Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2018

01.04.2018 | Research Article

Improving fMRI in signal drop-out regions at 7 T by using tailored radio-frequency pulses: application to the ventral occipito-temporal cortex

verfasst von: Catarina Rua, Stephen J. Wastling, Mauro Costagli, Mark R. Symms, Laura Biagi, Mirco Cosottini, Alberto Del Guerra, Michela Tosetti, Gareth J. Barker

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Objective

Signal drop-off occurs in echo-planar imaging in inferior brain areas due to field gradients from susceptibility differences between air and tissue. Tailored-RF pulses based on a hyperbolic secant (HS) have been shown to partially recover signal at 3 T, but have not been tested at higher fields.

Materials and methods

The aim of this study was to compare the performance of an optimized tailored-RF gradient-echo echo-planar imaging (TRF GRE-EPI) sequence with standard GRE-EPI at 7 T, in a passive viewing of faces or objects fMRI paradigm in healthy subjects.

Results

Increased temporal-SNR (tSNR) was observed in the middle and inferior temporal lobes and orbitofrontal cortex of all subjects scanned, but elsewhere tSNR decreased relative to the standard acquisition. In the TRF GRE-EPI, increased functional signal was observed in the fusiform, lateral occipital cortex, and occipital pole, regions known to be part of the visual pathway involved in face-object perception.

Conclusion

This work highlights the potential of TRF approaches at 7 T. Paired with a reversed-gradient distortion correction to compensate for in-plane susceptibility gradients, it provides an improved acquisition strategy for future neurocognitive studies at ultra-high field imaging in areas suffering from static magnetic field inhomogeneities.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872CrossRefPubMedPubMedCentral Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Mansfield P (1997) Multi-planar image formation using NMR spin echoes. J Phys C: Solid State Phys 10:L55–L58CrossRef Mansfield P (1997) Multi-planar image formation using NMR spin echoes. J Phys C: Solid State Phys 10:L55–L58CrossRef
3.
Zurück zum Zitat Jezzard P, Clare S (1999) Sources of distortion in functional MRI data. Hum Brain Mapp 8(2–3):80–85CrossRefPubMed Jezzard P, Clare S (1999) Sources of distortion in functional MRI data. Hum Brain Mapp 8(2–3):80–85CrossRefPubMed
4.
5.
Zurück zum Zitat Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE (1997) Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. NeuroImage 6:156–167CrossRefPubMed Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE (1997) Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. NeuroImage 6:156–167CrossRefPubMed
6.
Zurück zum Zitat Jesmanowicz A, Biswal BB, Hyde JS (1999) Reduction in GR-EPI intravoxel dephasing using thin slices and short TE. In: Proceedings of the ISMRM scientific meeting, Philadelphia, p 1619 Jesmanowicz A, Biswal BB, Hyde JS (1999) Reduction in GR-EPI intravoxel dephasing using thin slices and short TE. In: Proceedings of the ISMRM scientific meeting, Philadelphia, p 1619
7.
Zurück zum Zitat Bellgowan PS, Bandettini PA, van Gelderen P, Martin A, Bodurka J (2006) Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction. NeuroImage 29(4):1244–1251CrossRefPubMed Bellgowan PS, Bandettini PA, van Gelderen P, Martin A, Bodurka J (2006) Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction. NeuroImage 29(4):1244–1251CrossRefPubMed
8.
Zurück zum Zitat Robinson SD, Pripfl J, Bauer H, Moser E (2008) The impact of EPI voxel size on SNR and BOLD sensitivity in the anterior medio-temporal lobe: a comparative group study of deactivation of the default mode. Magn Reson Mater Phy 21(4):279–290CrossRef Robinson SD, Pripfl J, Bauer H, Moser E (2008) The impact of EPI voxel size on SNR and BOLD sensitivity in the anterior medio-temporal lobe: a comparative group study of deactivation of the default mode. Magn Reson Mater Phy 21(4):279–290CrossRef
9.
Zurück zum Zitat Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for fMRI studies of the orbitofrontal cortex. NeuroImage 19(2):430–441CrossRefPubMed Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for fMRI studies of the orbitofrontal cortex. NeuroImage 19(2):430–441CrossRefPubMed
10.
Zurück zum Zitat Frahm J, Klaus-Dietmar M, Wolfgang H (1995) The effects of intravoxel dephasing and incomplete slice refocusing on susceptibility contrast in gradient-echo MRI. J Magn Reson 109(2):234–237CrossRef Frahm J, Klaus-Dietmar M, Wolfgang H (1995) The effects of intravoxel dephasing and incomplete slice refocusing on susceptibility contrast in gradient-echo MRI. J Magn Reson 109(2):234–237CrossRef
11.
Zurück zum Zitat Constable RT (1995) Functional MR imaging using gradient-echo echo-planar imaging in the presence of large static field inhomogeneities. J Magn Reson Imaging 5(6):746–752CrossRefPubMed Constable RT (1995) Functional MR imaging using gradient-echo echo-planar imaging in the presence of large static field inhomogeneities. J Magn Reson Imaging 5(6):746–752CrossRefPubMed
12.
Zurück zum Zitat Constable RT, Carpentier A, Pugh K, Westerveld M, Oszunar Y, Spencer DD (2000) Investigation of the human hippocampal formation using a randomized event-related paradigm and z-shimmed functional MRI. NeuroImage 12(1):55–62CrossRefPubMed Constable RT, Carpentier A, Pugh K, Westerveld M, Oszunar Y, Spencer DD (2000) Investigation of the human hippocampal formation using a randomized event-related paradigm and z-shimmed functional MRI. NeuroImage 12(1):55–62CrossRefPubMed
13.
Zurück zum Zitat Constable RT, Spencer DD (1999) Composite image formation in z-shimmed functional MR imaging. Magn Reson Med 42:110–117CrossRefPubMed Constable RT, Spencer DD (1999) Composite image formation in z-shimmed functional MR imaging. Magn Reson Med 42:110–117CrossRefPubMed
14.
Zurück zum Zitat Cordes D, Turski PA, Sorenson JA (2000) Compensation of susceptibility-induced signal loss in echo-planar imaging for functional applications. Magn Reson Imaging 18(9):1055–1068CrossRefPubMed Cordes D, Turski PA, Sorenson JA (2000) Compensation of susceptibility-induced signal loss in echo-planar imaging for functional applications. Magn Reson Imaging 18(9):1055–1068CrossRefPubMed
15.
Zurück zum Zitat Weiskopf N, Hutton C, Josephs O, Deichmann R (2006) Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. NeuroImage 33(2):493–504CrossRefPubMed Weiskopf N, Hutton C, Josephs O, Deichmann R (2006) Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. NeuroImage 33(2):493–504CrossRefPubMed
16.
Zurück zum Zitat Cho ZH, Ro YM (1992) Reduction of susceptibility artifact in gradient-echo imaging. Magn Reson Med 23:193–200CrossRefPubMed Cho ZH, Ro YM (1992) Reduction of susceptibility artifact in gradient-echo imaging. Magn Reson Med 23:193–200CrossRefPubMed
17.
Zurück zum Zitat Chung JY, Yoon HW, Kim YB, Park HW, Cho ZH (2009) Susceptibility compensated fMRI study using a tailored RF echo planar imaging sequence. J Magn Reson Imaging 29(1):221–228CrossRefPubMed Chung JY, Yoon HW, Kim YB, Park HW, Cho ZH (2009) Susceptibility compensated fMRI study using a tailored RF echo planar imaging sequence. J Magn Reson Imaging 29(1):221–228CrossRefPubMed
18.
Zurück zum Zitat Wastling S, Barker GJ (2014) Designing hyperbolic secant excitation pulses to reduce signal dropout in gradient-echo echo-planar imaging. Mag Reson Med 74(3):661–672CrossRef Wastling S, Barker GJ (2014) Designing hyperbolic secant excitation pulses to reduce signal dropout in gradient-echo echo-planar imaging. Mag Reson Med 74(3):661–672CrossRef
19.
Zurück zum Zitat Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL (2005) Comparison of physiological noise at 1.5, 3 and 7 T and optimization of fMRI acquisition parameters. NeuroImage 26(1):243–250CrossRefPubMed Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL (2005) Comparison of physiological noise at 1.5, 3 and 7 T and optimization of fMRI acquisition parameters. NeuroImage 26(1):243–250CrossRefPubMed
20.
Zurück zum Zitat van der Zwaag W, Francis S, Head K, Peters A, Gowland P, Morris P, Bowtell R (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. NeuroImage 47(4):1425–1434CrossRefPubMed van der Zwaag W, Francis S, Head K, Peters A, Gowland P, Morris P, Bowtell R (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. NeuroImage 47(4):1425–1434CrossRefPubMed
21.
Zurück zum Zitat Beisteiner R, Robinson S, Wurnig M, Hilbert M, Merksa K, Rath J et al (2011) Clinical fMRI: evidence for a 7 T benefit over 3T. NeuroImage 57(3):1015–1021CrossRefPubMedPubMedCentral Beisteiner R, Robinson S, Wurnig M, Hilbert M, Merksa K, Rath J et al (2011) Clinical fMRI: evidence for a 7 T benefit over 3T. NeuroImage 57(3):1015–1021CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Rua C, Costagli M, Symms MR, Biagi L, Donatelli G, Cosottini M, Del Guerra A, Tosetti M (2017) Characterization of high-resolution gradient echo and spin echo EPI for fMRI in the human visual cortex at 7T. Magn Reson Imaging 40:98–108CrossRefPubMed Rua C, Costagli M, Symms MR, Biagi L, Donatelli G, Cosottini M, Del Guerra A, Tosetti M (2017) Characterization of high-resolution gradient echo and spin echo EPI for fMRI in the human visual cortex at 7T. Magn Reson Imaging 40:98–108CrossRefPubMed
23.
Zurück zum Zitat Robitaille PM, Berliner L (2007) Ultra high field magnetic resonance imaging, vol 26. Springer US, New York Robitaille PM, Berliner L (2007) Ultra high field magnetic resonance imaging, vol 26. Springer US, New York
24.
Zurück zum Zitat Farzaneh F, Riederer SJ, Pelc NJ (1990) Analysis of T2 limitations and off-resonance effects on spatial resolution and artifacts in echo-planar imaging. Magn Reson Med 14(1):123–139CrossRefPubMed Farzaneh F, Riederer SJ, Pelc NJ (1990) Analysis of T2 limitations and off-resonance effects on spatial resolution and artifacts in echo-planar imaging. Magn Reson Med 14(1):123–139CrossRefPubMed
25.
Zurück zum Zitat Moser E, Stahlberg F, Ladd ME, Trattnig S (2012) 7-T MR—from research to clinical applications? NMR Biomed 25(5):695–716CrossRefPubMed Moser E, Stahlberg F, Ladd ME, Trattnig S (2012) 7-T MR—from research to clinical applications? NMR Biomed 25(5):695–716CrossRefPubMed
26.
Zurück zum Zitat Rua C, Wastling SJ, Costagli M, Biagi L, Symms MR, Del Guerra A, Cosottini M, Tosetti M, Barker GJ (2015) Demonstration of recovery of signal loss at 7T in gradient echo EPI using tailored-RF pulses. In: Proceedings of the ISMRM scientific meeting, Toronto, p 3917 Rua C, Wastling SJ, Costagli M, Biagi L, Symms MR, Del Guerra A, Cosottini M, Tosetti M, Barker GJ (2015) Demonstration of recovery of signal loss at 7T in gradient echo EPI using tailored-RF pulses. In: Proceedings of the ISMRM scientific meeting, Toronto, p 3917
27.
Zurück zum Zitat De Renzi E, Perani D, Carlesimo GA, Silveri MC, Fazio F (1994) Prosopagnosia can be associated with damage confined to the right hemisphere—an MRI and PET study and a review of the literature. Neuropsychol 32:893–902CrossRef De Renzi E, Perani D, Carlesimo GA, Silveri MC, Fazio F (1994) Prosopagnosia can be associated with damage confined to the right hemisphere—an MRI and PET study and a review of the literature. Neuropsychol 32:893–902CrossRef
28.
Zurück zum Zitat Puce A, Allison T, Asgari M, Gore JC, McCarthy G (1996) Differential sensitivity of human visual cortex to faces, letterings, and textures: a functional magnetic resonance imaging study. J Neurosci 16:5205–5215PubMed Puce A, Allison T, Asgari M, Gore JC, McCarthy G (1996) Differential sensitivity of human visual cortex to faces, letterings, and textures: a functional magnetic resonance imaging study. J Neurosci 16:5205–5215PubMed
29.
Zurück zum Zitat Kanwisher N, McDermott J, Chun MM (1997) The Fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–4311PubMed Kanwisher N, McDermott J, Chun MM (1997) The Fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–4311PubMed
30.
Zurück zum Zitat Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Neurosci 4(6):223–233CrossRef Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Neurosci 4(6):223–233CrossRef
31.
Zurück zum Zitat Rossion B, Caldara R, Seghier M, Schuller A-M, Lazeyras F, Mayer E (2003) A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126:2381–2395CrossRefPubMed Rossion B, Caldara R, Seghier M, Schuller A-M, Lazeyras F, Mayer E (2003) A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126:2381–2395CrossRefPubMed
32.
Zurück zum Zitat Pitcher D, Walsh V, Duchaine B (2011) The role of the occipital face area in the cortical face perception network. Exp Brain Res 209:481–493CrossRefPubMed Pitcher D, Walsh V, Duchaine B (2011) The role of the occipital face area in the cortical face perception network. Exp Brain Res 209:481–493CrossRefPubMed
33.
Zurück zum Zitat Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24(1):187–203CrossRefPubMed Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24(1):187–203CrossRefPubMed
34.
Zurück zum Zitat Grill-Spector K, Kanwisher N (2005) Visual Recognition: as soon as you know it is there, you know what it is. Psychol Sci 16(2):152–160CrossRefPubMed Grill-Spector K, Kanwisher N (2005) Visual Recognition: as soon as you know it is there, you know what it is. Psychol Sci 16(2):152–160CrossRefPubMed
35.
Zurück zum Zitat Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by the human lateral occipital complex. Science 293(5534):1506–1509CrossRefPubMed Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by the human lateral occipital complex. Science 293(5534):1506–1509CrossRefPubMed
36.
Zurück zum Zitat Wright P, Mougin O, Totman J, Peters A, Brookes M, Coxon R, Morris P, Clemence M, Francis S, Bowtell R, Gowland P (2008) Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. Magn Reson Mater Phy 21:121–130CrossRef Wright P, Mougin O, Totman J, Peters A, Brookes M, Coxon R, Morris P, Clemence M, Francis S, Bowtell R, Gowland P (2008) Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. Magn Reson Mater Phy 21:121–130CrossRef
37.
Zurück zum Zitat Yacoub E, Duong TQ, De Moortele V, Lindquist M, Adriany G, Kim SG, Uğurbil K, Hu X (2003) Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 49(4):655–664CrossRefPubMed Yacoub E, Duong TQ, De Moortele V, Lindquist M, Adriany G, Kim SG, Uğurbil K, Hu X (2003) Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 49(4):655–664CrossRefPubMed
38.
Zurück zum Zitat Jenkinson M, Bannister P, Brady JM, Smith SM (2002) Improved optimisation for the Robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2):825–841CrossRefPubMed Jenkinson M, Bannister P, Brady JM, Smith SM (2002) Improved optimisation for the Robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2):825–841CrossRefPubMed
39.
Zurück zum Zitat Sergent J, Ohta S, Macdonald B (1992) Functional neuroanatomy of face and object processing—a positron emission tomography study. Brain 115:15–36CrossRefPubMed Sergent J, Ohta S, Macdonald B (1992) Functional neuroanatomy of face and object processing—a positron emission tomography study. Brain 115:15–36CrossRefPubMed
40.
Zurück zum Zitat Gauthier I, Tarr MJ, Moylan J, Skudlarski P, Gore JC, Anderson AW (2000) The fusiform “face area” is part of a network that processes faces at the individual level. J Cogn Neurosci 12(3):495–504CrossRefPubMed Gauthier I, Tarr MJ, Moylan J, Skudlarski P, Gore JC, Anderson AW (2000) The fusiform “face area” is part of a network that processes faces at the individual level. J Cogn Neurosci 12(3):495–504CrossRefPubMed
42.
Zurück zum Zitat Rajimehr R, Young JC, Tootell RB (2009) An anterior temporal face patch in human cortex predicted my macaque maps. Proc Nat Acad Sci USA 106:1995–2000CrossRefPubMedPubMedCentral Rajimehr R, Young JC, Tootell RB (2009) An anterior temporal face patch in human cortex predicted my macaque maps. Proc Nat Acad Sci USA 106:1995–2000CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Gannister PR, De Luca M et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(S1):208–219CrossRef Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Gannister PR, De Luca M et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(S1):208–219CrossRef
44.
Zurück zum Zitat Worsley KJ (2001) Statistical analysis of activation images. In: Matthews PM, Smith SM, Jezzard P (eds) Functional MRI: an introduction to methods. Oxford University Press, Oxford, pp 251–270 Worsley KJ (2001) Statistical analysis of activation images. In: Matthews PM, Smith SM, Jezzard P (eds) Functional MRI: an introduction to methods. Oxford University Press, Oxford, pp 251–270
45.
Zurück zum Zitat Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20:870–888CrossRefPubMed Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20:870–888CrossRefPubMed
47.
Zurück zum Zitat Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Human BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31:968–980CrossRefPubMed Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Human BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31:968–980CrossRefPubMed
48.
Zurück zum Zitat Kriegeskorte N, Formisano E, Sorger B, Goebel R (2007) Individual faces elicit distinct response patterns in human anterior temporal cortex. Proc Natl Acad Sci USA 104(51):20600–20605CrossRefPubMedPubMedCentral Kriegeskorte N, Formisano E, Sorger B, Goebel R (2007) Individual faces elicit distinct response patterns in human anterior temporal cortex. Proc Natl Acad Sci USA 104(51):20600–20605CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Yang H, Susilo T, Duchaine B (2014) The anterior temporal face area contains invariant representations of face identity that can persist despite the loss of right FFA and OFA. Cereb Cortex 26(3):1096–1107CrossRefPubMed Yang H, Susilo T, Duchaine B (2014) The anterior temporal face area contains invariant representations of face identity that can persist despite the loss of right FFA and OFA. Cereb Cortex 26(3):1096–1107CrossRefPubMed
51.
Zurück zum Zitat Uddin LQ, Kaplan JT, Molnar-Szakacs I, Zaidel E, Iacoboni M (2005) Self-face recognition activates a frontoparietal “mirror” network in the right hemisphere: an event-related fMRI study. NeuroImage 25:926–935CrossRefPubMed Uddin LQ, Kaplan JT, Molnar-Szakacs I, Zaidel E, Iacoboni M (2005) Self-face recognition activates a frontoparietal “mirror” network in the right hemisphere: an event-related fMRI study. NeuroImage 25:926–935CrossRefPubMed
52.
Zurück zum Zitat Robert Powell HW, Koepp MJ, Richardson MP, Symms MR, Thompson PJ, Duncan JS (2004) The application of functional MRI of memory in temporal lobe epilepsy: a clinical review. Epilepsia 45(7):855–863CrossRef Robert Powell HW, Koepp MJ, Richardson MP, Symms MR, Thompson PJ, Duncan JS (2004) The application of functional MRI of memory in temporal lobe epilepsy: a clinical review. Epilepsia 45(7):855–863CrossRef
53.
Zurück zum Zitat Benke T, Köylü B, Visani P, Karner E, Brenneis C, Bartha L et al (2006) Language lateralization in temporal lobe epilepsy: a comparison between fMRI and the Wada Test. Epilepsia 47(8):1308–1319CrossRefPubMed Benke T, Köylü B, Visani P, Karner E, Brenneis C, Bartha L et al (2006) Language lateralization in temporal lobe epilepsy: a comparison between fMRI and the Wada Test. Epilepsia 47(8):1308–1319CrossRefPubMed
54.
Zurück zum Zitat Devlin JT, Russell RP, Davis MH, Price CJ, Wilson J, Moss HE, Matthews PM, Tyler LK (2000) Susceptibility induced loss of signal: comparing PET and fMRI on a semantic task. NeuroImage 11:589–600CrossRefPubMed Devlin JT, Russell RP, Davis MH, Price CJ, Wilson J, Moss HE, Matthews PM, Tyler LK (2000) Susceptibility induced loss of signal: comparing PET and fMRI on a semantic task. NeuroImage 11:589–600CrossRefPubMed
56.
Zurück zum Zitat Bonelli SB, Powell RH, Yogarajah M, Samson RS, Symms MR, Thompson PJ, Koepp MJ, Duncan JS (2010) Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain 133(4):1186–1199CrossRefPubMedPubMedCentral Bonelli SB, Powell RH, Yogarajah M, Samson RS, Symms MR, Thompson PJ, Koepp MJ, Duncan JS (2010) Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain 133(4):1186–1199CrossRefPubMedPubMedCentral
Metadaten
Titel
Improving fMRI in signal drop-out regions at 7 T by using tailored radio-frequency pulses: application to the ventral occipito-temporal cortex
verfasst von
Catarina Rua
Stephen J. Wastling
Mauro Costagli
Mark R. Symms
Laura Biagi
Mirco Cosottini
Alberto Del Guerra
Michela Tosetti
Gareth J. Barker
Publikationsdatum
01.04.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 2/2018
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-017-0652-x

Weitere Artikel der Ausgabe 2/2018

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.