Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 6/2017

26.05.2017 | Research Article

Improved \(T_{2}^{*}\) determination in 23Na, 35Cl, and 17O MRI using iterative partial volume correction based on 1H MRI segmentation

verfasst von: Sebastian C. Niesporek, Reiner Umathum, Thomas M. Fiedler, Peter Bachert, Mark E. Ladd, Armin M. Nagel

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

Objective

Functional parameters can be measured with the help of quantitative non-proton MRI where exact relaxometry parameters are needed. Investigation of \(T_{2}^{*}\) is often biased by strong partial volume (PV) effects. Hence, in this work a PV correction algorithm approach was evaluated that uses iteratively adapted \(T_{2}^{*}\)-values and high-resolution structural 1H data to determine transverse relaxation in non-proton MRI more accurately.

Materials and methods

Simulations, a phantom study and in vivo 23Na, 17O and 35Cl MRI measurements of five healthy volunteers were performed to evaluate the algorithm. \(T_{2}^{*}\) values of grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) were obtained. Data were acquired at B 0  = 7T with nominal spatial resolutions of (4–7 mm)3 using a density-adapted radial sequence. The resulting transverse relaxation times were used for quantification of 17O data.

Results

The conducted simulations and phantom study verified the correction performance of the algorithm. For in vivo measured \(T_{2}^{*}\) values, the correction of PV effects leads to an increase in CSF and to a decrease in GM/WM (23Na MRI: long/short GM, WM \(T_{2}^{*}\): 36.4 ± 3.1/5.4 ± 0.2, 23.3 ± 2.6/3.5 ± 0.1 ms; 35Cl MRI: 8.9 ± 1.4/1.0 ± 0.4, 5.9 ± 0.3/0.4 ± 0.1 ms; 17O MRI: 2.5 ± 0.1, 2.8 ± 0.1 ms). Iteratively corrected in vivo \(T_{2}^{*}\) values of the 17O study resulted in improved water content quantification.

Conclusion

The proposed iterative algorithm for PV correction leads to more accurate \(T_{2}^{*}\) values and, thus, can improve accuracy in quantitative non-proton MRI.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Volunteer #1, female, age: 26; volunteer #2, male, age: 23; volunteer #3, female, age: 26; volunteer #4, female, age: 31; volunteer #5, male, age 28.
 
Literatur
1.
Zurück zum Zitat Nagel AM, Bock M, Hartmann C, Gerigk L, Neumann JO, Weber MA, Bendszus M, Radbruch A, Wick W, Schlemmer HP, Semmler W, Biller A (2011) The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol 46(9):539–547CrossRefPubMed Nagel AM, Bock M, Hartmann C, Gerigk L, Neumann JO, Weber MA, Bendszus M, Radbruch A, Wick W, Schlemmer HP, Semmler W, Biller A (2011) The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol 46(9):539–547CrossRefPubMed
2.
Zurück zum Zitat Thulborn KR, Davis D, Adams H, Gindin T, Zhou J (1999) Quantitative tissue sodium concentration mapping of the growth of focal cerebral tumors with sodium magnetic resonance imaging. Magn Reson Med 41(2):351–359CrossRefPubMed Thulborn KR, Davis D, Adams H, Gindin T, Zhou J (1999) Quantitative tissue sodium concentration mapping of the growth of focal cerebral tumors with sodium magnetic resonance imaging. Magn Reson Med 41(2):351–359CrossRefPubMed
3.
Zurück zum Zitat Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA (2003) Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology 227(2):529–537CrossRefPubMed Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA (2003) Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology 227(2):529–537CrossRefPubMed
4.
Zurück zum Zitat Inglese M, Madelin G, Oesingmann N, Babb JS, Wu W, Stoeckel B, Herbert J, Johnson G (2010) Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 tesla. Brain 133(Pt 3):847–857CrossRefPubMedPubMedCentral Inglese M, Madelin G, Oesingmann N, Babb JS, Wu W, Stoeckel B, Herbert J, Johnson G (2010) Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 tesla. Brain 133(Pt 3):847–857CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Zaaraoui W, Konstandin S, Audoin B, Nagel AM, Rico A, Malikova I, Soulier E, Viout P, Confort-Gouny S, Cozzone PJ, Pelletier J, Schad LR, Ranjeva JP (2012) Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study. Radiology 264(3):859–867CrossRefPubMed Zaaraoui W, Konstandin S, Audoin B, Nagel AM, Rico A, Malikova I, Soulier E, Viout P, Confort-Gouny S, Cozzone PJ, Pelletier J, Schad LR, Ranjeva JP (2012) Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study. Radiology 264(3):859–867CrossRefPubMed
6.
Zurück zum Zitat Hilal SK, Maudsley AA, Simon HE, Perman WH, Bonn J, Mawad ME, Silver AJ, Ganti SR, Sane P, Chien IC (1983) In vivo NMR imaging of tissue sodium in the intact cat before and after acute cerebral stroke. AJNR Am J Neuroradiol 4(3):245–249PubMed Hilal SK, Maudsley AA, Simon HE, Perman WH, Bonn J, Mawad ME, Silver AJ, Ganti SR, Sane P, Chien IC (1983) In vivo NMR imaging of tissue sodium in the intact cat before and after acute cerebral stroke. AJNR Am J Neuroradiol 4(3):245–249PubMed
7.
Zurück zum Zitat Hussain MS, Stobbe RW, Bhagat YA, Emery D, Butcher KS, Manawadu D, Rizvi N, Maheshwari P, Scozzafava J, Shuaib A, Beaulieu C (2009) Sodium imaging intensity increases with time after human ischemic stroke. Ann Neurol 66(1):55–62CrossRefPubMed Hussain MS, Stobbe RW, Bhagat YA, Emery D, Butcher KS, Manawadu D, Rizvi N, Maheshwari P, Scozzafava J, Shuaib A, Beaulieu C (2009) Sodium imaging intensity increases with time after human ischemic stroke. Ann Neurol 66(1):55–62CrossRefPubMed
8.
Zurück zum Zitat Reetz K, Romanzetti S, Dogan I, Sass C, Werner CJ, Schiefer J, Schulz JB, Shah NJ (2012) Increased brain tissue sodium concentration in Huntington’s disease—a sodium imaging study at 4 T. Neuroimage 63(1):517–524CrossRefPubMed Reetz K, Romanzetti S, Dogan I, Sass C, Werner CJ, Schiefer J, Schulz JB, Shah NJ (2012) Increased brain tissue sodium concentration in Huntington’s disease—a sodium imaging study at 4 T. Neuroimage 63(1):517–524CrossRefPubMed
9.
Zurück zum Zitat Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82(2):503–568CrossRefPubMed Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82(2):503–568CrossRefPubMed
10.
Zurück zum Zitat Habela CW, Ernest NJ, Swindall AF, Sontheimer H (2009) Chloride accumulation drives volume dynamics underlying cell proliferation and migration. J Neurophysiol 101(2):750–757CrossRefPubMed Habela CW, Ernest NJ, Swindall AF, Sontheimer H (2009) Chloride accumulation drives volume dynamics underlying cell proliferation and migration. J Neurophysiol 101(2):750–757CrossRefPubMed
11.
Zurück zum Zitat Cuddapah VA, Sontheimer H (2011) Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration. Am J Physiol Cell Physiol 301(3):C541–C549CrossRefPubMedPubMedCentral Cuddapah VA, Sontheimer H (2011) Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration. Am J Physiol Cell Physiol 301(3):C541–C549CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, Stil A, Darbon P, Cattaert D, Delpire E, Marsala M, Vinay L (2010) Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med 16(3):302–307CrossRefPubMed Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, Stil A, Darbon P, Cattaert D, Delpire E, Marsala M, Vinay L (2010) Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med 16(3):302–307CrossRefPubMed
13.
Zurück zum Zitat Nagel AM, Lehmann-Horn F, Weber MA, Jurkat-Rott K, Wolf MB, Radbruch A, Umathum R, Semmler W (2014) In vivo 35Cl MR imaging in humans: a feasibility study. Radiology 271(2):585–595CrossRefPubMed Nagel AM, Lehmann-Horn F, Weber MA, Jurkat-Rott K, Wolf MB, Radbruch A, Umathum R, Semmler W (2014) In vivo 35Cl MR imaging in humans: a feasibility study. Radiology 271(2):585–595CrossRefPubMed
14.
Zurück zum Zitat Atkinson IC, Thulborn KR (2010) Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage 51(2):723–733CrossRefPubMed Atkinson IC, Thulborn KR (2010) Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage 51(2):723–733CrossRefPubMed
15.
Zurück zum Zitat Hoffmann SH, Begovatz P, Nagel AM, Umathum R, Schommer K, Bachert P, Bock M (2011) A measurement setup for direct 17O MRI at 7 T. Magn Reson Med 66(4):1109–1115CrossRefPubMed Hoffmann SH, Begovatz P, Nagel AM, Umathum R, Schommer K, Bachert P, Bock M (2011) A measurement setup for direct 17O MRI at 7 T. Magn Reson Med 66(4):1109–1115CrossRefPubMed
17.
Zurück zum Zitat Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 31(2):119–130CrossRefPubMed Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 31(2):119–130CrossRefPubMed
18.
Zurück zum Zitat Wong-Riley M, Antuono P, Ho KC, Egan R, Hevner R, Liebl W, Huang Z, Rachel R, Jones J (1997) Cytochrome oxidase in Alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems. Vision Res 37(24):3593–3608CrossRefPubMed Wong-Riley M, Antuono P, Ho KC, Egan R, Hevner R, Liebl W, Huang Z, Rachel R, Jones J (1997) Cytochrome oxidase in Alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems. Vision Res 37(24):3593–3608CrossRefPubMed
19.
Zurück zum Zitat Maurer I, Zierz S, Moller HJ (2000) A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging 21(3):455–462CrossRefPubMed Maurer I, Zierz S, Moller HJ (2000) A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging 21(3):455–462CrossRefPubMed
20.
Zurück zum Zitat Konstandin S, Nagel AM (2014) Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. Magn Reson Mater Phy 27(1):5–19CrossRef Konstandin S, Nagel AM (2014) Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. Magn Reson Mater Phy 27(1):5–19CrossRef
21.
Zurück zum Zitat Rousset OG, Ma Y, Evans AC (1998) Correction for partial volume effects in PET: principle and validation. J Nucl Med 39(5):904–911PubMed Rousset OG, Ma Y, Evans AC (1998) Correction for partial volume effects in PET: principle and validation. J Nucl Med 39(5):904–911PubMed
22.
Zurück zum Zitat Hoffmann SH, Radbruch A, Bock M, Semmler W, Nagel AM (2014) Direct (17)O MRI with partial volume correction: first experiences in a glioblastoma patient. Magn Reson Mater Phy 27(6):579–587CrossRef Hoffmann SH, Radbruch A, Bock M, Semmler W, Nagel AM (2014) Direct (17)O MRI with partial volume correction: first experiences in a glioblastoma patient. Magn Reson Mater Phy 27(6):579–587CrossRef
23.
Zurück zum Zitat Niesporek SC, Hoffmann SH, Berger MC, Benkhedah N, Kujawa A, Bachert P, Nagel AM (2015) Partial volume correction for in vivo (23)Na-MRI data of the human brain. Neuroimage 112:353–363CrossRefPubMed Niesporek SC, Hoffmann SH, Berger MC, Benkhedah N, Kujawa A, Bachert P, Nagel AM (2015) Partial volume correction for in vivo (23)Na-MRI data of the human brain. Neuroimage 112:353–363CrossRefPubMed
24.
Zurück zum Zitat Fleysher L, Oesingmann N, Stoeckel B, Grossman RI, Inglese M (2009) Sodium long-component T(2)(*) mapping in human brain at 7 Tesla. Magn Reson Med 62(5):1338–1341CrossRefPubMedPubMedCentral Fleysher L, Oesingmann N, Stoeckel B, Grossman RI, Inglese M (2009) Sodium long-component T(2)(*) mapping in human brain at 7 Tesla. Magn Reson Med 62(5):1338–1341CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Bartha R, Menon RS (2004) Long component time constant of 23Na T*2 relaxation in healthy human brain. Magn Reson Med 52(2):407–410CrossRefPubMed Bartha R, Menon RS (2004) Long component time constant of 23Na T*2 relaxation in healthy human brain. Magn Reson Med 52(2):407–410CrossRefPubMed
26.
Zurück zum Zitat Winkler SS, Thomasson DM, Sherwood K, Perman WH (1989) Regional T2 and sodium concentration estimates in the normal human brain by sodium-23 MR imaging at 1.5 T. J Comput Assist Tomogr 13(4):561–566CrossRefPubMed Winkler SS, Thomasson DM, Sherwood K, Perman WH (1989) Regional T2 and sodium concentration estimates in the normal human brain by sodium-23 MR imaging at 1.5 T. J Comput Assist Tomogr 13(4):561–566CrossRefPubMed
27.
Zurück zum Zitat Zhu XH, Merkle H, Kwag JH, Ugurbil K, Chen W (2001) 17O relaxation time and NMR sensitivity of cerebral water and their field dependence. Magn Reson Med 45(4):543–549CrossRefPubMed Zhu XH, Merkle H, Kwag JH, Ugurbil K, Chen W (2001) 17O relaxation time and NMR sensitivity of cerebral water and their field dependence. Magn Reson Med 45(4):543–549CrossRefPubMed
28.
Zurück zum Zitat Fiat D, Dolinsek J, Hankiewicz J, Dujovny M, Ausman J (1993) Determination of regional cerebral oxygen consumption in the human: 17O natural abundance cerebral magnetic resonance imaging and spectroscopy in a whole body system. Neurol Res 15(4):237–248CrossRefPubMed Fiat D, Dolinsek J, Hankiewicz J, Dujovny M, Ausman J (1993) Determination of regional cerebral oxygen consumption in the human: 17O natural abundance cerebral magnetic resonance imaging and spectroscopy in a whole body system. Neurol Res 15(4):237–248CrossRefPubMed
29.
Zurück zum Zitat Hoffmann SH, Nagel AM, Umathum R, Meise FM, Bock M (2011) In vivo relaxation parameters of oxygen-17 (17O). Proc Intl Soc Mag Reson Med 19:473 Hoffmann SH, Nagel AM, Umathum R, Meise FM, Bock M (2011) In vivo relaxation parameters of oxygen-17 (17O). Proc Intl Soc Mag Reson Med 19:473
30.
Zurück zum Zitat Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62(6):1565–1573CrossRefPubMed Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62(6):1565–1573CrossRefPubMed
31.
Zurück zum Zitat Vembu S (1961) Fourier transformation of N-dimensional radial delta function. Q J Math 12(47):165–168CrossRef Vembu S (1961) Fourier transformation of N-dimensional radial delta function. Q J Math 12(47):165–168CrossRef
32.
Zurück zum Zitat Atkinson IC, Lu A, Thulborn KR (2011) Clinically constrained optimization of flexTPI acquisition parameters for the tissue sodium concentration bioscale. Magn Reson Med 66(4):1089–1099CrossRefPubMedPubMedCentral Atkinson IC, Lu A, Thulborn KR (2011) Clinically constrained optimization of flexTPI acquisition parameters for the tissue sodium concentration bioscale. Magn Reson Med 66(4):1089–1099CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Rahmer J, Bornert P, Groen J, Bos C (2006) Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn Reson Med 55(5):1075–1082CrossRefPubMed Rahmer J, Bornert P, Groen J, Bos C (2006) Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn Reson Med 55(5):1075–1082CrossRefPubMed
34.
Zurück zum Zitat Scheffler K, Hennig J (1998) Reduced circular field-of-view imaging. Magn Reson Med 40(3):474–480CrossRefPubMed Scheffler K, Hennig J (1998) Reduced circular field-of-view imaging. Magn Reson Med 40(3):474–480CrossRefPubMed
35.
Zurück zum Zitat Yang XY, Sammet S, Schmalbrock P, Knopp MV (2010) Postprocessing correction for distortions in T-2* decay caused by quadratic Cross-Slice B-0 inhomogeneity. Magn Reson Med 63(5):1258–1268CrossRefPubMed Yang XY, Sammet S, Schmalbrock P, Knopp MV (2010) Postprocessing correction for distortions in T-2* decay caused by quadratic Cross-Slice B-0 inhomogeneity. Magn Reson Med 63(5):1258–1268CrossRefPubMed
36.
Zurück zum Zitat Jackson JI, Meyer CH, Nishimura DG, Macovski A (1991) Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. IEEE Trans Med Imaging 10(3):473–478CrossRefPubMed Jackson JI, Meyer CH, Nishimura DG, Macovski A (1991) Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. IEEE Trans Med Imaging 10(3):473–478CrossRefPubMed
37.
Zurück zum Zitat Barger AV, Block WF, Toropov Y, Grist TM, Mistretta CA (2002) Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory. Magn Reson Med 48(2):297–305CrossRefPubMed Barger AV, Block WF, Toropov Y, Grist TM, Mistretta CA (2002) Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory. Magn Reson Med 48(2):297–305CrossRefPubMed
38.
Zurück zum Zitat Rooney WD, Springer CS Jr (1991) A comprehensive approach to the analysis and interpretation of the resonances of spins 3/2 from living systems. NMR Biomed 4(5):209–226CrossRefPubMed Rooney WD, Springer CS Jr (1991) A comprehensive approach to the analysis and interpretation of the resonances of spins 3/2 from living systems. NMR Biomed 4(5):209–226CrossRefPubMed
39.
Zurück zum Zitat Hubbard PS (1970) Nonexponential nuclear magnetic relaxation by quadrupole interactions. J Chem Phys 53(3):985–986CrossRef Hubbard PS (1970) Nonexponential nuclear magnetic relaxation by quadrupole interactions. J Chem Phys 53(3):985–986CrossRef
40.
Zurück zum Zitat Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841CrossRefPubMed Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841CrossRefPubMed
41.
Zurück zum Zitat Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156CrossRefPubMed Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156CrossRefPubMed
42.
Zurück zum Zitat Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57CrossRefPubMed Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57CrossRefPubMed
43.
Zurück zum Zitat Nolden M, Zelzer S, Seitel A, Wald D, Muller M, Franz AM, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein KH, Meinzer HP, Wolf I (2013) The Medical Imaging Interaction Toolkit: challenges and advances: 10 years of open-source development. Int J Comput Assist Radiol Surg 8(4):607–620CrossRefPubMed Nolden M, Zelzer S, Seitel A, Wald D, Muller M, Franz AM, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein KH, Meinzer HP, Wolf I (2013) The Medical Imaging Interaction Toolkit: challenges and advances: 10 years of open-source development. Int J Comput Assist Radiol Surg 8(4):607–620CrossRefPubMed
44.
Zurück zum Zitat Wolf I, Vetter M, Wegner I, Bottger T, Nolden M, Schobinger M, Hastenteufel M, Kunert T, Meinzer HP (2005) The medical imaging interaction toolkit. Med Image Anal 9(6):594–604CrossRefPubMed Wolf I, Vetter M, Wegner I, Bottger T, Nolden M, Schobinger M, Hastenteufel M, Kunert T, Meinzer HP (2005) The medical imaging interaction toolkit. Med Image Anal 9(6):594–604CrossRefPubMed
45.
Zurück zum Zitat Morrell GR (2008) A phase-sensitive method of flip angle mapping. Magn Reson Med 60(4):889–894CrossRefPubMed Morrell GR (2008) A phase-sensitive method of flip angle mapping. Magn Reson Med 60(4):889–894CrossRefPubMed
46.
Zurück zum Zitat Neeb H, Ermer V, Stocker T, Shah NJ (2008) Fast quantitative mapping of absolute water content with full brain coverage. Neuroimage 42(3):1094–1109CrossRefPubMed Neeb H, Ermer V, Stocker T, Shah NJ (2008) Fast quantitative mapping of absolute water content with full brain coverage. Neuroimage 42(3):1094–1109CrossRefPubMed
47.
48.
Zurück zum Zitat Stobbe RW, Beaulieu C (2014) Exploring and enhancing relaxation-based sodium MRI contrast. Magn Reson Mater Phy 27(1):21–33CrossRef Stobbe RW, Beaulieu C (2014) Exploring and enhancing relaxation-based sodium MRI contrast. Magn Reson Mater Phy 27(1):21–33CrossRef
49.
Zurück zum Zitat Felgenhauer K (1974) Protein size and cerebrospinal fluid composition. Klinische Wochenschrift 52(24):1158–1164CrossRefPubMed Felgenhauer K (1974) Protein size and cerebrospinal fluid composition. Klinische Wochenschrift 52(24):1158–1164CrossRefPubMed
50.
Zurück zum Zitat Niesporek SC, Hoffmann SH, Berger MC, Nagel AM (2015) In-vivo chlorine quantification with partial volume corrected 35Cl-MRI. In: Proceeding 23rd Annual Meeting of the International Society of Magnetic Resonance in Medicine (ISMRM) Niesporek SC, Hoffmann SH, Berger MC, Nagel AM (2015) In-vivo chlorine quantification with partial volume corrected 35Cl-MRI. In: Proceeding 23rd Annual Meeting of the International Society of Magnetic Resonance in Medicine (ISMRM)
51.
Zurück zum Zitat Atkinson IC, Claiborne TC, Thulborn KR (2014) Feasibility of 39-potassium MR imaging of a human brain at 9.4 Tesla. Magn Reson Med 71(5):1819–1825CrossRefPubMed Atkinson IC, Claiborne TC, Thulborn KR (2014) Feasibility of 39-potassium MR imaging of a human brain at 9.4 Tesla. Magn Reson Med 71(5):1819–1825CrossRefPubMed
52.
Zurück zum Zitat Umathum R, Rosler MB, Nagel AM (2013) In vivo 39 K MR imaging of human muscle and brain. Radiology 269(2):569–576CrossRefPubMed Umathum R, Rosler MB, Nagel AM (2013) In vivo 39 K MR imaging of human muscle and brain. Radiology 269(2):569–576CrossRefPubMed
53.
Zurück zum Zitat Greenman RL, Axel L, Ferrari VA, Lenkinski RE (2002) Fast imaging of phosphocreatine in the normal human myocardium using a three-dimensional RARE pulse sequence at 4 Tesla. J Magn Reson Imaging 15(4):467–472CrossRefPubMed Greenman RL, Axel L, Ferrari VA, Lenkinski RE (2002) Fast imaging of phosphocreatine in the normal human myocardium using a three-dimensional RARE pulse sequence at 4 Tesla. J Magn Reson Imaging 15(4):467–472CrossRefPubMed
54.
Zurück zum Zitat Greenman RL (2004) Quantification of the 31P metabolite concentration in human skeletal muscle from RARE image intensity. Magn Reson Med 52(5):1036–1042CrossRefPubMed Greenman RL (2004) Quantification of the 31P metabolite concentration in human skeletal muscle from RARE image intensity. Magn Reson Med 52(5):1036–1042CrossRefPubMed
55.
Zurück zum Zitat Rink K, Berger MC, Korzowski A, Breithaupt M, Biller A, Bachert P, Nagel AM (2015) Nuclear-Overhauser-enhanced MR imaging of (31)P-containing metabolites: multipoint-Dixon vs. frequency-selective excitation. Magn Reson Imaging 33(10):1281–1289CrossRefPubMed Rink K, Berger MC, Korzowski A, Breithaupt M, Biller A, Bachert P, Nagel AM (2015) Nuclear-Overhauser-enhanced MR imaging of (31)P-containing metabolites: multipoint-Dixon vs. frequency-selective excitation. Magn Reson Imaging 33(10):1281–1289CrossRefPubMed
56.
Zurück zum Zitat Thulborn KR, du Boulay GH, Duchen LW, Radda G (1982) A 31P nuclear magnetic resonance in vivo study of cerebral ischaemia in the gerbil. J Cereb Blood Flow Metab 2(3):299–306CrossRefPubMed Thulborn KR, du Boulay GH, Duchen LW, Radda G (1982) A 31P nuclear magnetic resonance in vivo study of cerebral ischaemia in the gerbil. J Cereb Blood Flow Metab 2(3):299–306CrossRefPubMed
Metadaten
Titel
Improved determination in 23Na, 35Cl, and 17O MRI using iterative partial volume correction based on 1H MRI segmentation
verfasst von
Sebastian C. Niesporek
Reiner Umathum
Thomas M. Fiedler
Peter Bachert
Mark E. Ladd
Armin M. Nagel
Publikationsdatum
26.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 6/2017
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-017-0623-2

Weitere Artikel der Ausgabe 6/2017

Magnetic Resonance Materials in Physics, Biology and Medicine 6/2017 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.