Skip to main content
Erschienen in: Medical Oncology 5/2019

01.05.2019 | Original Paper

In silico identification of key genes and signaling pathways targeted by a panel of signature microRNAs in prostate cancer

verfasst von: Meghna M. Baruah, Neeti Sharma

Erschienen in: Medical Oncology | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Accumulating evidence have suggested that some microRNAs are aberrantly expressed in prostate cancer. In our previous work, we had identified a panel of four differentially expressed microRNAs in prostate cancer. In the present study, we have investigated common molecular targets of this panel of miRNAs (DEMs) and key hub genes that can serve as potential candidate biomarkers in the pathogenesis and progression of prostate cancer. A joint bioinformatics approach was employed to identify differentially expressed genes (DEGs) in prostate cancer. Gene enrichment analysis followed by the protein–protein interaction (PPI) network construction and selection of hub genes was further performed using String and Cytoscape, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the identified hub genes was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID) tool. In total, 496 genes were identified to be common targets of DEMs in prostate cancer and 13 key hub genes were identified from three modules of the PPI network of the DEGs. Further top five genes viz Rhoa, PI3KCA, CDC42, MAPK3, TP53 were used for Enrichment analysis which revealed their association with vital cellular and functional pathways in prostate cancer indicating their potential as candidate biomarkers in prostate cancer.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
3.
Zurück zum Zitat Semjonow A, Brandt B, Oberpenning F, Roth S, Hertle L. Discordance of assay methods creates pitfalls for the interpretation of prostate-specific antigen values. Prostate. 1996;29(S7):3–16.CrossRef Semjonow A, Brandt B, Oberpenning F, Roth S, Hertle L. Discordance of assay methods creates pitfalls for the interpretation of prostate-specific antigen values. Prostate. 1996;29(S7):3–16.CrossRef
4.
Zurück zum Zitat Filella X, Foj L, Augé JM, Molina R, Alcover J. Clinical utility of % p2PSA and prostate health index in the detection of prostate cancer. Clin Chem Lab Med (CCLM). 2014;52(9):1347–55.CrossRef Filella X, Foj L, Augé JM, Molina R, Alcover J. Clinical utility of % p2PSA and prostate health index in the detection of prostate cancer. Clin Chem Lab Med (CCLM). 2014;52(9):1347–55.CrossRef
5.
Zurück zum Zitat Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, Crowley JJ. Prevalence of prostate cancer among men with a prostate-specific antigen level ≤ 4.0 ng per milliliter. N Eng. J Med. 2004;350(22):2239–46. Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, Crowley JJ. Prevalence of prostate cancer among men with a prostate-specific antigen level ≤ 4.0 ng per milliliter. N Eng. J Med. 2004;350(22):2239–46.
6.
Zurück zum Zitat Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. BBA Mol Cell Res. 2010;1803(11):1231–43. Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. BBA Mol Cell Res. 2010;1803(11):1231–43.
7.
Zurück zum Zitat Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.PubMedCrossRef Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.PubMedCrossRef
11.
Zurück zum Zitat Singh AN, Sharma N. In silico Meta-Analysis of Circulatory microRNAs in Prostate Cancer. J Anal Oncol. 2017;6(2):107–16.CrossRef Singh AN, Sharma N. In silico Meta-Analysis of Circulatory microRNAs in Prostate Cancer. J Anal Oncol. 2017;6(2):107–16.CrossRef
13.
Zurück zum Zitat Sita-Lumsden A, Dart DA, Waxman J, Bevan CL. Circulating microRNAs as potential new biomarkers for prostate cancer. Br J Cancer. 2013;108(10):1925.PubMedPubMedCentralCrossRef Sita-Lumsden A, Dart DA, Waxman J, Bevan CL. Circulating microRNAs as potential new biomarkers for prostate cancer. Br J Cancer. 2013;108(10):1925.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11(3):145.PubMedCrossRef Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11(3):145.PubMedCrossRef
16.
17.
Zurück zum Zitat Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Tsai TR. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2015;44(D1):D239–47.PubMedPubMedCentralCrossRef Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Tsai TR. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2015;44(D1):D239–47.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13(10):e0206239.PubMedPubMedCentralCrossRef Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13(10):e0206239.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Jensen LJ. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2016;45:D362–8.PubMedPubMedCentralCrossRef Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Jensen LJ. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2016;45:D362–8.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4(1):2.CrossRef Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4(1):2.CrossRef
22.
Zurück zum Zitat Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(4):S11.PubMedPubMedCentralCrossRef Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(4):S11.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4(1):44.CrossRef Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4(1):44.CrossRef
24.
Zurück zum Zitat Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa MKEGG. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2009;38(suppl_1):D355–60.PubMedPubMedCentralCrossRef Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa MKEGG. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2009;38(suppl_1):D355–60.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Nogales-Cadenas R, Carmona-Saez P, Vazquez M, Vicente C, Yang X, Tirado F, Pascual-Montano A. GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Res. 2009;37(suppl_2):W317–22.PubMedPubMedCentralCrossRef Nogales-Cadenas R, Carmona-Saez P, Vazquez M, Vicente C, Yang X, Tirado F, Pascual-Montano A. GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Res. 2009;37(suppl_2):W317–22.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2016;45(D1):D183–9.PubMedPubMedCentralCrossRef Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2016;45(D1):D183–9.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Patil N, Gaitonde K. Clinical perspective of prostate cancer. Top Magn Reson Imaging. 2016;25(3):103–8.PubMedCrossRef Patil N, Gaitonde K. Clinical perspective of prostate cancer. Top Magn Reson Imaging. 2016;25(3):103–8.PubMedCrossRef
29.
Zurück zum Zitat Gilbert-Ross M, Marcus AI, Zhou W. RhoA, a novel tumor suppressor or oncogene as a therapeutic target. Genes Dis. 2015;2(1):2.PubMedCrossRef Gilbert-Ross M, Marcus AI, Zhou W. RhoA, a novel tumor suppressor or oncogene as a therapeutic target. Genes Dis. 2015;2(1):2.PubMedCrossRef
32.
Zurück zum Zitat Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.PubMedCrossRef Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.PubMedCrossRef
33.
Zurück zum Zitat Dopeso H, Rodrigues P, Bilic J, Bazzocco S, Cartón-García F, Macaya I, Martínez-Barriocanal Á. Mechanisms of inactivation of the tumour suppressor gene RHOA in colorectal cancer. Br J Cancer. 2018;118(1):106.PubMedCrossRef Dopeso H, Rodrigues P, Bilic J, Bazzocco S, Cartón-García F, Macaya I, Martínez-Barriocanal Á. Mechanisms of inactivation of the tumour suppressor gene RHOA in colorectal cancer. Br J Cancer. 2018;118(1):106.PubMedCrossRef
34.
Zurück zum Zitat Jeong D, Park S, Kim H, Kim CJ, Ahn TS, Bae SB, Kwon HY. RhoA is associated with invasion and poor prognosis in colorectal cancer. Int J Oncol. 2016;48(2):714–22.PubMedCrossRef Jeong D, Park S, Kim H, Kim CJ, Ahn TS, Bae SB, Kwon HY. RhoA is associated with invasion and poor prognosis in colorectal cancer. Int J Oncol. 2016;48(2):714–22.PubMedCrossRef
35.
Zurück zum Zitat Song L, Guo Y, Xu B. Expressions of Ras Homolog Gene family, member A (RhoA) and cyclooxygenase-2 (COX-2) proteins in early gastric cancer and their role in the development of gastric cancer. Med Sci Monit. 2017;23:2979–84.PubMedPubMedCentralCrossRef Song L, Guo Y, Xu B. Expressions of Ras Homolog Gene family, member A (RhoA) and cyclooxygenase-2 (COX-2) proteins in early gastric cancer and their role in the development of gastric cancer. Med Sci Monit. 2017;23:2979–84.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Yoon JH, Choi WS, Kim O, Choi BJ, Nam SW, Lee JY, Park WS. Gastrokine 1 inhibits gastric cancer cell migration and invasion by downregulating RhoA expression. Gastric Cancer. 2017;20(2):274–85.PubMedCrossRef Yoon JH, Choi WS, Kim O, Choi BJ, Nam SW, Lee JY, Park WS. Gastrokine 1 inhibits gastric cancer cell migration and invasion by downregulating RhoA expression. Gastric Cancer. 2017;20(2):274–85.PubMedCrossRef
37.
Zurück zum Zitat Li H, Wang Z, Zhang W, Qian K, Xu W, Zhang S. Fbxw7 regulates tumor apoptosis, growth arrest and the epithelial-to-mesenchymal transition in part through the RhoA signaling pathway in gastric cancer. Cancer Lett. 2016;370(1):39–55.PubMedCrossRef Li H, Wang Z, Zhang W, Qian K, Xu W, Zhang S. Fbxw7 regulates tumor apoptosis, growth arrest and the epithelial-to-mesenchymal transition in part through the RhoA signaling pathway in gastric cancer. Cancer Lett. 2016;370(1):39–55.PubMedCrossRef
38.
Zurück zum Zitat Liu K, Li X, Wang J, Wang Y, Dong H, Li J. Genetic variants in RhoA and ROCK1 genes are associated with the development, progression and prognosis of prostate cancer. Oncotarget. 2017;8(12):19298.PubMedPubMedCentral Liu K, Li X, Wang J, Wang Y, Dong H, Li J. Genetic variants in RhoA and ROCK1 genes are associated with the development, progression and prognosis of prostate cancer. Oncotarget. 2017;8(12):19298.PubMedPubMedCentral
39.
Zurück zum Zitat Jason SL, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143(17):3050–60.CrossRef Jason SL, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143(17):3050–60.CrossRef
40.
Zurück zum Zitat Moynahan ME, Chen D, He W, Sung P, Samoila A, You D, Baselga J. Correlation between PIK3CA mutations in cell-free DNA and everolimus efficacy in HR+, HER2− advanced breast cancer: results from BOLERO-2. Br J Cancer. 2017;116(6):726–30.PubMedPubMedCentralCrossRef Moynahan ME, Chen D, He W, Sung P, Samoila A, You D, Baselga J. Correlation between PIK3CA mutations in cell-free DNA and everolimus efficacy in HR+, HER2− advanced breast cancer: results from BOLERO-2. Br J Cancer. 2017;116(6):726–30.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Bonetti LR, Barresi V, Bettelli S, Caprera C, Manfredini S, Maiorana A. Analysis of KRAS, NRAS, PIK3CA, and BRAF mutational profile in poorly differentiated clusters of KRAS-mutated colon cancer. Hum Pathol. 2017;62:91–8.CrossRef Bonetti LR, Barresi V, Bettelli S, Caprera C, Manfredini S, Maiorana A. Analysis of KRAS, NRAS, PIK3CA, and BRAF mutational profile in poorly differentiated clusters of KRAS-mutated colon cancer. Hum Pathol. 2017;62:91–8.CrossRef
42.
43.
Zurück zum Zitat Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 2002;14(5):381–95.PubMedCrossRef Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 2002;14(5):381–95.PubMedCrossRef
44.
Zurück zum Zitat Zhang S, Cai J, Xie W, Luo H, Yang F. miR 202 suppresses prostate cancer growth and metastasis by targeting PIK3CA. Exp Ther Med. 2018;16(2):1499–504.PubMedPubMedCentral Zhang S, Cai J, Xie W, Luo H, Yang F. miR 202 suppresses prostate cancer growth and metastasis by targeting PIK3CA. Exp Ther Med. 2018;16(2):1499–504.PubMedPubMedCentral
45.
Zurück zum Zitat Pearson HB, Li J, Meniel VS, Fennell CM, Waring P, Montgomery KG, Cullinane C. Identification of Pik3ca mutation as a genetic driver of prostate cancer that cooperates with Pten loss to accelerate progression and castration-resistant growth. Cancer Discov. 2018;8(6):764–79.PubMedCrossRef Pearson HB, Li J, Meniel VS, Fennell CM, Waring P, Montgomery KG, Cullinane C. Identification of Pik3ca mutation as a genetic driver of prostate cancer that cooperates with Pten loss to accelerate progression and castration-resistant growth. Cancer Discov. 2018;8(6):764–79.PubMedCrossRef
46.
Zurück zum Zitat Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19.PubMedCrossRef Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19.PubMedCrossRef
47.
Zurück zum Zitat Kandioler D, Mittlböck M, Kappel S, Puhalla H, Herbst F, Langner C, Hofbauer F. TP53 mutational status and prediction of benefit from adjuvant 5-fluorouracil in stage III colon cancer patients. EBioMedicine. 2015;2(8):825–30.PubMedPubMedCentralCrossRef Kandioler D, Mittlböck M, Kappel S, Puhalla H, Herbst F, Langner C, Hofbauer F. TP53 mutational status and prediction of benefit from adjuvant 5-fluorouracil in stage III colon cancer patients. EBioMedicine. 2015;2(8):825–30.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Scheel A, Bellile E, McHugh JB, Walline HM, Prince ME, Urba S, Bradford C. Classification of TP53 mutations and HPV predict survival in advanced larynx cancer. Laryngoscope. 2016;126(9):E292–9.PubMedPubMedCentralCrossRef Scheel A, Bellile E, McHugh JB, Walline HM, Prince ME, Urba S, Bradford C. Classification of TP53 mutations and HPV predict survival in advanced larynx cancer. Laryngoscope. 2016;126(9):E292–9.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Gao W, Jin J, Yin J, Land S, Gaither-Davis A, Christie N, Keohavong P. KRAS and TP53 mutations in bronchoscopy samples from former lung cancer patients. Mol Carcinog. 2017;56(2):381–8.PubMedCrossRef Gao W, Jin J, Yin J, Land S, Gaither-Davis A, Christie N, Keohavong P. KRAS and TP53 mutations in bronchoscopy samples from former lung cancer patients. Mol Carcinog. 2017;56(2):381–8.PubMedCrossRef
51.
Zurück zum Zitat Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2(1):a001008.PubMedPubMedCentralCrossRef Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2(1):a001008.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Humphries-Bickley T, Castillo-Pichardo L, Hernandez-O-Farrill E, Borrero-Garcia LD, Forestier-Roman I, Gerena Y, Vlaar CP. Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer. Mol Cancer Ther. 2017;16(5):805–18.PubMedPubMedCentral Humphries-Bickley T, Castillo-Pichardo L, Hernandez-O-Farrill E, Borrero-Garcia LD, Forestier-Roman I, Gerena Y, Vlaar CP. Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer. Mol Cancer Ther. 2017;16(5):805–18.PubMedPubMedCentral
53.
Zurück zum Zitat Ellenbroek SI, Collard JG. Rho GTPases: functions and association with cancer. Clin Exp Metastasis. 2007;24(8):657–72.PubMedCrossRef Ellenbroek SI, Collard JG. Rho GTPases: functions and association with cancer. Clin Exp Metastasis. 2007;24(8):657–72.PubMedCrossRef
54.
55.
Zurück zum Zitat Ye H, Zhang Y, Geng L, Li Z. Cdc42 expression in cervical cancer and its effects on cervical tumor invasion and migration. Int J Oncol. 2015;46(2):757–63.PubMedCrossRef Ye H, Zhang Y, Geng L, Li Z. Cdc42 expression in cervical cancer and its effects on cervical tumor invasion and migration. Int J Oncol. 2015;46(2):757–63.PubMedCrossRef
56.
Zurück zum Zitat Du DS, Yang XZ, Wang Q, Dai WJ, Kuai WX, Liu YL, Tang XJ. Effects of CDC42 on the proliferation and invasion of gastric cancer cells. Mol Med Rep. 2016;13(1):550–4.PubMedCrossRef Du DS, Yang XZ, Wang Q, Dai WJ, Kuai WX, Liu YL, Tang XJ. Effects of CDC42 on the proliferation and invasion of gastric cancer cells. Mol Med Rep. 2016;13(1):550–4.PubMedCrossRef
57.
Zurück zum Zitat Guo J, Yu X, Gu J, Lin Z, Zhao G, Xu F, Ge D. Regulation of CXCR57/AKT-signaling-induced cell invasion and tumor metastasis by RhoA, Rac-1, and Cdc42 in human esophageal cancer. Tumor Biol. 2016;37(5):6371–8.CrossRef Guo J, Yu X, Gu J, Lin Z, Zhao G, Xu F, Ge D. Regulation of CXCR57/AKT-signaling-induced cell invasion and tumor metastasis by RhoA, Rac-1, and Cdc42 in human esophageal cancer. Tumor Biol. 2016;37(5):6371–8.CrossRef
58.
Zurück zum Zitat Guo Y, Zhang Z, Wei H, Wang J, Lv J, Zhang K, Wang Q. Cytotoxic necrotizing factor 1 promotes prostate cancer progression through activating the Cdc42–PAK1 axis. J Pathol. 2017;243(2):208–19.PubMedCrossRef Guo Y, Zhang Z, Wei H, Wang J, Lv J, Zhang K, Wang Q. Cytotoxic necrotizing factor 1 promotes prostate cancer progression through activating the Cdc42–PAK1 axis. J Pathol. 2017;243(2):208–19.PubMedCrossRef
59.
Zurück zum Zitat Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL, Whang YE. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci USA. 2007;104(20):8438–43.PubMedCrossRef Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL, Whang YE. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci USA. 2007;104(20):8438–43.PubMedCrossRef
60.
Zurück zum Zitat Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18.PubMedCrossRef Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18.PubMedCrossRef
61.
Zurück zum Zitat Imajo M, Tsuchiya Y, Nishida E. Regulatory mechanisms and functions of MAP kinase signaling pathways. IUBMB Life. 2006;58(5–6):312–7.PubMedCrossRef Imajo M, Tsuchiya Y, Nishida E. Regulatory mechanisms and functions of MAP kinase signaling pathways. IUBMB Life. 2006;58(5–6):312–7.PubMedCrossRef
62.
Zurück zum Zitat Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Mori M. Epithelial–mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101(2):293–9.PubMedCrossRef Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Mori M. Epithelial–mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101(2):293–9.PubMedCrossRef
Metadaten
Titel
In silico identification of key genes and signaling pathways targeted by a panel of signature microRNAs in prostate cancer
verfasst von
Meghna M. Baruah
Neeti Sharma
Publikationsdatum
01.05.2019
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 5/2019
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-019-1268-y

Weitere Artikel der Ausgabe 5/2019

Medical Oncology 5/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.