Skip to main content
Erschienen in:

09.09.2024 | Original Communication

Improving prediction models of amyotrophic lateral sclerosis (ALS) using polygenic, pre-existing conditions, and survey-based risk scores in the UK Biobank

verfasst von: Weijia Jin, Jonathan Boss, Kelly M. Bakulski, Stephen A. Goutman, Eva L. Feldman, Lars G. Fritsche, Bhramar Mukherjee

Erschienen in: Journal of Neurology | Ausgabe 10/2024

Einloggen, um Zugang zu erhalten

Abstract

Background and objectives

Amyotrophic lateral sclerosis (ALS) causes profound impairments in neurological function, and a cure for this devastating disease remains elusive. This study aimed to identify pre-disposing genetic, phenotypic, and exposure-related factors for amyotrophic lateral sclerosis using multi-modal data and assess their joint predictive potential.

Methods

Utilizing data from the UK (United Kingdom) Biobank, we analyzed an unrelated set of 292 ALS cases and 408,831 controls of European descent. Two polygenic risk scores (PRS) are constructed: “GWAS Hits PRS” and “PRS-CS,” reflecting oligogenic and polygenic ALS risk profiles, respectively. Time-restricted phenome-wide association studies (PheWAS) were performed to identify pre-existing conditions increasing ALS risk, integrated into phenotypic risk scores (PheRS). A poly-exposure score (“PXS”) captures the influence of environmental exposures measured through survey questionnaires. We evaluate the performance of these scores for predicting ALS incidence and stratifying risk, adjusting for baseline demographic covariates.

Results

Both PRSs modestly predicted ALS diagnosis but with increased predictive power when combined (covariate-adjusted receiver operating characteristic [AAUC] = 0.584 [0.525, 0.639]). PheRS incorporated diagnoses 1 year before ALS onset (PheRS1) modestly discriminated cases from controls (AAUC = 0.515 [0.472, 0.564]). The “PXS” did not significantly predict ALS. However, a model incorporating PRSs and PheRS1 improved the prediction of ALS (AAUC = 0.604 [0.547, 0.667]), outperforming a model combining all risk scores. This combined risk score identified the top 10% of risk score distribution with a fourfold higher ALS risk (95% CI [2.04, 7.73]) versus those in the 40%–60% range.

Discussion

By leveraging UK Biobank data, our study uncovers pre-disposing ALS factors, highlighting the improved effectiveness of multi-factorial prediction models to identify individuals at highest risk for ALS.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
3.
Zurück zum Zitat Goutman SA et al (2022) Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol 21(5):465–479PubMedPubMedCentralCrossRef Goutman SA et al (2022) Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol 21(5):465–479PubMedPubMedCentralCrossRef
5.
6.
7.
Zurück zum Zitat Pape JA, Grose JH (2020) The effects of diet and sex in amyotrophic lateral sclerosis. Rev Neurol (Paris) 176(5):301–315PubMedCrossRef Pape JA, Grose JH (2020) The effects of diet and sex in amyotrophic lateral sclerosis. Rev Neurol (Paris) 176(5):301–315PubMedCrossRef
8.
Zurück zum Zitat McCombe PA, Henderson RD (2010) Effects of gender in amyotrophic lateral sclerosis. Gend Med 7(6):557–570PubMedCrossRef McCombe PA, Henderson RD (2010) Effects of gender in amyotrophic lateral sclerosis. Gend Med 7(6):557–570PubMedCrossRef
12.
Zurück zum Zitat Zufiria M et al (2016) ALS: a bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 142:104–129PubMedCrossRef Zufiria M et al (2016) ALS: a bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 142:104–129PubMedCrossRef
13.
Zurück zum Zitat Grollemund V et al (2019) Machine learning in amyotrophic lateral sclerosis: achievements, pitfalls, and future directions. Front Neurosci 13:135PubMedPubMedCentralCrossRef Grollemund V et al (2019) Machine learning in amyotrophic lateral sclerosis: achievements, pitfalls, and future directions. Front Neurosci 13:135PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Yin B et al (2019) Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype. Bioinformatics 35(14):i538–i547PubMedPubMedCentralCrossRef Yin B et al (2019) Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype. Bioinformatics 35(14):i538–i547PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Dou J et al (2023) Cumulative genetic score and C9orf72 repeat status independently contribute to amyotrophic lateral sclerosis risk in 2 case-control studies. Neurol Genet 9(4):e200079PubMedPubMedCentralCrossRef Dou J et al (2023) Cumulative genetic score and C9orf72 repeat status independently contribute to amyotrophic lateral sclerosis risk in 2 case-control studies. Neurol Genet 9(4):e200079PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Tang M et al (2019) Model-based and model-free techniques for amyotrophic lateral sclerosis diagnostic prediction and patient clustering. Neuroinformatics 17(3):407–421PubMedPubMedCentralCrossRef Tang M et al (2019) Model-based and model-free techniques for amyotrophic lateral sclerosis diagnostic prediction and patient clustering. Neuroinformatics 17(3):407–421PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Sudlow C et al (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12(3):e1001779PubMedPubMedCentralCrossRef Sudlow C et al (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12(3):e1001779PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Uher R, Zwicker A (2017) Etiology in psychiatry: embracing the reality of poly-gene-environmental causation of mental illness. World Psychiatry 16(2):121–129PubMedPubMedCentralCrossRef Uher R, Zwicker A (2017) Etiology in psychiatry: embracing the reality of poly-gene-environmental causation of mental illness. World Psychiatry 16(2):121–129PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Salvatore M et al (2021) Phenotype risk scores (PheRS) for pancreatic cancer using time-stamped electronic health record data: Discovery and validation in two large biobanks. J Biomed Inform 113:103652PubMedCrossRef Salvatore M et al (2021) Phenotype risk scores (PheRS) for pancreatic cancer using time-stamped electronic health record data: Discovery and validation in two large biobanks. J Biomed Inform 113:103652PubMedCrossRef
21.
Zurück zum Zitat Worms PM (2001) The epidemiology of motor neuron diseases: a review of recent studies. J Neurol Sci 191(1–2):3–9PubMedCrossRef Worms PM (2001) The epidemiology of motor neuron diseases: a review of recent studies. J Neurol Sci 191(1–2):3–9PubMedCrossRef
22.
Zurück zum Zitat Camacho-Soto A et al (2022) Incidence of amyotrophic lateral sclerosis in older adults. Muscle Nerve 66(3):289–296PubMedCrossRef Camacho-Soto A et al (2022) Incidence of amyotrophic lateral sclerosis in older adults. Muscle Nerve 66(3):289–296PubMedCrossRef
23.
Zurück zum Zitat Bycroft C et al (2017) Genome-wide genetic data on ~500,000 UK biobank participants. bioRxiv 12:e1001779 Bycroft C et al (2017) Genome-wide genetic data on ~500,000 UK biobank participants. bioRxiv 12:e1001779
24.
26.
Zurück zum Zitat Horrocks S et al (2017) Accuracy of routinely-collected healthcare data for identifying motor neurone disease cases: a systematic review. PLoS ONE 12(2):e0172639PubMedPubMedCentralCrossRef Horrocks S et al (2017) Accuracy of routinely-collected healthcare data for identifying motor neurone disease cases: a systematic review. PLoS ONE 12(2):e0172639PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Denny JC et al (2010) PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 26(9):1205–1210PubMedPubMedCentralCrossRef Denny JC et al (2010) PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 26(9):1205–1210PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Kosmidis I, Clovis Kenne Pagui E, Sartori N (2018) Mean and median bias reduction in generalized linear models. arXiv e-prints. arXiv:1804.04085 Kosmidis I, Clovis Kenne Pagui E, Sartori N (2018) Mean and median bias reduction in generalized linear models. arXiv e-prints. arXiv:​1804.​04085
34.
Zurück zum Zitat He Y et al (2021) Comparisons of polyexposure, polygenic, and clinical risk scores in risk prediction of type 2 diabetes. Diabetes Care 44(4):935–943PubMedPubMedCentralCrossRef He Y et al (2021) Comparisons of polyexposure, polygenic, and clinical risk scores in risk prediction of type 2 diabetes. Diabetes Care 44(4):935–943PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat van Buuren S, Groothuis-Oudshoorn K (2011) mice: multivariate imputation by chained equations in R. J Stat Softw 45(3):1–67CrossRef van Buuren S, Groothuis-Oudshoorn K (2011) mice: multivariate imputation by chained equations in R. J Stat Softw 45(3):1–67CrossRef
36.
Zurück zum Zitat Rodriguez-Alvarez MX, Inacio V (2020) ROCnReg: ROC curve inference with and without covariates Rodriguez-Alvarez MX, Inacio V (2020) ROCnReg: ROC curve inference with and without covariates
37.
Zurück zum Zitat Wigand B et al (2022) Characteristics of pain and the burden it causes in patients with amyotrophic lateral sclerosis—a longitudinal study. Amyotroph Lateral Scler Frontotemporal Degener 23(3–4):284–291PubMedCrossRef Wigand B et al (2022) Characteristics of pain and the burden it causes in patients with amyotrophic lateral sclerosis—a longitudinal study. Amyotroph Lateral Scler Frontotemporal Degener 23(3–4):284–291PubMedCrossRef
39.
Zurück zum Zitat Kawai S et al (2003) A study of the early stage of dysphagia in amyotrophic lateral sclerosis. Dysphagia 18(1):1–8PubMedCrossRef Kawai S et al (2003) A study of the early stage of dysphagia in amyotrophic lateral sclerosis. Dysphagia 18(1):1–8PubMedCrossRef
40.
Zurück zum Zitat Morrice JR, Gregory-Evans CY, Shaw CA (2017) Necroptosis in amyotrophic lateral sclerosis and other neurological disorders. Biochim Biophys Acta Mol Basis Dis 1863(2):347–353PubMedCrossRef Morrice JR, Gregory-Evans CY, Shaw CA (2017) Necroptosis in amyotrophic lateral sclerosis and other neurological disorders. Biochim Biophys Acta Mol Basis Dis 1863(2):347–353PubMedCrossRef
41.
Zurück zum Zitat Restuadi R et al (2022) Polygenic risk score analysis for amyotrophic lateral sclerosis leveraging cognitive performance, educational attainment and schizophrenia. Eur J Hum Genet 30(5):532–539PubMedCrossRef Restuadi R et al (2022) Polygenic risk score analysis for amyotrophic lateral sclerosis leveraging cognitive performance, educational attainment and schizophrenia. Eur J Hum Genet 30(5):532–539PubMedCrossRef
42.
Zurück zum Zitat Dorst J, Ludolph AC, Huebers A (2018) Disease-modifying and symptomatic treatment of amyotrophic lateral sclerosis. Ther Adv Neurol Disord 11:1756285617734734PubMedCrossRef Dorst J, Ludolph AC, Huebers A (2018) Disease-modifying and symptomatic treatment of amyotrophic lateral sclerosis. Ther Adv Neurol Disord 11:1756285617734734PubMedCrossRef
43.
Zurück zum Zitat Schoeler T et al (2023) Participation bias in the UK Biobank distorts genetic associations and downstream analyses. Nat Hum Behav 7(7):1216–1227PubMedPubMedCentralCrossRef Schoeler T et al (2023) Participation bias in the UK Biobank distorts genetic associations and downstream analyses. Nat Hum Behav 7(7):1216–1227PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Smith EN et al (2024) Plasma neurofilament light levels show elevation two years prior to diagnosis of amyotrophic lateral sclerosis in the UK Biobank. Amyotroph Lateral Scler Frontotemporal Degener 25(1–2):170–176PubMedCrossRef Smith EN et al (2024) Plasma neurofilament light levels show elevation two years prior to diagnosis of amyotrophic lateral sclerosis in the UK Biobank. Amyotroph Lateral Scler Frontotemporal Degener 25(1–2):170–176PubMedCrossRef
46.
Zurück zum Zitat Faghri F et al (2022) Identifying and predicting amyotrophic lateral sclerosis clinical subgroups: a population-based machine-learning study. Lancet Digit Health 4(5):e359–e369PubMedPubMedCentralCrossRef Faghri F et al (2022) Identifying and predicting amyotrophic lateral sclerosis clinical subgroups: a population-based machine-learning study. Lancet Digit Health 4(5):e359–e369PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Benatar M et al (2018) Neurofilament light: a candidate biomarker of presymptomatic amyotrophic lateral sclerosis and phenoconversion. Ann Neurol 84(1):130–139PubMedPubMedCentralCrossRef Benatar M et al (2018) Neurofilament light: a candidate biomarker of presymptomatic amyotrophic lateral sclerosis and phenoconversion. Ann Neurol 84(1):130–139PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Bennett SA et al (2019) Epigenetics in amyotrophic lateral sclerosis: a role for histone post-translational modifications in neurodegenerative disease. Transl Res 204:19–30PubMedCrossRef Bennett SA et al (2019) Epigenetics in amyotrophic lateral sclerosis: a role for histone post-translational modifications in neurodegenerative disease. Transl Res 204:19–30PubMedCrossRef
51.
Zurück zum Zitat Vu LT, Bowser R (2017) Fluid-based biomarkers for amyotrophic lateral sclerosis. Neurotherapeutics 14(1):119–134PubMedCrossRef Vu LT, Bowser R (2017) Fluid-based biomarkers for amyotrophic lateral sclerosis. Neurotherapeutics 14(1):119–134PubMedCrossRef
Metadaten
Titel
Improving prediction models of amyotrophic lateral sclerosis (ALS) using polygenic, pre-existing conditions, and survey-based risk scores in the UK Biobank
verfasst von
Weijia Jin
Jonathan Boss
Kelly M. Bakulski
Stephen A. Goutman
Eva L. Feldman
Lars G. Fritsche
Bhramar Mukherjee
Publikationsdatum
09.09.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 10/2024
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-024-12644-2

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Schlaganfall oder Schlaganfall-Imitator?

Ein breites Spektrum von Erkrankungen kann einen Schlaganfall vortäuschen. Bei der notwendigen schnellen Unterscheidung zwischen solchen „stroke mimics“ und echten Schlaganfällen können einige klinische Faktoren und Symptome unterstützend herangezogen werden. 

Ein pulverisierter Plastiklöffel im Gehirn

Das menschliche Gehirn besteht zu etwa 0,5% aus Nanoplastik — Tendenz weiter steigend. Nach Resultaten eine Autopsiestudie reichert sich Plastik im Gehirn 10- bis 30-fach stärker an als in anderen Organen — mit bislang noch völlig unklaren Folgen.

Schlaganfall durch wandernde A. carotis interna

Die Thrombolyse nützte nichts, vielmehr war eine Teilresektion des Zungenbeins nötig: Es hatte eine verlagerte Carotis interna komprimiert und so bei einem älteren Mann einen Schlaganfall ausgelöst. Per Bildgebung lässt sich eine solche Ursache manchmal nur schwer nachweisen.

Epileptischer Anfall nach Darmreinigung

Die Darmreinigung vor einer Koloskopie führte einen älteren Mann auf die Intensivstation: Seine Natriumwerte waren durch die Prozedur so gesunken, dass er Bewusstseinstrübungen und Krampfanfälle entwickelte.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.