed sensing. Magn Reson Med 69(6):1683–1690CrossRefPubMed Zhong J, Mills PH, Hitchens TK, Ahrens ET (2013b) Accelerated fluorine-19 MRI cell tracking using compressed sensing. Magn Reson Med 69(6):1683–1690CrossRefPubMed
16.
Zurück zum Zitat Candes EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 52(2):489–509CrossRef Candes EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 52(2):489–509CrossRef
17.
Zurück zum Zitat Donoho DL (2006) Compressed sensing. IEEE Trans Inform Theory 52(4):1289–1306CrossRef Donoho DL (2006) Compressed sensing. IEEE Trans Inform Theory 52(4):1289–1306CrossRef
18.
Zurück zum Zitat Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983–987CrossRefPubMed Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983–987CrossRefPubMed
19.
Zurück zum Zitat Jx Yu, Kodibagkar VD, Cui W, Mason RP (2005) 19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Medi Chem 12:819–848CrossRef Jx Yu, Kodibagkar VD, Cui W, Mason RP (2005) 19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Medi Chem 12:819–848CrossRef
20.
Zurück zum Zitat Chartrand R (2007) Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process Lett 14(10):707–710CrossRef Chartrand R (2007) Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process Lett 14(10):707–710CrossRef
21.
Zurück zum Zitat Luo J, Zhu Y, Magnin IE (2009) Denoising by averaging reconstructed images: application to magnetic resonance images. IEEE Trans Biomed Eng 56(3):666–674CrossRefPubMed Luo J, Zhu Y, Magnin IE (2009) Denoising by averaging reconstructed images: application to magnetic resonance images. IEEE Trans Biomed Eng 56(3):666–674CrossRefPubMed
22.
Zurück zum Zitat Miao J, Li W, Yu X, Wilson DL (2010) Mr rician noise reduction in diffusion tensor imaging using compressed sensing by sampling decomposition. In: Proceedings of the 18th annual meeting of the ISMRM, Stockholm, Sweden, p 4890 Miao J, Li W, Yu X, Wilson DL (2010) Mr rician noise reduction in diffusion tensor imaging using compressed sensing by sampling decomposition. In: Proceedings of the 18th annual meeting of the ISMRM, Stockholm, Sweden, p 4890
23.
Zurück zum Zitat Miao J, Guo W, Narayan S, Wilson DL (2013) A simple application of compressed sensing to further accelerate partially parallel imaging. Magn Reson Imaging 31(1):75–85CrossRefPubMed Miao J, Guo W, Narayan S, Wilson DL (2013) A simple application of compressed sensing to further accelerate partially parallel imaging. Magn Reson Imaging 31(1):75–85CrossRefPubMed
24.
Zurück zum Zitat Richter D, Basse-Lusebrink TC, Kampf T, Fischer A, Israel I, Schneider M, Jakob PM, Samnick S (2014) Compressed sensing for reduction of noise and artefacts in direct PET image reconstruction. Z Med Phys 24(1):16–26CrossRefPubMed Richter D, Basse-Lusebrink TC, Kampf T, Fischer A, Israel I, Schneider M, Jakob PM, Samnick S (2014) Compressed sensing for reduction of noise and artefacts in direct PET image reconstruction. Z Med Phys 24(1):16–26CrossRefPubMed
25.
Zurück zum Zitat Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195CrossRefPubMed Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195CrossRefPubMed
26.
Zurück zum Zitat Cukur T, Lustig M, Nishimura DG (2009) Improving non-contrast-enhanced steady-state free precession angiography with compressed sensing. Magn Reson Med 61(5):1122–1131CrossRefPubMedPubMedCentral Cukur T, Lustig M, Nishimura DG (2009) Improving non-contrast-enhanced steady-state free precession angiography with compressed sensing. Magn Reson Med 61(5):1122–1131CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Fischer A (2012) On the application of compressed sensing to magnetic resonance imaging. Dissertation, Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Fischer A (2012) On the application of compressed sensing to magnetic resonance imaging. Dissertation, Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg,
28.
Zurück zum Zitat Stern AS, Donoho DL, Hoch JC (2007) Nmr data processing using iterative thresholding and minimum l1-norm reconstruction. J Magn Reson 188(2):295–300CrossRefPubMedPubMedCentral Stern AS, Donoho DL, Hoch JC (2007) Nmr data processing using iterative thresholding and minimum l1-norm reconstruction. J Magn Reson 188(2):295–300CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Basse-Luesebrink T, Kampf T, Fischer A, Ladewig G, Stoll G, Jakob P (2010b) Spike artifact reduction in nonconvex compressed sensing. In: Proceedings of the 18th annual meeting of the ISMRM, Stockholm, Sweden, p 4886 Basse-Luesebrink T, Kampf T, Fischer A, Ladewig G, Stoll G, Jakob P (2010b) Spike artifact reduction in nonconvex compressed sensing. In: Proceedings of the 18th annual meeting of the ISMRM, Stockholm, Sweden, p 4886
30.
Zurück zum Zitat Efron B (1982) The jackknife, the bootstrap, and other resampling plans, vol 38. Siam Efron B (1982) The jackknife, the bootstrap, and other resampling plans, vol 38. Siam
31.
Zurück zum Zitat Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci :54–75 Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci :54–75
32.
Zurück zum Zitat Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1996) Numerical recipes in C, vol 2. Cambridge University Press, Cambridge Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1996) Numerical recipes in C, vol 2. Cambridge University Press, Cambridge
Metadaten
Titel
Improved compressed sensing reconstruction for F magnetic resonance imaging
verfasst von
Thomas Kampf
Volker J. F. Sturm
Thomas C. Basse-Lüsebrink
André Fischer
Lukas R. Buschle
Felix T. Kurz
Heinz-Peter Schlemmer
Christian H. Ziener
Sabine Heiland
Martin Bendszus
Mirko Pham
Guido Stoll
Peter M. Jakob
Publikationsdatum
02.01.2019
Verlag
Springer International Publishing
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 1/2019
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-018-0729-1

Weitere Artikel der Ausgabe 1/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 1/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.