Skip to main content
Erschienen in: neurogenetics 4/2015

01.10.2015 | Original Article

In silico analysis of SIGMAR1 variant (rs4879809) segregating in a consanguineous Pakistani family showing amyotrophic lateral sclerosis without frontotemporal lobar dementia

verfasst von: Muhammad Ikram Ullah, Arsalan Ahmad, Syed Irfan Raza, Ali Amar, Amjad Ali, Attya Bhatti, Peter John, Aisha Mohyuddin, Wasim Ahmad, Muhammad Jawad Hassan

Erschienen in: Neurogenetics | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting upper motor neurons in the brain and lower motor neurons in the brain stem and spinal cord, resulting in fatal paralysis. It has been found to be associated with frontotemporal lobar degeneration (FTLD). In the present study, we have described homozygosity mapping and gene sequencing in a consanguineous autosomal recessive Pakistani family showing non-juvenile ALS without signs of FTLD. Gene mapping was carried out in all recruited family members using microsatellite markers, and linkage was established with sigma non-opioid intracellular receptor 1 (SIGMAR1) gene at chromosome 9p13.2. Gene sequencing of SIGMAR1 revealed a novel 3′-UTR nucleotide variation c.672*31A>G (rs4879809) segregating with disease in this family. The C9ORF72 repeat region in intron 1, previously implicated in a related phenotype, was excluded through linkage, and further confirmation of exclusion was obtained by amplifying intron 1 of C9ORF72 with multiple primers in affected individuals and controls. In silico analysis was carried out to explore the possible role of 3′-UTR variant of SIGMAR1 in ALS. The Regulatory RNA motif and Element Finder program revealed disturbance in miRNA (hsa-miR-1205) binding site due to this variation. ESEFinder analysis showed new SRSF1 and SRSF1-IgM-BRCA1 binding sites with significant scores due to this variation. Our results indicate that the 3′-UTR SIGMAR1 variant c.672*31A>G may have a role in the pathogenesis of ALS in this family.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Burrell JR, Kiernan MC, Vucic S, Hodges JR (2011) Motor neuron dysfunction in frontotemporal dementia. Brain 134:2582–2594CrossRefPubMed Burrell JR, Kiernan MC, Vucic S, Hodges JR (2011) Motor neuron dysfunction in frontotemporal dementia. Brain 134:2582–2594CrossRefPubMed
2.
Zurück zum Zitat Fecto F, Siddique T (2011) SIGMAR1 mutations, genetic heterogeneity at the chromosome 9p locus, and the expanding etiological diversity of amyotrophic lateral sclerosis. Ann Neurol 70:867–870CrossRefPubMed Fecto F, Siddique T (2011) SIGMAR1 mutations, genetic heterogeneity at the chromosome 9p locus, and the expanding etiological diversity of amyotrophic lateral sclerosis. Ann Neurol 70:867–870CrossRefPubMed
3.
Zurück zum Zitat Byrne S, Walsh C, Lynch C et al (2011) Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 82:623–627CrossRefPubMed Byrne S, Walsh C, Lynch C et al (2011) Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 82:623–627CrossRefPubMed
4.
Zurück zum Zitat Millecamps S, Salachas F, Cazeneuve C et al (2010) SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet 47:554–560CrossRefPubMed Millecamps S, Salachas F, Cazeneuve C et al (2010) SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet 47:554–560CrossRefPubMed
6.
Zurück zum Zitat van Es MA, Dahlberg C, Birve A, Veldink JH, van den Berg LH, Andersen PM (2010) Large scale SOD1 mutation screening provides evidence for genetic heterogeneity in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 81:562–566CrossRefPubMed van Es MA, Dahlberg C, Birve A, Veldink JH, van den Berg LH, Andersen PM (2010) Large scale SOD1 mutation screening provides evidence for genetic heterogeneity in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 81:562–566CrossRefPubMed
7.
Zurück zum Zitat Kwiatkowski TJ Jr, Bosco DA, Leclerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208CrossRefPubMed Kwiatkowski TJ Jr, Bosco DA, Leclerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208CrossRefPubMed
8.
Zurück zum Zitat Majounie E, Renton AE, Mok K et al (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11:323–330PubMedCentralCrossRefPubMed Majounie E, Renton AE, Mok K et al (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11:323–330PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Tagashira H, Shinoda Y, Shioda N, Fukunaga K (2014) Methyl pyruvate rescues mitochondrial damage caused by SIGMAR1 mutation related to amyotrophic lateral sclerosis. Biochim Biophys Acta 1840:3320–3334CrossRefPubMed Tagashira H, Shinoda Y, Shioda N, Fukunaga K (2014) Methyl pyruvate rescues mitochondrial damage caused by SIGMAR1 mutation related to amyotrophic lateral sclerosis. Biochim Biophys Acta 1840:3320–3334CrossRefPubMed
10.
Zurück zum Zitat Su XW, Broach JR, Connor JR, Gerhard GS, Simmons Z (2014) Genetic heterogeneity of amyotrophic lateral sclerosis: implications for clinical practice and research. Muscle Nerve 49:786–803CrossRefPubMed Su XW, Broach JR, Connor JR, Gerhard GS, Simmons Z (2014) Genetic heterogeneity of amyotrophic lateral sclerosis: implications for clinical practice and research. Muscle Nerve 49:786–803CrossRefPubMed
11.
Zurück zum Zitat Luty AA, Kwok JB, Dobson-Stone C et al (2010) Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease. Ann Neurol 68:639–649CrossRefPubMed Luty AA, Kwok JB, Dobson-Stone C et al (2010) Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease. Ann Neurol 68:639–649CrossRefPubMed
12.
Zurück zum Zitat Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca (2+) signaling and cell survival. Cell 131:596–610CrossRefPubMed Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca (2+) signaling and cell survival. Cell 131:596–610CrossRefPubMed
13.
Zurück zum Zitat Shioda N, Ishikawa K, Tagashira H, Ishizuka T, Yawo H, Fukunaga K (2012) Expression of a truncated form of the endoplasmic reticulum chaperone protein, σ1 receptor, promotes mitochondrial energy depletion and apoptosis. J Biol Chem 287:23318–23331PubMedCentralCrossRefPubMed Shioda N, Ishikawa K, Tagashira H, Ishizuka T, Yawo H, Fukunaga K (2012) Expression of a truncated form of the endoplasmic reticulum chaperone protein, σ1 receptor, promotes mitochondrial energy depletion and apoptosis. J Biol Chem 287:23318–23331PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Mavlyutov TA, Epstein ML, Andersen KA, Ziskind-Conhaim L, Ruoho AE (2010) The sigma-1 receptor is enriched in postsynaptic sites of C-terminals in mouse motoneurons. An anatomical and behavioral study. Neurosci 167:247–255CrossRef Mavlyutov TA, Epstein ML, Andersen KA, Ziskind-Conhaim L, Ruoho AE (2010) The sigma-1 receptor is enriched in postsynaptic sites of C-terminals in mouse motoneurons. An anatomical and behavioral study. Neurosci 167:247–255CrossRef
15.
Zurück zum Zitat Morita M, Al-Chalabi A, Andersen PM et al (2006) A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66:839–844CrossRefPubMed Morita M, Al-Chalabi A, Andersen PM et al (2006) A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66:839–844CrossRefPubMed
16.
Zurück zum Zitat Belzil VV, Daoud H, Camu W, Strong MJ, Dion PA, Rouleau GA (2013) Genetic analysis of SIGMAR1 as a cause of familial ALS with dementia. Eur J Hum Genet 21:237–239PubMedCentralCrossRefPubMed Belzil VV, Daoud H, Camu W, Strong MJ, Dion PA, Rouleau GA (2013) Genetic analysis of SIGMAR1 as a cause of familial ALS with dementia. Eur J Hum Genet 21:237–239PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268PubMedCentralCrossRefPubMed Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256PubMedCentralCrossRefPubMed DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256PubMedCentralCrossRefPubMed
19.
20.
21.
Zurück zum Zitat Hassan MJ, Chishti MS, Jamal SM, Tariq M, Ahmad W (2008) A syndromic form of autosomal recessive congenital microcephaly (Jawad syndrome) maps to chromosome 18p11.22-q11.2. Hum Genet 123:77–82CrossRefPubMed Hassan MJ, Chishti MS, Jamal SM, Tariq M, Ahmad W (2008) A syndromic form of autosomal recessive congenital microcephaly (Jawad syndrome) maps to chromosome 18p11.22-q11.2. Hum Genet 123:77–82CrossRefPubMed
22.
Zurück zum Zitat Chang TH, Huang HY, Hsu JB, Weng SL, Horng JT, Huang HD (2013) An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC bioinformatics 14(2):S4 Chang TH, Huang HY, Hsu JB, Weng SL, Horng JT, Huang HD (2013) An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC bioinformatics 14(2):S4
23.
Zurück zum Zitat Al-Saif A, Al-Mohanna F, Bohlega S (2011) A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol 70:913–919CrossRefPubMed Al-Saif A, Al-Mohanna F, Bohlega S (2011) A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol 70:913–919CrossRefPubMed
24.
Zurück zum Zitat Dobson-Stone C, Luty AA, Thompson EM et al (2013) Frontotemporal dementia-amyotrophic lateral sclerosis syndrome locus on chromosome 16p12.1-q12.2: genetic, clinical and neuropathological analysis. Acta Neuropathol 125(4):523–533PubMedCentralCrossRefPubMed Dobson-Stone C, Luty AA, Thompson EM et al (2013) Frontotemporal dementia-amyotrophic lateral sclerosis syndrome locus on chromosome 16p12.1-q12.2: genetic, clinical and neuropathological analysis. Acta Neuropathol 125(4):523–533PubMedCentralCrossRefPubMed
Metadaten
Titel
In silico analysis of SIGMAR1 variant (rs4879809) segregating in a consanguineous Pakistani family showing amyotrophic lateral sclerosis without frontotemporal lobar dementia
verfasst von
Muhammad Ikram Ullah
Arsalan Ahmad
Syed Irfan Raza
Ali Amar
Amjad Ali
Attya Bhatti
Peter John
Aisha Mohyuddin
Wasim Ahmad
Muhammad Jawad Hassan
Publikationsdatum
01.10.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Neurogenetics / Ausgabe 4/2015
Print ISSN: 1364-6745
Elektronische ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-015-0453-1

Weitere Artikel der Ausgabe 4/2015

neurogenetics 4/2015 Zur Ausgabe

Acknowledgement to Referees

Acknowledgement to Referees 2014/2015

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.