Skip to main content
Erschienen in: Obesity Surgery 7/2016

15.10.2015 | Original Contributions

Improved Muscle Mitochondrial Capacity Following Gastric Bypass Surgery in Obese Subjects

verfasst von: Maria Fernström, Linda Bakkman, Peter Loogna, Olav Rooyackers, Madeleine Svensson, Towe Jakobsson, Lena Brandt, Ylva Trolle Lagerros

Erschienen in: Obesity Surgery | Ausgabe 7/2016

Einloggen, um Zugang zu erhalten

Abstract

Background

Weight loss resulting from low-calorie diets is often less than expected. We hypothesized that energy restriction would influence proton leakage and improve mitochondrial efficiency, leading to reduced energy expenditure, partly explaining the difficulties in weight loss maintenance.

Methods

Eleven women with a median BMI of 38.5 kg/m2 (q-range 37–40), and referred to gastric bypass surgery participated. Before surgery, and at 6 months of follow-up, muscle biopsies were collected from the vastus lateralis muscle. Mitochondria were isolated and analyzed for coupled (state 3) and uncoupled (state 4) respiration and mitochondrial capacity (P/O ratio).

Results

At follow-up, the participants had a median BMI of 29.6 kg/m2 (28.3–32.0). State 3 increased from 20.6 (17.9–28.9) to 34.9 nmol O2/min/U citrate synthase (CS) (27.0–49.0), p = 0.01, while state 4 increased from 2.8 (1.8–4.2) to 4.2 nmol O2/min/U CS (3.1–6.1), although not statistically significant. The P/O ratio increased from 2.7 (2.5–2.8) to 3.2 (3.0–3.4), p = 0.02, indicating improved mitochondrial efficiency.

Conclusions

Six months after gastric bypass surgery, the mitochondrial capacity for coupled, i.e., ATP-generating, respiration increased, and the P/O ratio improved. Uncoupled respiration was not enhanced to the same extent. This could partly explain the decreased basal metabolism and the reduced inclination for weight loss during energy restriction.
Literatur
1.
Zurück zum Zitat Mitchell NS, Catenacci VA, Wyatt HR, et al. Obesity: overview of an epidemic. Psychiatr Clin N Am. 2011;34(4):717–32. PubMed Pubmed Central PMCID: 3228640.CrossRef Mitchell NS, Catenacci VA, Wyatt HR, et al. Obesity: overview of an epidemic. Psychiatr Clin N Am. 2011;34(4):717–32. PubMed Pubmed Central PMCID: 3228640.CrossRef
2.
Zurück zum Zitat Christiansen E, Garby L. Prediction of body weight changes caused by changes in energy balance. Eur J Clin Invest. 2002;32(11):826–30.CrossRefPubMed Christiansen E, Garby L. Prediction of body weight changes caused by changes in energy balance. Eur J Clin Invest. 2002;32(11):826–30.CrossRefPubMed
3.
Zurück zum Zitat Avenell A, Broom J, Brown TJ, et al. Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement. Health Technol Assess. 2004;8(21):1–182.CrossRef Avenell A, Broom J, Brown TJ, et al. Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement. Health Technol Assess. 2004;8(21):1–182.CrossRef
4.
Zurück zum Zitat Heymsfield SB, Harp JB, Reitman ML, et al. Why do obese patients not lose more weight when treated with low-calorie diets? A mechanistic perspective. Am J Clin Nutr. 2007;85(2):346–54.PubMed Heymsfield SB, Harp JB, Reitman ML, et al. Why do obese patients not lose more weight when treated with low-calorie diets? A mechanistic perspective. Am J Clin Nutr. 2007;85(2):346–54.PubMed
5.
Zurück zum Zitat Major GC, Doucet E, Trayhurn P, et al. Clinical significance of adaptive thermogenesis. Int J Obes (Lond). 2007;31(2):204–12.CrossRef Major GC, Doucet E, Trayhurn P, et al. Clinical significance of adaptive thermogenesis. Int J Obes (Lond). 2007;31(2):204–12.CrossRef
6.
Zurück zum Zitat Wamsteker EW, Geenen R, Zelissen PM, et al. Unrealistic weight-loss goals among obese patients are associated with age and causal attributions. J Am Diet Assoc. 2009;109(11):1903–8. PubMed.CrossRefPubMed Wamsteker EW, Geenen R, Zelissen PM, et al. Unrealistic weight-loss goals among obese patients are associated with age and causal attributions. J Am Diet Assoc. 2009;109(11):1903–8. PubMed.CrossRefPubMed
7.
Zurück zum Zitat Wing RR, Phelan S. Long-term weight loss maintenance. Am J Clin Nutr. 2005;82(1 Suppl):222S–5.PubMed Wing RR, Phelan S. Long-term weight loss maintenance. Am J Clin Nutr. 2005;82(1 Suppl):222S–5.PubMed
8.
Zurück zum Zitat Dulloo AG, Jacquet J. Adaptive reduction in basal metabolic rate in response to food deprivation in humans: a role for feedback signals from fat stores. Am J Clin Nutr. 1998;68(3):599–606.PubMed Dulloo AG, Jacquet J. Adaptive reduction in basal metabolic rate in response to food deprivation in humans: a role for feedback signals from fat stores. Am J Clin Nutr. 1998;68(3):599–606.PubMed
9.
Zurück zum Zitat Prentice AM, Goldberg GR, Jebb SA, et al. Physiological responses to slimming. Proc Nutr Soc. 1991;50(2):441–58.CrossRefPubMed Prentice AM, Goldberg GR, Jebb SA, et al. Physiological responses to slimming. Proc Nutr Soc. 1991;50(2):441–58.CrossRefPubMed
10.
Zurück zum Zitat Rosenbaum M, Hirsch J, Gallagher DA, et al. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr. 2008;88(4):906–12.PubMed Rosenbaum M, Hirsch J, Gallagher DA, et al. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr. 2008;88(4):906–12.PubMed
11.
Zurück zum Zitat Bakkman L, Fernstrom M, Loogna P, et al. Reduced respiratory capacity in muscle mitochondria of obese subjects. Obes Facts. 2010;3(6):371–5. PubMed.PubMed Bakkman L, Fernstrom M, Loogna P, et al. Reduced respiratory capacity in muscle mitochondria of obese subjects. Obes Facts. 2010;3(6):371–5. PubMed.PubMed
12.
Zurück zum Zitat Rolfe DF, Brand MD. Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol. 1996;271(4 Pt 1):C1380–9. PubMed.PubMed Rolfe DF, Brand MD. Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol. 1996;271(4 Pt 1):C1380–9. PubMed.PubMed
13.
Zurück zum Zitat Bergstrom J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Investig. 1975;35(7):609–16. PubMed.CrossRef Bergstrom J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Investig. 1975;35(7):609–16. PubMed.CrossRef
14.
Zurück zum Zitat Tonkonogi M, Walsh B, Tiivel T, et al. Mitochondrial function in human skeletal muscle is not impaired by high intensity exercise. Pflugers Arch. 1999;437(4):562–8.CrossRefPubMed Tonkonogi M, Walsh B, Tiivel T, et al. Mitochondrial function in human skeletal muscle is not impaired by high intensity exercise. Pflugers Arch. 1999;437(4):562–8.CrossRefPubMed
15.
Zurück zum Zitat Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955;217(1):383–93. PubMed.PubMed Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955;217(1):383–93. PubMed.PubMed
16.
Zurück zum Zitat Chambers AP, Jessen L, Ryan KK, et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology. 2011;141(3):950–8. PubMed Pubmed Central PMCID: 3163814.CrossRefPubMedPubMedCentral Chambers AP, Jessen L, Ryan KK, et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology. 2011;141(3):950–8. PubMed Pubmed Central PMCID: 3163814.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Liou AP, Paziuk M, Luevano Jr JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41.CrossRefPubMedPubMedCentral Liou AP, Paziuk M, Luevano Jr JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Ahmad NN, Pfalzer A, Kaplan LM. Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity. Int J Obes. 2013;37(12):1553–9.CrossRef Ahmad NN, Pfalzer A, Kaplan LM. Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity. Int J Obes. 2013;37(12):1553–9.CrossRef
19.
Zurück zum Zitat Houmard JA, Tanner CJ, Yu C, et al. Effect of weight loss on insulin sensitivity and intramuscular long-chain fatty acyl-CoAs in morbidly obese subjects. Diabetes. 2002;51(10):2959–63.CrossRefPubMed Houmard JA, Tanner CJ, Yu C, et al. Effect of weight loss on insulin sensitivity and intramuscular long-chain fatty acyl-CoAs in morbidly obese subjects. Diabetes. 2002;51(10):2959–63.CrossRefPubMed
20.
Zurück zum Zitat Coen PM, Goodpaster BH. Role of intramyocellular lipids in human health. Trends Endocrinol Metab. 2012;23(8):391–8.CrossRefPubMed Coen PM, Goodpaster BH. Role of intramyocellular lipids in human health. Trends Endocrinol Metab. 2012;23(8):391–8.CrossRefPubMed
21.
Zurück zum Zitat Hempenstall S, Page MM, Wallen KR, et al. Dietary restriction increases skeletal muscle mitochondrial respiration but not mitochondrial content in C57BL/6 mice. Mech Ageing Dev. 2012;133(1):37–45.CrossRefPubMed Hempenstall S, Page MM, Wallen KR, et al. Dietary restriction increases skeletal muscle mitochondrial respiration but not mitochondrial content in C57BL/6 mice. Mech Ageing Dev. 2012;133(1):37–45.CrossRefPubMed
22.
Zurück zum Zitat Thrush AB, Dent R, McPherson R, et al. Implications of mitochondrial uncoupling in skeletal muscle in the development and treatment of obesity. FEBS J. 2013;280(20):5015–29. PubMed.CrossRefPubMed Thrush AB, Dent R, McPherson R, et al. Implications of mitochondrial uncoupling in skeletal muscle in the development and treatment of obesity. FEBS J. 2013;280(20):5015–29. PubMed.CrossRefPubMed
23.
Zurück zum Zitat Vijgen GH, Bouvy ND, Hoeks J, et al. Impaired skeletal muscle mitochondrial function in morbidly obese patients is normalized one year after bariatric surgery. Surg Obes Relat Dis. 2013;9(6):936–41.CrossRefPubMed Vijgen GH, Bouvy ND, Hoeks J, et al. Impaired skeletal muscle mitochondrial function in morbidly obese patients is normalized one year after bariatric surgery. Surg Obes Relat Dis. 2013;9(6):936–41.CrossRefPubMed
24.
Zurück zum Zitat Nijhawan S, Richards W, O’Hea MF, et al. Bariatric surgery rapidly improves mitochondrial respiration in morbidly obese patients. Surg Endosc. 2013;27(12):4569–73. PubMed.CrossRefPubMed Nijhawan S, Richards W, O’Hea MF, et al. Bariatric surgery rapidly improves mitochondrial respiration in morbidly obese patients. Surg Endosc. 2013;27(12):4569–73. PubMed.CrossRefPubMed
25.
Zurück zum Zitat Wijers SL, Saris WH, van Marken Lichtenbelt WD. Recent advances in adaptive thermogenesis: potential implications for the treatment of obesity. Obes Rev. 2009;10(2):218–26.CrossRefPubMed Wijers SL, Saris WH, van Marken Lichtenbelt WD. Recent advances in adaptive thermogenesis: potential implications for the treatment of obesity. Obes Rev. 2009;10(2):218–26.CrossRefPubMed
26.
Zurück zum Zitat van den Berg SA, van Lichtenbelt Marken W, Willems van Dijk K, et al. Skeletal muscle mitochondrial uncoupling, adaptive thermogenesis and energy expenditure. Curr Opin Clin Nutr Metab Care. 2011;14(3):243–9. PubMed.CrossRefPubMed van den Berg SA, van Lichtenbelt Marken W, Willems van Dijk K, et al. Skeletal muscle mitochondrial uncoupling, adaptive thermogenesis and energy expenditure. Curr Opin Clin Nutr Metab Care. 2011;14(3):243–9. PubMed.CrossRefPubMed
27.
Zurück zum Zitat Cannon B, Nedergaard J. Thermogenesis challenges the adipostat hypothesis for body-weight control. Proc Nutr Soc. 2009;68(4):401–7.CrossRefPubMed Cannon B, Nedergaard J. Thermogenesis challenges the adipostat hypothesis for body-weight control. Proc Nutr Soc. 2009;68(4):401–7.CrossRefPubMed
28.
Zurück zum Zitat Fisher-Wellman KH, Weber TM, Cathey BL, et al. Mitochondrial respiratory capacity and content are normal in young insulin-resistant obese humans. Diabetes. 2014;63(1):132–41. PubMed Pubmed Central PMCID: 3868052.CrossRefPubMed Fisher-Wellman KH, Weber TM, Cathey BL, et al. Mitochondrial respiratory capacity and content are normal in young insulin-resistant obese humans. Diabetes. 2014;63(1):132–41. PubMed Pubmed Central PMCID: 3868052.CrossRefPubMed
29.
Zurück zum Zitat Boushel R, Gnaiger E, Schjerling P, et al. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia. 2007;50(4):790–6. PubMed Pubmed Central PMCID: 1820754.CrossRefPubMedPubMedCentral Boushel R, Gnaiger E, Schjerling P, et al. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia. 2007;50(4):790–6. PubMed Pubmed Central PMCID: 1820754.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Ritov VB, Menshikova EV, Azuma K, et al. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab. 2010;298(1):E49–58. PubMed Pubmed Central PMCID: 2806111.CrossRefPubMed Ritov VB, Menshikova EV, Azuma K, et al. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab. 2010;298(1):E49–58. PubMed Pubmed Central PMCID: 2806111.CrossRefPubMed
31.
Zurück zum Zitat Picard M, Taivassalo T, Ritchie D, et al. Mitochondrial structure and function are disrupted by standard isolation methods. PLoS One. 2011;6(3):e18317.CrossRefPubMedPubMedCentral Picard M, Taivassalo T, Ritchie D, et al. Mitochondrial structure and function are disrupted by standard isolation methods. PLoS One. 2011;6(3):e18317.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Rabol R, Svendsen PF, Skovbro M, et al. Reduced skeletal muscle mitochondrial respiration and improved glucose metabolism in nondiabetic obese women during a very low calorie dietary intervention leading to rapid weight loss. Metabolism. 2009;58(8):1145–52.CrossRefPubMed Rabol R, Svendsen PF, Skovbro M, et al. Reduced skeletal muscle mitochondrial respiration and improved glucose metabolism in nondiabetic obese women during a very low calorie dietary intervention leading to rapid weight loss. Metabolism. 2009;58(8):1145–52.CrossRefPubMed
33.
Zurück zum Zitat Figueiredo PA, Ferreira RM, Appell HJ, et al. Age-induced morphological, biochemical, and functional alterations in isolated mitochondria from murine skeletal muscle. J Gerontol Series A Biol Sci Med Sci. 2008;63(4):350–9. PubMed.CrossRef Figueiredo PA, Ferreira RM, Appell HJ, et al. Age-induced morphological, biochemical, and functional alterations in isolated mitochondria from murine skeletal muscle. J Gerontol Series A Biol Sci Med Sci. 2008;63(4):350–9. PubMed.CrossRef
34.
Zurück zum Zitat Boyle KE, Zheng D, Anderson EJ, Neufer PD, Houmard JA. Mitochondrial lipid oxidation is impaired in cultured myotubes from obese humans. Int J Obes (Lond). 2011 Oct 25. PubMed Epub 2011/10/26. Eng. Boyle KE, Zheng D, Anderson EJ, Neufer PD, Houmard JA. Mitochondrial lipid oxidation is impaired in cultured myotubes from obese humans. Int J Obes (Lond). 2011 Oct 25. PubMed Epub 2011/10/26. Eng.
35.
Zurück zum Zitat Menshikova EV, Ritov VB, Toledo FG, et al. Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity. Am J Physiol Endocrinol Metab. 2004;288(4):E818–25.CrossRefPubMed Menshikova EV, Ritov VB, Toledo FG, et al. Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity. Am J Physiol Endocrinol Metab. 2004;288(4):E818–25.CrossRefPubMed
36.
Zurück zum Zitat le Roux CW, Bueter M, Theis N, et al. Gastric bypass reduces fat intake and preference. Am J Physiol Regul, Integr Comp Physiol. 2011;301(4):R1057–66. PubMed Pubmed Central PMCID: 3197335.CrossRef le Roux CW, Bueter M, Theis N, et al. Gastric bypass reduces fat intake and preference. Am J Physiol Regul, Integr Comp Physiol. 2011;301(4):R1057–66. PubMed Pubmed Central PMCID: 3197335.CrossRef
37.
Zurück zum Zitat Olbers T, Bjorkman S, Lindroos A, et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg. 2006;244(5):715–22.CrossRefPubMedPubMedCentral Olbers T, Bjorkman S, Lindroos A, et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg. 2006;244(5):715–22.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Bevilacqua L, Ramsey JJ, Hagopian K, et al. Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production. Am J Physiol Endocrinol Metab. 2004;286(5):E852–61.CrossRefPubMed Bevilacqua L, Ramsey JJ, Hagopian K, et al. Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production. Am J Physiol Endocrinol Metab. 2004;286(5):E852–61.CrossRefPubMed
39.
Zurück zum Zitat Lal SB, Ramsey JJ, Monemdjou S, et al. Effects of caloric restriction on skeletal muscle mitochondrial proton leak in aging rats. J Gerontol A Biol Sci Med Sci. 2001;56(3):B116–22.CrossRefPubMed Lal SB, Ramsey JJ, Monemdjou S, et al. Effects of caloric restriction on skeletal muscle mitochondrial proton leak in aging rats. J Gerontol A Biol Sci Med Sci. 2001;56(3):B116–22.CrossRefPubMed
40.
Zurück zum Zitat Harper ME, Dent R, Monemdjou S, et al. Decreased mitochondrial proton leak and reduced expression of uncoupling protein 3 in skeletal muscle of obese diet-resistant women. Diabetes. 2002;51(8):2459–66.CrossRefPubMed Harper ME, Dent R, Monemdjou S, et al. Decreased mitochondrial proton leak and reduced expression of uncoupling protein 3 in skeletal muscle of obese diet-resistant women. Diabetes. 2002;51(8):2459–66.CrossRefPubMed
Metadaten
Titel
Improved Muscle Mitochondrial Capacity Following Gastric Bypass Surgery in Obese Subjects
verfasst von
Maria Fernström
Linda Bakkman
Peter Loogna
Olav Rooyackers
Madeleine Svensson
Towe Jakobsson
Lena Brandt
Ylva Trolle Lagerros
Publikationsdatum
15.10.2015
Verlag
Springer US
Erschienen in
Obesity Surgery / Ausgabe 7/2016
Print ISSN: 0960-8923
Elektronische ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-015-1932-z

Weitere Artikel der Ausgabe 7/2016

Obesity Surgery 7/2016 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

CME: 2 Punkte

Prof. Dr. med. Gregor Antoniadis Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

CME: 2 Punkte

Dr. med. Benjamin Meyknecht, PD Dr. med. Oliver Pieske Das Webinar S2e-Leitlinie „Distale Radiusfraktur“ beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

CME: 2 Punkte

Dr. med. Mihailo Andric
Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.