Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 1/2019

15.06.2018 | Research Article

Improvement of 19F MR image uniformity in a mouse model of cellular therapy using inductive coupling

verfasst von: Bu S. Park, Ge Ma, William T. Koch, Sunder S. Rajan, Manuel Mastromanolis, Johnny Lam, Kyung Sung, Brent McCright

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Objective

Improve 19F magnetic resonance imaging uniformity of perfluorocarbon (PFC)-labeled cells by using a secondary inductive resonator tuned to 287 MHz to enhance the induced radio frequency (RF) magnetic field (B1) at 7.05 T.

Materials and methods

Following Faraday’s induction law, the sign of induced B1 made by the secondary resonator can be changed depending on the tuning of the resonator. A secondary resonator located on the opposite side of the phantom of the 19F surface coil can be shown to enhance or subtract the induced B1 field, depending upon its tuning.

Results

The numerical simulation results of rotating transmit B1 magnitude (|B 1 + |) and corresponding experimental 19F images were compared without and with the secondary resonator. With the secondary resonator tuned to 287 MHz, improvements of |B 1 + | and 19F image uniformity were demonstrated. The use of the secondary resonator improved our ability to visualize transplanted cell location non-invasively over a period of 6 weeks.

Conclusion

The secondary resonator tuned to enhance the induced B1 results in improved image uniformity in a pre-clinical application, enabling cell tracking of PFC-labeled cells with the secondary resonator.
Literatur
1.
Zurück zum Zitat Foo TKF, Hayes CE, Kang YW (1992) Reduction of RF penetration effects in high-field imaging. Magn Reson Med 23:287–301CrossRefPubMed Foo TKF, Hayes CE, Kang YW (1992) Reduction of RF penetration effects in high-field imaging. Magn Reson Med 23:287–301CrossRefPubMed
2.
Zurück zum Zitat Yang QX, Rupprecht S, Luo W, Sica CT, Herse Z, Wang J, Cao Z, Vesek Z, Lanagan MT, Carluccio G, Ryu Y, Collins CM (2013) Radiofrequency field enhancement with high dielectric constant (HDC) pads in a receive array coil at 3.0 T. J Magn Reson Imaging 38:435–440CrossRefPubMedPubMedCentral Yang QX, Rupprecht S, Luo W, Sica CT, Herse Z, Wang J, Cao Z, Vesek Z, Lanagan MT, Carluccio G, Ryu Y, Collins CM (2013) Radiofrequency field enhancement with high dielectric constant (HDC) pads in a receive array coil at 3.0 T. J Magn Reson Imaging 38:435–440CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Park BS, Rajan SS, Guag JW, Angelone LM (2015) A novel method to decrease electric field and SAR using an external high dielectric sleeve at 3 T head MRI: numerical and experimental results. IEEE Trans Biomed Eng 62:1063–1069CrossRefPubMed Park BS, Rajan SS, Guag JW, Angelone LM (2015) A novel method to decrease electric field and SAR using an external high dielectric sleeve at 3 T head MRI: numerical and experimental results. IEEE Trans Biomed Eng 62:1063–1069CrossRefPubMed
4.
Zurück zum Zitat Schmitt M, Feiweier T, Voellmecke E, Lazar R, Krueger G, Reykowski A (2005) B 1-Homogenization in abdominal imaging at 3 T by means of coupling coils. In: 13th ISMRM, p331 Schmitt M, Feiweier T, Voellmecke E, Lazar R, Krueger G, Reykowski A (2005) B 1-Homogenization in abdominal imaging at 3 T by means of coupling coils. In: 13th ISMRM, p331
5.
Zurück zum Zitat Park BS, Neuberger T, Webb AG, Bigler DC, Collins CM (2010) Faraday shields within a solenoidal coil to reduce sample heating: numerical comparison of designs and experimental verification. J Magn Reson 202:72–77CrossRefPubMed Park BS, Neuberger T, Webb AG, Bigler DC, Collins CM (2010) Faraday shields within a solenoidal coil to reduce sample heating: numerical comparison of designs and experimental verification. J Magn Reson 202:72–77CrossRefPubMed
6.
Zurück zum Zitat Rajan SS, Rosa L, Francisco J, Muraki A, Carvlin M, Tuturea E (1990) MRI characterization of 9L-glioma in rat brain at 4.7 T. Magn Reson Imaging 8(2):185–190CrossRefPubMed Rajan SS, Rosa L, Francisco J, Muraki A, Carvlin M, Tuturea E (1990) MRI characterization of 9L-glioma in rat brain at 4.7 T. Magn Reson Imaging 8(2):185–190CrossRefPubMed
7.
Zurück zum Zitat Merkle H, Murphy-Boesch J, van Gelderen P, Wang S, Li TQ, Koretsky AP, Duyn JH (2011) Transmit B 1-field correction at 7 T using actively tuned coupled inner elements. Magn Reson Med 66:901–910CrossRefPubMedPubMedCentral Merkle H, Murphy-Boesch J, van Gelderen P, Wang S, Li TQ, Koretsky AP, Duyn JH (2011) Transmit B 1-field correction at 7 T using actively tuned coupled inner elements. Magn Reson Med 66:901–910CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Schnall MD, Barlow C, Subramanian VH, Leigh JS (1986) Wireless implanted magnetic resonance probes for in vivo NMR. J Magn Reson 68:161–167 Schnall MD, Barlow C, Subramanian VH, Leigh JS (1986) Wireless implanted magnetic resonance probes for in vivo NMR. J Magn Reson 68:161–167
9.
Zurück zum Zitat Qian C, Duan Q, Dodd S, Koretsky A, Murphy-Boesch J (2016) Sensitivity enhancement of an inductively coupled local detector using a HEMT-based current amplifier. Magn Reson Med 75:2573–2578CrossRefPubMed Qian C, Duan Q, Dodd S, Koretsky A, Murphy-Boesch J (2016) Sensitivity enhancement of an inductively coupled local detector using a HEMT-based current amplifier. Magn Reson Med 75:2573–2578CrossRefPubMed
10.
Zurück zum Zitat Ahrens ET, Bulte JWM (2013) Tracking immune cells in vivo using magnetic resonance imaging. Nature Rev Immunol 13(10):755–763CrossRef Ahrens ET, Bulte JWM (2013) Tracking immune cells in vivo using magnetic resonance imaging. Nature Rev Immunol 13(10):755–763CrossRef
11.
Zurück zum Zitat Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23(8):983–987CrossRefPubMed Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23(8):983–987CrossRefPubMed
12.
Zurück zum Zitat Ahrens ET, Helfer BM, O’Hanlon CF, Schirda C (2014) Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn Reson Med 72:1696–1701CrossRefPubMedPubMedCentral Ahrens ET, Helfer BM, O’Hanlon CF, Schirda C (2014) Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn Reson Med 72:1696–1701CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Gaudet JM (2015) Tracking the fate of stem cell implants with fluorine-19 MRI. PLoS One 10(3):1–11CrossRef Gaudet JM (2015) Tracking the fate of stem cell implants with fluorine-19 MRI. PLoS One 10(3):1–11CrossRef
14.
Zurück zum Zitat Zhong J, Narsinh K, Morel PA, Xu H, Ahrens ET (2015) In vivo quantification of inflammation in experimental autoimmune encephalomyelitis rats using fluorine-19 magnetic resonance imaging reveals immune cell recruitment outside the nervous system. PLoS One 10(10):1–13 Zhong J, Narsinh K, Morel PA, Xu H, Ahrens ET (2015) In vivo quantification of inflammation in experimental autoimmune encephalomyelitis rats using fluorine-19 magnetic resonance imaging reveals immune cell recruitment outside the nervous system. PLoS One 10(10):1–13
15.
Zurück zum Zitat Ji Y, Waiczies H, Winter L, Neumanova P, Hofmann D, Rieger J, Mekle R, Waiczies S, Niendorf T (2015) Eight-channel transceiver RF coil array tailored for 1H/19F MR of the human knee and fluorinated drugs at 7.0 T. NMR Biomed 28(6):726–737CrossRefPubMed Ji Y, Waiczies H, Winter L, Neumanova P, Hofmann D, Rieger J, Mekle R, Waiczies S, Niendorf T (2015) Eight-channel transceiver RF coil array tailored for 1H/19F MR of the human knee and fluorinated drugs at 7.0 T. NMR Biomed 28(6):726–737CrossRefPubMed
16.
Zurück zum Zitat van Gorp JS, Seevinck PR, Andreychenko A, Raaijmakers AJ, Luijten PR, Viergever MA, Koopman M, Boer VO, Klomp DW (2015) 19F MRSI of capecitabine in the liver at 7 T using broadband transmit-receive antennas and dual-band RF pulses. NMR Biomed 28(11):1433–1442CrossRefPubMed van Gorp JS, Seevinck PR, Andreychenko A, Raaijmakers AJ, Luijten PR, Viergever MA, Koopman M, Boer VO, Klomp DW (2015) 19F MRSI of capecitabine in the liver at 7 T using broadband transmit-receive antennas and dual-band RF pulses. NMR Biomed 28(11):1433–1442CrossRefPubMed
17.
Zurück zum Zitat Klomp D, van Laarhoven H, Scheenen T, Kamm Y, Heerschap A (2007) Quantitative 19F MR spectroscopy at 3 T to detect heterogeneous capecitabine metabolism in human liver. NMR Biomed 20(5):485–492CrossRefPubMed Klomp D, van Laarhoven H, Scheenen T, Kamm Y, Heerschap A (2007) Quantitative 19F MR spectroscopy at 3 T to detect heterogeneous capecitabine metabolism in human liver. NMR Biomed 20(5):485–492CrossRefPubMed
18.
Zurück zum Zitat Nicodemus G, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng B Rev 14(2):149–165CrossRef Nicodemus G, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng B Rev 14(2):149–165CrossRef
20.
Zurück zum Zitat Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32:733–742CrossRefPubMed Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32:733–742CrossRefPubMed
21.
Zurück zum Zitat Jordan EC, Balmain KG (1968) Electromagnetic waves and radiating systems. Prentice-Hall, Englewood Cliffs, p 100 Jordan EC, Balmain KG (1968) Electromagnetic waves and radiating systems. Prentice-Hall, Englewood Cliffs, p 100
22.
Zurück zum Zitat Goette MJ, Lanza GM, Caruthers SD, Wickline SA (2015) Improved quantitative 19F MR molecular imaging with flip angle calibration and B 1-mapping compensation. J Magn Reson Imaging 42(2):488–494CrossRefPubMed Goette MJ, Lanza GM, Caruthers SD, Wickline SA (2015) Improved quantitative 19F MR molecular imaging with flip angle calibration and B 1-mapping compensation. J Magn Reson Imaging 42(2):488–494CrossRefPubMed
23.
Zurück zum Zitat Park BS, Sung KH, McGarrity J, Oh SH, Cao Z, Wang Z, Collins CM (2013) Slice-selective transmit array pulses for improvement in excitation uniformity and reduction of SAR. J Electromagn Anal Appl 5:205–212 Park BS, Sung KH, McGarrity J, Oh SH, Cao Z, Wang Z, Collins CM (2013) Slice-selective transmit array pulses for improvement in excitation uniformity and reduction of SAR. J Electromagn Anal Appl 5:205–212
24.
Zurück zum Zitat Waiczies S, Millward JM, Starke L, Delgado PR, Huelnhagen T, Prinz C, Marek D, Wecker D, Wissmann R, Koch SP, Boehm-Sturm P, Waiczies H, Niendorf T, Pohlmann A (2017) Enhanced fluorine-19 MRI sensitivity using a cryogenic radiofrequency probe: technical developments and ex vivo demonstration in a mouse model of neuroinflammation. Sci Rep 7(1):9808CrossRefPubMedPubMedCentral Waiczies S, Millward JM, Starke L, Delgado PR, Huelnhagen T, Prinz C, Marek D, Wecker D, Wissmann R, Koch SP, Boehm-Sturm P, Waiczies H, Niendorf T, Pohlmann A (2017) Enhanced fluorine-19 MRI sensitivity using a cryogenic radiofrequency probe: technical developments and ex vivo demonstration in a mouse model of neuroinflammation. Sci Rep 7(1):9808CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Waiczies H, Lepore S, Drechsler S, Qadri F, Purfurst B, Sydow K, Dathe M, Kuhne A, Lindel T, Hoffmann W, Pohlmann A, Niendorf T, Waiczies S (2013) Visualizing brain inflammation with a shingled-leg radio-frequency head probe for 19F/1H MRI. Sci Rep 3:1280CrossRefPubMedPubMedCentral Waiczies H, Lepore S, Drechsler S, Qadri F, Purfurst B, Sydow K, Dathe M, Kuhne A, Lindel T, Hoffmann W, Pohlmann A, Niendorf T, Waiczies S (2013) Visualizing brain inflammation with a shingled-leg radio-frequency head probe for 19F/1H MRI. Sci Rep 3:1280CrossRefPubMedPubMedCentral
Metadaten
Titel
Improvement of 19F MR image uniformity in a mouse model of cellular therapy using inductive coupling
verfasst von
Bu S. Park
Ge Ma
William T. Koch
Sunder S. Rajan
Manuel Mastromanolis
Johnny Lam
Kyung Sung
Brent McCright
Publikationsdatum
15.06.2018
Verlag
Springer International Publishing
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 1/2019
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-018-0693-9

Weitere Artikel der Ausgabe 1/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 1/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.