Skip to main content
Erschienen in: Malaria Journal 1/2017

Open Access 01.12.2017 | Research

In vitro activity of anti-malarial ozonides against an artemisinin-resistant isolate

verfasst von: Fabian Baumgärtner, Joëlle Jourdan, Christian Scheurer, Benjamin Blasco, Brice Campo, Pascal Mäser, Sergio Wittlin

Erschienen in: Malaria Journal | Ausgabe 1/2017

Abstract

Background

Recently published data suggest that artemisinin derivatives and synthetic peroxides, such as the ozonides OZ277 and OZ439, have a similar mode of action. Here the cross-resistance of OZ277 and OZ439 and four additional next-generation ozonides was probed against the artemisinin-resistant clinical isolate Plasmodium falciparum Cam3.I, which carries the K13-propeller mutation R539T (Cam3.IR539T).

Methods

The previously described in vitro ring-stage survival assay (RSA0–3h) was employed and a simplified variation of the original protocol was developed.

Results

At the pharmacologically relevant concentration of 700 nM, all six ozonides were highly effective against the dihydroartemisinin-resistant P. falciparum Cam3.IR539T parasites, showing a per cent survival ranging from <0.01 to 1.83%. A simplified version of the original RSA0–3h method was developed and gave similar results, thus providing a practical drug discovery tool for further optimization of next-generation anti-malarial peroxides.

Conclusion

The absence of in vitro cross-resistance against the artemisinin-resistant clinical isolate Cam3.IR539T suggests that ozonides could be effective against artemisinin-resistant P. falciparum. How this will translate to the human situation in clinical settings remains to be investigated.
Begleitmaterial
Additional file 1: Table S1. Mean per cent survival (individual values in brackets) of NF54 after 6 h exposure to 500 nM of DHA, OZ439 or OZ277 using the synchronization protocol from Straimer et al. [44]. Table S2. Mean in vitro IC50 values (single values in brackets) for Plasmodium falciparum isolate Cam3.IR539T and NF54 in the 72-h [3H] hypoxanthine assay.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12936-017-1696-0) contains supplementary material, which is available to authorized users.
Abkürzungen
OZ277
arterolane
OZ439
artefenomel
DHA
dihydroartemisinin
ACT
artemisinin combination therapy
RBC
red blood cell

Background

Malaria is one of the most important tropical diseases resulting in 214 million new cases and an estimated 438,000 malaria deaths worldwide in 2015 [1]. The discovery of artemisinin in the 1970s was an important step forward in anti-malarial drug therapy and was recognized with the Nobel Prize in Physiology or Medicine in 2015 [2, 3]. Artemisinin and its semi-synthetic derivatives, such as dihydroartemisinin (DHA) (Fig. 1), artesunate and artemether, contain a unique sesquiterpene lactone peroxide (1,2,4-trioxane) structure and artemisinin-based combination therapy (ACT) represents the current first-line treatment of uncomplicated Plasmodium falciparum malaria [46]. Since the starting material artemisinin is a natural product, its production is limited to the availability of the plant [4, 7], although several total syntheses of artemisinin have been described [8]. In 2004, Vennerstrom et al. reported the discovery of a completely synthetic peroxide anti-malarial containing a 1,2,4-trioxolane (ozonide) pharmacophore named OZ277 (arterolane) (Fig. 1) with anti-malarial activity comparable to the artemisinin derivatives [9, 10]. In combination with piperaquine, arterolane was registered for anti-malarial combination therapy in India in 2011 [1114]. The next-generation ozonide, OZ439 (artefenomel) (Fig. 1), exhibits an increased pharmacokinetic half-life and good safety profile and is now being tested in phase IIb clinical trials [12, 1417].
The iron-dependent alkylation hypothesis is one of the proposed modes of action of artemisinin and synthetic peroxides [1821] where the peroxide is thought to be activated by the reductive cleavage in the presence of ferrous haem (or free Fe(II) derived from haem) released as a by-product of haemoglobin digestion in the food vacuole [20, 2227]. Thereby carbon-centred radicals are generated, which then alkylate haem and parasite proteins [2833]. The interaction of the artemisinin derivatives or ozonides with parasite targets is irreversible [31, 34]. Although the semi-synthetic artemisinins are highly effective, prolonged parasite clearance times were first reported along the Thai–Cambodian border in 2006, suggesting an emerging artemisinin resistance phenotype [35]. Today, delayed parasite clearance following treatment with artemisinin derivatives has been observed across Southeast Asia [3641]. It was found that mutations in the Kelch 13 propeller domain are associated with ring-stage parasites entering a quiescent state with delayed parasite clearance after exposure to artemisinins [4145]. When 50% inhibitory concentrations (IC50) were measured using conventional methods such as the [3H] hypoxanthine incorporation assay [46], no difference was observed between artemisinin-resistant and -susceptible strains after treatment with artemisinin or its derivatives [4750]. In an effort to correlate the delayed parasite clearance observed in vivo with in vitro parasite survival, Witkowski et al. [48, 49] developed a ring-stage survival assay (RSA0–3h) that exploited the differences in susceptibility observed between wild-type and K13 mutants at the early ring stage of the asexual blood cycle following a short pulse of artemisinin treatment. In the RSA0–3h, synchronized young ring stage parasites (0–3 h old) are exposed to drugs for 6 h, and then cultured in drug free culture medium for 66 h before relative growth is determined by microscopic analysis [48, 49]. Since the structural analogies between artemisinins and ozonides (Fig. 1) suggest that they share similar modes of action, and thus some level of cross resistance [9, 10, 51, 52], the per cent survival of an artemisinin-resistant clinical isolate (Cam3.IR539T) treated with DHA, OZ277, OZ439, and four additional next-generation ozonides (Fig. 1) using the RSA0–3h as described by Witkowski et al. [48, 49] was evaluated. Additionally, a sub-set of these compounds was tested in the RSA0–3h described by Xie et al. [53] that also uses tightly synchronized ring-stage cultures, but allows the assay to be performed routinely within a convenient time-frame.

Methods

Parasite cultivation

The artemisinin-resistant P. falciparum isolate Cam3.IR539T from Battambang, Cambodia was obtained from BEI Resources [54] with the accession number MRA-1240. The drug-sensitive P. falciparum strain NF54 (airport strain from The Netherlands) was provided by F. Hoffmann-La Roche Ltd. Parasites were cultivated in standard cultivation medium, consisting of hypoxanthine (50 mg/l), RPMI (10.44 g/l) supplemented with HEPES (5.94 g/l), albumax (5 g/l), sodium bicarbonate (2.1 g/l) and neomycin (100 mg/l) [55].

Ring-stage survival assays (RSA0–3h)

Ring-stage survival assays (RSA0–3h) were carried out essentially as previously described by Witkowski et al. [48], but with a few modifications in the drug-washing procedure to ensure that no residual peroxide was present during the 66-h post-treatment period [56]. Briefly, zero to 3 h post-invasion ring stages were adjusted to 1% parasitaemia and 2.5% haematocrit by adding uninfected erythrocytes, transferred in a total volume of 1 ml into 48-well plates and exposed for 6 h to a range of concentrations (700, 350, 175, 88, and 49 nM) of DHA or one of the six ozonides tested in this study. The synthesis of the four next-generation ozonides, OZ493, OZ609, OZ655 and OZ657, will be reported in due course by the laboratory of Prof. Jonathan Vennerstrom (pers. comm.). After 6 h, cultures were transferred to 15 ml conical tubes, centrifuged at 1400 rpm (400g) for 2 min and carefully washed two times with 12 ml of culture medium. The complete removal of compound after washing was verified by incubating the supernatant recovered after the last washing step with fresh cultures of NF54 parasites, ensuring that no growth inhibition was detected. After washing, blood pellets were resuspended in complete drug-free culture medium, transferred into new wells and cultured for 66 h under standard conditions.
Thin blood smears were prepared, methanol-fixed and stained with 10% Giemsa. Per cent survival was assessed using light microscopy, counting the number of parasitized cells in ≥10,000 red blood cells (RBCs) and comparing survival to that of the drug-free dimethylsulfoxide incubation. Microscopy analysis was performed independently by two microscopists, one having more than 15 years of work experience.

Alternative parasite synchronization method

Parasites were synchronized according to Xie et al. [53] with 5% D-sorbitol. After 30 and 43 h, parasites were synchronized a second and third time, respectively, resulting in zero to 1-h old ring-stage parasites. The RSA0–3h was initiated 2 h later.

Standard [3H] hypoxanthine incorporation assay

The in vitro anti-malarial activity was measured using the [3H]-hypoxanthine incorporation assay [55]. Results were expressed as the concentration resulting in 50% inhibition (IC50).

Results

The per cent survival of parasites exposed to a concentration range of DHA and six different ozonides (Fig. 1) was determined using the artemisinin-resistant P. falciparum Cambodian isolate Cam3.IR539T. As expected, DHA exposure gave a high survival rate ranging from 74 to 33% at concentrations of 49 and 700 nM, respectively (Fig. 2), which is comparable to the observed survival value of 40% at 700 nM published previously [44]. In contrast, when tested at 700 nM, the two ozonides OZ277 and OZ439 showed an approximate 18- to 45-fold increase in potency compared with DHA (Fig. 2). Full and equal potency was observed when DHA, OZ277 and OZ439 were tested in parallel in the RSA0–3h using the artemisinin-sensitive strain NF54 (Additional file 1: Table S1). At the lowest concentration (49 nM), OZ277 had poor activity, showing a similar per cent survival to that of DHA, whereas OZ439 was still about fivefold more potent. A possible explanation for OZ439 being more potent than OZ277 could be related to its improved stability in blood as previously described [15]. In those studies, OZ277 or OZ439 were incubated at 37 °C in P. falciparum-infected human blood. After 2 h more than 90% of OZ277 was degraded, whereas OZ439 was found to be about 10–20× more stable. A similar and more recent study found similar differences in stability for OZ277 and OZ439 [56]. The same compounds were also tested in a more convenient variation of the standard RSA0–3h that uses synchronized ring-stage cultures that can be easily produced during normal working hours [53]. As shown in Table 1, this alternative synchronization method gave results that were comparable to those obtained using the standard RSA0–3h.
Table 1
Mean per cent survival (individual values in brackets) of Cam3.IR539T isolate after 6 h exposure to a range of concentrations of DHA, OZ439 or OZ277 using the synchronization protocol from Xie et al. [53]
Compounds
RSA values (% survival) at different concentrations
175 nM
350 nM
700 nM
DHA
46 (49, 43)
42 (45, 39)
37 (39, 35)
OZ277
4.0 (4.4, 3.6)
2.3 (1.9, 2.7)
1.4 (1.7, 1.1)
OZ439
<0.01 (<0.01, <0.01)
<0.01 (<0.01, <0.01)
<0.01 (<0.01, <0.01)
Two biological replicates were performed per compound
To investigate further the level of cross-resistance between DHA and the ozonides, four additional next-generation ozonides (OZ493, OZ609, OZ655, OZ657) (Fig. 1) were tested against the Cam3.IR539T parasites. While all six ozonides had a similar IC50 value using a conventional 72-h [3H] hypoxanthine incorporation assay (Additional file 1: Table S2), the RSA0–3h showed that OZ493, OZ609 and OZ655 were highly potent and completely inhibited the growth of the artemisinin-resistant isolate at the two highest concentrations tested (Fig. 2). At the lowest concentration, potency was comparable to that for OZ439. The overall potency of OZ657 was comparable to that of OZ277.
The RSA0–3h was recently developed to provide an in vitro correlate of the longer in vivo parasite clearance times observed after artemisinin treatment in Southeast Asia, which is widely interpreted as a sign of potential artemisinin resistance [57, 58]. Provided that the RSA0–3h does indeed predict the potency of compounds against artemisinin-resistant parasites in malaria patients, the here described data suggest that all of the tested ozonides are highly potent against isolates such as P. falciparum Cam3.IR539T. These data are in line with the recent clinical observation that the parasite clearance rate following OZ439 treatment is not significantly affected by resistance-associated mutations in the Kelch 13 propeller region [17] and the recent data published by Siriwardana et al. [59], which showed no reduced susceptibility of OZ439 in a different delayed clearance phenotype parasite (Cam3.II) in vitro.

Conclusion

In the traditional RSA0–3h, as well as a more convenient variation of the original method, all of the tested ozonides, were highly potent against the artemisinin-resistant isolate P. falciparum Cam3.IR539T in contrast to results for DHA. These data indicate that artemisinin-resistant P. falciparum infections could be successfully treated with ozonide anti-malarial drugs.

Authors’ contributions

FB, JJ, CS, BB, BC, PM and SW designed the research. FB and CS performed the research. All authors analysed data. FB, JJ and SW wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We are grateful to Jonathan L Vennerstrom, Hugues Matile and Susan A Charman for critically reading the manuscript and making valuable suggestions.

Competing interests

The use of OZ277 and OZ439 against malaria has been patented.

Availability of data and materials

All data generated or analysed during this study are included in this published article and its supplementary information files.

Funding

This work was financially supported by the Swiss National Science Foundation (Grant 310030_149896 to SW), the Medicines for Malaria Venture, and the Swiss Tropical and Public Health Institute.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Anhänge

Additional files

Additional file 1: Table S1. Mean per cent survival (individual values in brackets) of NF54 after 6 h exposure to 500 nM of DHA, OZ439 or OZ277 using the synchronization protocol from Straimer et al. [44]. Table S2. Mean in vitro IC50 values (single values in brackets) for Plasmodium falciparum isolate Cam3.IR539T and NF54 in the 72-h [3H] hypoxanthine assay.
Literatur
1.
Zurück zum Zitat WHO. World Malaria Report 2015. Geneva: World Health Organization; 2015. WHO. World Malaria Report 2015. Geneva: World Health Organization; 2015.
2.
Zurück zum Zitat Tu Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med. 2011;17:1217–20.CrossRefPubMed Tu Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med. 2011;17:1217–20.CrossRefPubMed
4.
Zurück zum Zitat Klayman DL. Qinghaosu (artemisinin): an antimalarial drug from China. Science. 1985;228:1049–55.CrossRefPubMed Klayman DL. Qinghaosu (artemisinin): an antimalarial drug from China. Science. 1985;228:1049–55.CrossRefPubMed
5.
Zurück zum Zitat White NJ. Artemisinin: current status. Trans R Soc Trop Med Hyg. 1994;88:3–4.CrossRef White NJ. Artemisinin: current status. Trans R Soc Trop Med Hyg. 1994;88:3–4.CrossRef
7.
Zurück zum Zitat Kumar S, Srivastava S. Establishment of artemisinin combination therapy as first line treatment for combating malaria: Artemisia annua cultivation in India needed for providing sustainable supply chain of artemisinin. Curr Sci. 2005;89:1097–102. Kumar S, Srivastava S. Establishment of artemisinin combination therapy as first line treatment for combating malaria: Artemisia annua cultivation in India needed for providing sustainable supply chain of artemisinin. Curr Sci. 2005;89:1097–102.
8.
Zurück zum Zitat Avery MA, Chong WKM, Jennings- White C. Stereoselective total synthesis of (+)- artemisinin, the antimalarial constituent of Artemisia annua L. J Am Chem Soc. 1992;114:974–9.CrossRef Avery MA, Chong WKM, Jennings- White C. Stereoselective total synthesis of (+)- artemisinin, the antimalarial constituent of Artemisia annua L. J Am Chem Soc. 1992;114:974–9.CrossRef
9.
Zurück zum Zitat Vennerstrom JL, Arbe-Barnes S, Brun R, Charman SA, Chiu FC, Chollet J, et al. Identification of an antimalarial synthetic trioxolane drug development candidate. Nature. 2004;430:900–4.CrossRefPubMed Vennerstrom JL, Arbe-Barnes S, Brun R, Charman SA, Chiu FC, Chollet J, et al. Identification of an antimalarial synthetic trioxolane drug development candidate. Nature. 2004;430:900–4.CrossRefPubMed
10.
Zurück zum Zitat Tang Y, Dong Y, Vennerstrom JL. Synthetic peroxides as antimalarials. Med Res Rev. 2004;24:425–48.CrossRefPubMed Tang Y, Dong Y, Vennerstrom JL. Synthetic peroxides as antimalarials. Med Res Rev. 2004;24:425–48.CrossRefPubMed
11.
Zurück zum Zitat Anthony MP, Burrows JN, Duparc S, Moehrle JJ, Wells TN. The global pipeline of new medicines for the control and elimination of malaria. Malar J. 2012;11:316.CrossRefPubMedPubMedCentral Anthony MP, Burrows JN, Duparc S, Moehrle JJ, Wells TN. The global pipeline of new medicines for the control and elimination of malaria. Malar J. 2012;11:316.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Mäser P, Wittlin S, Rottmann M, Wenzler T, Kaiser M, Brun R. Antiparasitic agents: new drugs on the horizon. Curr Opin Pharmacol. 2012;12:562–6.CrossRefPubMed Mäser P, Wittlin S, Rottmann M, Wenzler T, Kaiser M, Brun R. Antiparasitic agents: new drugs on the horizon. Curr Opin Pharmacol. 2012;12:562–6.CrossRefPubMed
13.
Zurück zum Zitat Patil CY, Katare SS, Baig MS, Doifode SM. Fixed dose combination of arterolane and piperaquine: a newer prospect in antimalarial therapy. Ann Med Health Sci Res. 2014;4:466–71.CrossRefPubMedPubMedCentral Patil CY, Katare SS, Baig MS, Doifode SM. Fixed dose combination of arterolane and piperaquine: a newer prospect in antimalarial therapy. Ann Med Health Sci Res. 2014;4:466–71.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Wells TN, van Huijsduijnen RH, Van Voorhis WC. Malaria medicines: a glass half full? Nat Rev Drug Discov. 2015;14:424–42.CrossRefPubMed Wells TN, van Huijsduijnen RH, Van Voorhis WC. Malaria medicines: a glass half full? Nat Rev Drug Discov. 2015;14:424–42.CrossRefPubMed
15.
Zurück zum Zitat Charman SA, Arbe-Barnes S, Bathurst IC, Brun R, Campbell M, Charman WN, et al. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc Natl Acad Sci USA. 2011;108:4400–5.CrossRefPubMedPubMedCentral Charman SA, Arbe-Barnes S, Bathurst IC, Brun R, Campbell M, Charman WN, et al. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc Natl Acad Sci USA. 2011;108:4400–5.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Moehrle JJ, Duparc S, Siethoff C, van Giersbergen PL, Craft JC, Arbe-Barnes S, et al. First-in-man safety and pharmacokinetics of synthetic ozonide OZ439 demonstrates an improved exposure profile relative to other peroxide antimalarials. Br J Clin Pharmacol. 2013;75:535–48.CrossRef Moehrle JJ, Duparc S, Siethoff C, van Giersbergen PL, Craft JC, Arbe-Barnes S, et al. First-in-man safety and pharmacokinetics of synthetic ozonide OZ439 demonstrates an improved exposure profile relative to other peroxide antimalarials. Br J Clin Pharmacol. 2013;75:535–48.CrossRef
17.
Zurück zum Zitat Phyo AP, Jittamala P, Nosten FH, Pukrittayakamee S, Imwong M, White NJ, et al. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial. Lancet Infect Dis. 2016;16:61–9.CrossRefPubMedPubMedCentral Phyo AP, Jittamala P, Nosten FH, Pukrittayakamee S, Imwong M, White NJ, et al. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial. Lancet Infect Dis. 2016;16:61–9.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Kaiser M, Wittlin S, Nehrbass-Stuedli A, Dong Y, Wang X, Hemphill A, et al. Peroxide bond-dependent antiplasmodial specificity of artemisinin and OZ277 (RBx11160). Antimicrob Agents Chemother. 2007;51:2991–3.CrossRefPubMedPubMedCentral Kaiser M, Wittlin S, Nehrbass-Stuedli A, Dong Y, Wang X, Hemphill A, et al. Peroxide bond-dependent antiplasmodial specificity of artemisinin and OZ277 (RBx11160). Antimicrob Agents Chemother. 2007;51:2991–3.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Creek DJ, Charman WN, Chiu FCK, Prankerd RJ, Dong Y, Vennerstrom JL, et al. Relationship between antimalarial activity and haem alkylation for spiro- and dispiro-1,2,4-trioxolane antimalarials. Antimicrob Agents Chemother. 2008;52:1291–6.CrossRefPubMedPubMedCentral Creek DJ, Charman WN, Chiu FCK, Prankerd RJ, Dong Y, Vennerstrom JL, et al. Relationship between antimalarial activity and haem alkylation for spiro- and dispiro-1,2,4-trioxolane antimalarials. Antimicrob Agents Chemother. 2008;52:1291–6.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Meunier B, Robert A. Heme as trigger and target for trioxane-containing antimalarial drugs. Acc Chem Res. 2010;43:1444–51.CrossRefPubMed Meunier B, Robert A. Heme as trigger and target for trioxane-containing antimalarial drugs. Acc Chem Res. 2010;43:1444–51.CrossRefPubMed
21.
Zurück zum Zitat Tilley L, Straimer J, Gnädig NF, Ralph SA, Fidock DA. Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol. 2016;32:682–96.CrossRefPubMed Tilley L, Straimer J, Gnädig NF, Ralph SA, Fidock DA. Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol. 2016;32:682–96.CrossRefPubMed
22.
Zurück zum Zitat Klonis N, Crespo-Ortiz MP, Bottova I, Abu-Bakar N, Kenny S, Rosenthal PJ, Tilley L. Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci USA. 2011;108:11405–10.CrossRefPubMedPubMedCentral Klonis N, Crespo-Ortiz MP, Bottova I, Abu-Bakar N, Kenny S, Rosenthal PJ, Tilley L. Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci USA. 2011;108:11405–10.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Crespo MD, Avery TD, Hanssen E, Fox E, Robinson TV, Valente P, Taylor DK, Tilley L. Artemisinin and a series of novel endoperoxide antimalarials exert early effects on digestive vacuole morphology. Antimicrob Agents Chemother. 2008;52:98–109.CrossRef Crespo MD, Avery TD, Hanssen E, Fox E, Robinson TV, Valente P, Taylor DK, Tilley L. Artemisinin and a series of novel endoperoxide antimalarials exert early effects on digestive vacuole morphology. Antimicrob Agents Chemother. 2008;52:98–109.CrossRef
24.
Zurück zum Zitat Hartwig CL, Rosenthal AS, D’Angelo J, Griffin CE, Posner GH, Cooper RA. Accumulation of artemisinin trioxane derivatives within neutral lipids of Plasmodium falciparum malaria parasites is endoperoxide-dependent. Biochem Pharmacol. 2009;77:322–36.CrossRefPubMed Hartwig CL, Rosenthal AS, D’Angelo J, Griffin CE, Posner GH, Cooper RA. Accumulation of artemisinin trioxane derivatives within neutral lipids of Plasmodium falciparum malaria parasites is endoperoxide-dependent. Biochem Pharmacol. 2009;77:322–36.CrossRefPubMed
25.
Zurück zum Zitat Robert A, Claparols C, Witkowski B, Benoit-Vical F. Correlation between Plasmodium yoelii nigeriensis susceptibility to artemisinin and alkylation of heme by the drug. Antimicrob Agents Chemother. 2013;57:3998–4000.CrossRefPubMedPubMedCentral Robert A, Claparols C, Witkowski B, Benoit-Vical F. Correlation between Plasmodium yoelii nigeriensis susceptibility to artemisinin and alkylation of heme by the drug. Antimicrob Agents Chemother. 2013;57:3998–4000.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Klonis N, Creek DJ, Tilley L. Iron and heme metabolism in Plasmodium falciparum and the mechanism of action of artemisinins. Curr Opin Microbiol. 2013;16:722–7.CrossRefPubMed Klonis N, Creek DJ, Tilley L. Iron and heme metabolism in Plasmodium falciparum and the mechanism of action of artemisinins. Curr Opin Microbiol. 2013;16:722–7.CrossRefPubMed
27.
Zurück zum Zitat Uhlemann AC, Wittlin S, Matile H, Bustamante LY, Krishna S. Mechanism of antimalarial action of the synthetic trioxolane RBX11160 (OZ277). Antimicrob Agents Chemother. 2007;51:667–72.CrossRefPubMed Uhlemann AC, Wittlin S, Matile H, Bustamante LY, Krishna S. Mechanism of antimalarial action of the synthetic trioxolane RBX11160 (OZ277). Antimicrob Agents Chemother. 2007;51:667–72.CrossRefPubMed
28.
Zurück zum Zitat Asawamahasakda W, Ittarat I, Pu YM, Ziffer H, Meshnick SR. Reaction of antimalarial endoperoxides with specific parasite proteins. Antimicrob Agents Chemother. 1994;38:1854–8.CrossRefPubMedPubMedCentral Asawamahasakda W, Ittarat I, Pu YM, Ziffer H, Meshnick SR. Reaction of antimalarial endoperoxides with specific parasite proteins. Antimicrob Agents Chemother. 1994;38:1854–8.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Meshnick SR. Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol. 2002;32:1655–60.CrossRefPubMed Meshnick SR. Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol. 2002;32:1655–60.CrossRefPubMed
30.
Zurück zum Zitat Tang Y, Dong Y, Wang X, Sriraghavan K, Wood JK, Vennerstrom JL. Dispiro-1,2,4-trioxane analogs of a prototype dispiro-1,2,4-trioxolane: mechanistic comparators for artemisinin in the context of reaction pathways with iron (II). J Org Chem. 2005;70:5103–10.CrossRefPubMed Tang Y, Dong Y, Wang X, Sriraghavan K, Wood JK, Vennerstrom JL. Dispiro-1,2,4-trioxane analogs of a prototype dispiro-1,2,4-trioxolane: mechanistic comparators for artemisinin in the context of reaction pathways with iron (II). J Org Chem. 2005;70:5103–10.CrossRefPubMed
31.
Zurück zum Zitat Fügi MA, Wittlin S, Dong Y, Vennerstrom JL. Probing the antimalarial mechanism of artemisinin and OZ277 (arterolane) with nonperoxidic isosteres and nitroxyl radicals. Antimicrob Agents Chemother. 2010;54:1042–6.CrossRefPubMed Fügi MA, Wittlin S, Dong Y, Vennerstrom JL. Probing the antimalarial mechanism of artemisinin and OZ277 (arterolane) with nonperoxidic isosteres and nitroxyl radicals. Antimicrob Agents Chemother. 2010;54:1042–6.CrossRefPubMed
32.
Zurück zum Zitat Hartwig CL, Lauterwasser EMW, Mahajan SS, Hoke JM, Cooper RA, Renslo AR. Investigating the antimalarial action of 1,2,4-trioxolanes with fluorescent chemical probes. J Med Chem. 2011;54:8207–13.CrossRefPubMedPubMedCentral Hartwig CL, Lauterwasser EMW, Mahajan SS, Hoke JM, Cooper RA, Renslo AR. Investigating the antimalarial action of 1,2,4-trioxolanes with fluorescent chemical probes. J Med Chem. 2011;54:8207–13.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Tilley L, Charman S, Vennerstrom JL. Semisynthetic artemisinin and synthetic peroxide antimalarials. In: Palmer MJ, Wells TNC, editors. RSC Drug Discovery Series No. 14. London: Neglected Diseases and Drug Discovery; 2011. p. 33–64. Tilley L, Charman S, Vennerstrom JL. Semisynthetic artemisinin and synthetic peroxide antimalarials. In: Palmer MJ, Wells TNC, editors. RSC Drug Discovery Series No. 14. London: Neglected Diseases and Drug Discovery; 2011. p. 33–64.
34.
Zurück zum Zitat Abiodun OO, Brun R, Wittlin S. In vitro interaction of artemisinin derivatives or the fully synthetic peroxidic anti-malarial OZ277 with thapsigargin in Plasmodium falciparum strains. Malar J. 2013;12:43.CrossRefPubMedPubMedCentral Abiodun OO, Brun R, Wittlin S. In vitro interaction of artemisinin derivatives or the fully synthetic peroxidic anti-malarial OZ277 with thapsigargin in Plasmodium falciparum strains. Malar J. 2013;12:43.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Artemisinin resistance in Cambodia 1 (ARC1) study consortium evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008;359:2619–20.CrossRefPubMed Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Artemisinin resistance in Cambodia 1 (ARC1) study consortium evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008;359:2619–20.CrossRefPubMed
36.
Zurück zum Zitat Noedl H, Socheat D, Satimai W. Artemisinin-resistant malaria in Asia. N Engl J Med. 2009;361:540–1.CrossRefPubMed Noedl H, Socheat D, Satimai W. Artemisinin-resistant malaria in Asia. N Engl J Med. 2009;361:540–1.CrossRefPubMed
37.
Zurück zum Zitat Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;38:455–67.CrossRef Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;38:455–67.CrossRef
38.
Zurück zum Zitat Amaratunga C, Sreng S, Suon S, Phelps ES, Stepniewska K, Lim P, et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis. 2012;12:851–8.CrossRefPubMedPubMedCentral Amaratunga C, Sreng S, Suon S, Phelps ES, Stepniewska K, Lim P, et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis. 2012;12:851–8.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012;379:1960–6.CrossRefPubMedPubMedCentral Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012;379:1960–6.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRefPubMedPubMedCentral Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Paloque L, Ramadani AP, Mercereau-Puijalon O, Augereau JM, Benoit-Vical F. Plasmodium falciparum: multifaceted resistance to artemisinins. Malar J. 2016;15:149.CrossRefPubMedPubMedCentral Paloque L, Ramadani AP, Mercereau-Puijalon O, Augereau JM, Benoit-Vical F. Plasmodium falciparum: multifaceted resistance to artemisinins. Malar J. 2016;15:149.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.CrossRefPubMed Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.CrossRefPubMed
43.
Zurück zum Zitat Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, Yeo T, et al. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science. 2015;347:431–5.CrossRefPubMed Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, Yeo T, et al. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science. 2015;347:431–5.CrossRefPubMed
44.
Zurück zum Zitat Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:428–31.CrossRefPubMed Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:428–31.CrossRefPubMed
45.
Zurück zum Zitat Mbengue A, Bhattacharjee S, Pandharkar T, Liu H, Estiu G, Stahelin RV, et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature. 2015;520:683–7.CrossRefPubMedPubMedCentral Mbengue A, Bhattacharjee S, Pandharkar T, Liu H, Estiu G, Stahelin RV, et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature. 2015;520:683–7.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979;16:710–8.CrossRefPubMedPubMedCentral Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979;16:710–8.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Witkowski B, Lelièvre J, Barragán MJ, Laurent V, Su XZ, Berry A, Benoit-Vical F. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother. 2010;54:1872–7.CrossRefPubMedPubMedCentral Witkowski B, Lelièvre J, Barragán MJ, Laurent V, Su XZ, Berry A, Benoit-Vical F. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother. 2010;54:1872–7.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Witkowski B, Khim N, Chim P, Kim S, Ke S, Kloeung N, et al. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob Agents Chemother. 2013;57:914–23.CrossRefPubMedPubMedCentral Witkowski B, Khim N, Chim P, Kim S, Ke S, Kloeung N, et al. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob Agents Chemother. 2013;57:914–23.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in vitro and ex vivo drug-response studies. Lancet Infect Dis. 2013;13:1043–9.CrossRefPubMedPubMedCentral Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in vitro and ex vivo drug-response studies. Lancet Infect Dis. 2013;13:1043–9.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Teuscher F, Gatton ML, Chen N, Peters J, Kyle DE, Cheng Q. Artemisinin-induced dormancy in Plasmodium falciparum: duration, recovery rates, and implications in treatment failure. J Infect Dis. 2010;202:1362–8.CrossRefPubMedPubMedCentral Teuscher F, Gatton ML, Chen N, Peters J, Kyle DE, Cheng Q. Artemisinin-induced dormancy in Plasmodium falciparum: duration, recovery rates, and implications in treatment failure. J Infect Dis. 2010;202:1362–8.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Jourdan J, Matile H, Reift E, Biehlmaier O, Dong Y, Wang X, et al. Monoclonal antibodies that recognize the alkylation signature of antimalarial ozonides OZ277 (Arterolane) and OZ439 (Artefenomel). ACS Infect Dis. 2015;2:54–61.CrossRefPubMedPubMedCentral Jourdan J, Matile H, Reift E, Biehlmaier O, Dong Y, Wang X, et al. Monoclonal antibodies that recognize the alkylation signature of antimalarial ozonides OZ277 (Arterolane) and OZ439 (Artefenomel). ACS Infect Dis. 2015;2:54–61.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Ismail HM, Barton VE, Panchana M, Charoensutthivarakul S, Biagini GA, Ward SA, et al. A click chemistry-based proteomic approach reveals that 1,2,4-trioxolane and artemisinin antimalarials share a common protein alkylation profile. Angew Chem Int Ed Engl. 2016;55:1–6.CrossRef Ismail HM, Barton VE, Panchana M, Charoensutthivarakul S, Biagini GA, Ward SA, et al. A click chemistry-based proteomic approach reveals that 1,2,4-trioxolane and artemisinin antimalarials share a common protein alkylation profile. Angew Chem Int Ed Engl. 2016;55:1–6.CrossRef
53.
Zurück zum Zitat Xie S, Dogovski C, Kenny S, Tilley L, Klonis N. Optimal assay design for determining the in vitro sensitivity of ring stage Plasmodium falciparum to artemisinins. Int J Parasitol. 2014;44:893–9.CrossRefPubMed Xie S, Dogovski C, Kenny S, Tilley L, Klonis N. Optimal assay design for determining the in vitro sensitivity of ring stage Plasmodium falciparum to artemisinins. Int J Parasitol. 2014;44:893–9.CrossRefPubMed
55.
Zurück zum Zitat Snyder C, Chollet J, Santo-Tomas J, Scheurer C, Wittlin S. In vitro and in vivo interaction of synthetic peroxide RBx11160 (OZ277) with piperaquine in Plasmodium models. Exp Parasitol. 2007;115:296–300.CrossRefPubMed Snyder C, Chollet J, Santo-Tomas J, Scheurer C, Wittlin S. In vitro and in vivo interaction of synthetic peroxide RBx11160 (OZ277) with piperaquine in Plasmodium models. Exp Parasitol. 2007;115:296–300.CrossRefPubMed
56.
Zurück zum Zitat Yang T, Xie SC, Cao P, Giannangelo C, McCaw J, Creek DJ, Charman SA, Klonis N, Tilley L. Comparison of the exposure time dependence of the activities of synthetic ozonide antimalarials and dihydroartemisinin against K13 wild-type and mutant Plasmodium falciparum strains. Antimicrob Agents Chemother. 2016;60:4501–10.CrossRefPubMedPubMedCentral Yang T, Xie SC, Cao P, Giannangelo C, McCaw J, Creek DJ, Charman SA, Klonis N, Tilley L. Comparison of the exposure time dependence of the activities of synthetic ozonide antimalarials and dihydroartemisinin against K13 wild-type and mutant Plasmodium falciparum strains. Antimicrob Agents Chemother. 2016;60:4501–10.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Phyo AP, Ashley EA, Anderson TJ, Bozdech Z, Carrara VI, Sriprawat K, et al. Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai-Myanmar border (2003–2013): the role of parasite genetic factors. Clin Infect Dis. 2016;63:784–91.CrossRefPubMedPubMedCentral Phyo AP, Ashley EA, Anderson TJ, Bozdech Z, Carrara VI, Sriprawat K, et al. Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai-Myanmar border (2003–2013): the role of parasite genetic factors. Clin Infect Dis. 2016;63:784–91.CrossRefPubMedPubMedCentral
58.
59.
Zurück zum Zitat Siriwardana A, Iyengar K, Roepe PD. Endoperoxide drug cross resistance patterns for Plasmodium falciparum exhibiting an artemisinin delayed clearance phenotype. Antimicrob Agents Chemother. 2016;60:6952–6.CrossRefPubMed Siriwardana A, Iyengar K, Roepe PD. Endoperoxide drug cross resistance patterns for Plasmodium falciparum exhibiting an artemisinin delayed clearance phenotype. Antimicrob Agents Chemother. 2016;60:6952–6.CrossRefPubMed
Metadaten
Titel
In vitro activity of anti-malarial ozonides against an artemisinin-resistant isolate
verfasst von
Fabian Baumgärtner
Joëlle Jourdan
Christian Scheurer
Benjamin Blasco
Brice Campo
Pascal Mäser
Sergio Wittlin
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Malaria Journal / Ausgabe 1/2017
Elektronische ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-1696-0

Weitere Artikel der Ausgabe 1/2017

Malaria Journal 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.