Skip to main content
Erschienen in: Anatomical Science International 4/2017

16.08.2016 | Original Article

In vitro and in vivo study of microporous ceramics using MC3T3 cells, CAM assay and a pig animal model

verfasst von: Marek Tomco, Eva Petrovova, Maria Giretova, Viera Almasiova, Katarina Holovska, Viera Cigankova, Andrej Jenca Jr., Janka Jencova, Andrej Jenca, Martin Boldizar, Kosa Balazs, Lubomir Medvecky

Erschienen in: Anatomical Science International | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Bone tissue engineering combines biomaterials with biologically active factors and cells to hold promise for reconstructing craniofacial defects. In this study the biological activity of biphasic hydroxyapatite ceramics (HA; a bone substitute that is a mixture of hydroxyapatite and β-tricalcium phosphate in fixed ratios) was characterized (1) in vitro by assessing the growth of MC3T3 mouse osteoblast lineage cells, (2) in ovo by using the chick chorioallantoic membrane (CAM) assay and (3) in an in vivo pig animal model. Biocompatibility, bioactivity, bone formation and biomaterial degradation were detected microscopically and by radiology and histology. HA ceramics alone demonstrated great biocompatibility on the CAM as well as bioactivity by increased proliferation and alkaline phosphatase secretion of mouse osteoblasts. The in vivo implantation of HA ceramics with bone marrow mesenchymal stem cells (MMSCs) showed de novo intramembranous bone healing of critical-size bone defects in the right lateral side of pig mandibular bodies after 3 and 9 weeks post-implantation. Compared with the HA ceramics without MMSCs, the progress of bone formation was slower with less-developed features. This article highlights the clinical use of microporous biphasic HA ceramics despite the unusually shaped elongated micropores with a high length/width aspect ratio (up to 20) and absence of preferable macropores (>100 µm) in bone regenerative medicine.
Literatur
Zurück zum Zitat Abou Neel EA, Chrzanowski W, Salih VM, Kim HW, Knowles JC (2014) Tissue engineering in dentistry. J Dent 42:915–928CrossRefPubMed Abou Neel EA, Chrzanowski W, Salih VM, Kim HW, Knowles JC (2014) Tissue engineering in dentistry. J Dent 42:915–928CrossRefPubMed
Zurück zum Zitat Ball M, Grant DM, Lo WJ, Schotchford CA (2008) The effect of different surface morphology and roughness on osteoblast-like cells. J Biomed Mater Res Part A 86:637–647CrossRef Ball M, Grant DM, Lo WJ, Schotchford CA (2008) The effect of different surface morphology and roughness on osteoblast-like cells. J Biomed Mater Res Part A 86:637–647CrossRef
Zurück zum Zitat Barérre F, van Blitterswijk C, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed 1:317–332 Barérre F, van Blitterswijk C, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed 1:317–332
Zurück zum Zitat Barradas AMC, Yuan H, van Blitterswijk CA, Habibovic P (2011) Osteoinductive biomaterials: current knowledge of properties, experimental modls and biological mechanisms. Eur Cell Mater 21:407–429CrossRefPubMed Barradas AMC, Yuan H, van Blitterswijk CA, Habibovic P (2011) Osteoinductive biomaterials: current knowledge of properties, experimental modls and biological mechanisms. Eur Cell Mater 21:407–429CrossRefPubMed
Zurück zum Zitat Biolusova G, Jun DH, King KB et al (2011) Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vivo and in vitro. Stem Cells 29:206–216CrossRef Biolusova G, Jun DH, King KB et al (2011) Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vivo and in vitro. Stem Cells 29:206–216CrossRef
Zurück zum Zitat Bradamante S, Barenghi L, Maier JAM (2014) Stem cells toward the future: the space challange. Life (Basel) 4:267–280 Bradamante S, Barenghi L, Maier JAM (2014) Stem cells toward the future: the space challange. Life (Basel) 4:267–280
Zurück zum Zitat Campana V, Milano G, Pagano E et al (2014) Bone substitutes in orthopedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25:2445–2461CrossRefPubMedPubMedCentral Campana V, Milano G, Pagano E et al (2014) Bone substitutes in orthopedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25:2445–2461CrossRefPubMedPubMedCentral
Zurück zum Zitat Chan O, Coathup MJ, Nesbitt A et al (2012) The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomater 8:2788–2794CrossRefPubMed Chan O, Coathup MJ, Nesbitt A et al (2012) The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomater 8:2788–2794CrossRefPubMed
Zurück zum Zitat Cheng YH, Zhao GJ, Li SL (2000) Bone dinamics of repair of mandibular defect with collagen/hydroxyapatite. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 14:159–161PubMed Cheng YH, Zhao GJ, Li SL (2000) Bone dinamics of repair of mandibular defect with collagen/hydroxyapatite. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 14:159–161PubMed
Zurück zum Zitat Ciocca L, De Crescenzio F, Fantini M, Scotti R (2009) CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning:a pilot study. Comput Med Imaging Graph 33:58–62CrossRefPubMed Ciocca L, De Crescenzio F, Fantini M, Scotti R (2009) CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning:a pilot study. Comput Med Imaging Graph 33:58–62CrossRefPubMed
Zurück zum Zitat Danko J, Simon F (2012) Veterinary dictionary. Ikar, Bratislava Danko J, Simon F (2012) Veterinary dictionary. Ikar, Bratislava
Zurück zum Zitat Danko J, Simon F, Artimova J (2011) Nomina anatomica veterinaria. University of Veterinary Medicine and Pharmacy, Kosice Danko J, Simon F, Artimova J (2011) Nomina anatomica veterinaria. University of Veterinary Medicine and Pharmacy, Kosice
Zurück zum Zitat Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF (2001) Effect of surface rougness of hydroxyapatite on human bone marrow cell adhesion, proliferation and detachment strength. Biomaterials 22:87–96CrossRefPubMed Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF (2001) Effect of surface rougness of hydroxyapatite on human bone marrow cell adhesion, proliferation and detachment strength. Biomaterials 22:87–96CrossRefPubMed
Zurück zum Zitat D’Lima JP, Paul J, Palathingal P, Varma B, Bhat M, Mohanty M (2014) Histological and histometrical evaluation of two synthetic hydroxyapatite based biomaterials in the experimental periodontal defects in dogs. J Clin Diagn Res 8:52–55 D’Lima JP, Paul J, Palathingal P, Varma B, Bhat M, Mohanty M (2014) Histological and histometrical evaluation of two synthetic hydroxyapatite based biomaterials in the experimental periodontal defects in dogs. J Clin Diagn Res 8:52–55
Zurück zum Zitat Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P (2008) Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 29:1177–1188CrossRefPubMed Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P (2008) Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 29:1177–1188CrossRefPubMed
Zurück zum Zitat Guo J, Meng Z, Chen G et al (2012) Restoration of critical-size defects in the rabbit mandible using porous nanohydroxyapatite-polyamide scaffolds. Tissue Eng Part A 18:1239–1252CrossRefPubMed Guo J, Meng Z, Chen G et al (2012) Restoration of critical-size defects in the rabbit mandible using porous nanohydroxyapatite-polyamide scaffolds. Tissue Eng Part A 18:1239–1252CrossRefPubMed
Zurück zum Zitat Harvanova D, Hornak S, Amrichova J et al (2014) Isolation, cultivation and characterisation of pigeon osteoblasts seeded on xenogeneic demineralised cancellous bone scaffold for bone grafting. Vet Res Commun 38:221–228CrossRefPubMed Harvanova D, Hornak S, Amrichova J et al (2014) Isolation, cultivation and characterisation of pigeon osteoblasts seeded on xenogeneic demineralised cancellous bone scaffold for bone grafting. Vet Res Commun 38:221–228CrossRefPubMed
Zurück zum Zitat Herten M, Rothamel D, Schwarz F, Friesen K, Koegler G, Becker J (2009) Surface-and nonsurface-dependent in vitro effects of bone substitutes on cell viability. Clin Oral Invest 13:149–155CrossRef Herten M, Rothamel D, Schwarz F, Friesen K, Koegler G, Becker J (2009) Surface-and nonsurface-dependent in vitro effects of bone substitutes on cell viability. Clin Oral Invest 13:149–155CrossRef
Zurück zum Zitat Jensen SS, Bornstein MM, Dard M, Bosshardt D, Buser D (2009) Comparative study of bisphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J Biomed Mater Res B Appl Biomater 90:171–181PubMed Jensen SS, Bornstein MM, Dard M, Bosshardt D, Buser D (2009) Comparative study of bisphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J Biomed Mater Res B Appl Biomater 90:171–181PubMed
Zurück zum Zitat Jiang H, Zuo Y, Zou Q et al (2013) Biomimetic spiral-cylindrical scaffold based on hybrid chitosan/cellulose/nanohydroxyapatite membrane for bone regeneration. ASC Appl Mater Interfaces 5:12036–12044CrossRef Jiang H, Zuo Y, Zou Q et al (2013) Biomimetic spiral-cylindrical scaffold based on hybrid chitosan/cellulose/nanohydroxyapatite membrane for bone regeneration. ASC Appl Mater Interfaces 5:12036–12044CrossRef
Zurück zum Zitat Keller JC, Collins JG, Niederauer GG, McGee TD (1997) In vitro attachment of osteoblast-like cells to osteoceramic materials. Dent Mater 13:62–68CrossRefPubMed Keller JC, Collins JG, Niederauer GG, McGee TD (1997) In vitro attachment of osteoblast-like cells to osteoceramic materials. Dent Mater 13:62–68CrossRefPubMed
Zurück zum Zitat Kirchhoff M, Lenz S, Henkel KO et al (2011) Lateral augmentation of the mandible in minipigs with a synthetic nanostructured hydroxyapatite block. J Biomed Mater Res B Appl Biomater 96:342–350CrossRefPubMed Kirchhoff M, Lenz S, Henkel KO et al (2011) Lateral augmentation of the mandible in minipigs with a synthetic nanostructured hydroxyapatite block. J Biomed Mater Res B Appl Biomater 96:342–350CrossRefPubMed
Zurück zum Zitat Kurashina K, Kurita H, Wu Q, Ohtsuka A, Kobayashi H (2002) Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Biomaterials 23:407–412CrossRefPubMed Kurashina K, Kurita H, Wu Q, Ohtsuka A, Kobayashi H (2002) Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Biomaterials 23:407–412CrossRefPubMed
Zurück zum Zitat LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98CrossRef LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98CrossRef
Zurück zum Zitat Lin FH, Liao CJ, Chen KS, Sun JS, Lin CP (2001) Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Biomaterials 22:2981–2992CrossRefPubMed Lin FH, Liao CJ, Chen KS, Sun JS, Lin CP (2001) Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Biomaterials 22:2981–2992CrossRefPubMed
Zurück zum Zitat Liu X, Wang X, Horii A (2012) In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane. Nanoscale 4:2720–2727CrossRefPubMed Liu X, Wang X, Horii A (2012) In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane. Nanoscale 4:2720–2727CrossRefPubMed
Zurück zum Zitat Lobo SE, Arinzeh TL (2010) Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials 3:815–826CrossRef Lobo SE, Arinzeh TL (2010) Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials 3:815–826CrossRef
Zurück zum Zitat Medvecky L, Giretova M, Stulajterova R (2012) Chemical modification of hydroxyapatite ceramic surface by calcium phosphate coatings and in vitro osteoblast response. Powder Metall Prog 12:224–233 Medvecky L, Giretova M, Stulajterova R (2012) Chemical modification of hydroxyapatite ceramic surface by calcium phosphate coatings and in vitro osteoblast response. Powder Metall Prog 12:224–233
Zurück zum Zitat Mello A, Hong Z, Rossi AM et al (2007) Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering. Biomed Mater 2:67–77CrossRefPubMed Mello A, Hong Z, Rossi AM et al (2007) Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering. Biomed Mater 2:67–77CrossRefPubMed
Zurück zum Zitat Musumeci G, Castrogiovanni P, Leonardi R et al (2014) New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review. World J Orthop 5:80–88CrossRefPubMedPubMedCentral Musumeci G, Castrogiovanni P, Leonardi R et al (2014) New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review. World J Orthop 5:80–88CrossRefPubMedPubMedCentral
Zurück zum Zitat Naujoks C, Langenbach F, Berr K et al (2011) Biocompatibility of osteogenic predifferentiated human cord blood stem cells with biomaterials and the influence of the biomaterial on the process of differentiation. J Biomater Appl 25:497–512CrossRefPubMed Naujoks C, Langenbach F, Berr K et al (2011) Biocompatibility of osteogenic predifferentiated human cord blood stem cells with biomaterials and the influence of the biomaterial on the process of differentiation. J Biomater Appl 25:497–512CrossRefPubMed
Zurück zum Zitat Noshi T, Yoshikawa T, Ikeuchi M et al (2000) Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenic protein. J Biomed Mater Res 52:621–630CrossRefPubMed Noshi T, Yoshikawa T, Ikeuchi M et al (2000) Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenic protein. J Biomed Mater Res 52:621–630CrossRefPubMed
Zurück zum Zitat Ong JL, Hoppe CA, Cardenas HL et al (1998) Osteoblast precursor cell activity on HA surfaces of different treatments. J Biomed Mat Res Part A 39:176–183CrossRef Ong JL, Hoppe CA, Cardenas HL et al (1998) Osteoblast precursor cell activity on HA surfaces of different treatments. J Biomed Mat Res Part A 39:176–183CrossRef
Zurück zum Zitat Pieri F, Lucarelli E, Corinaldesi G et al (2008) Mesenchymal stem cells and platelet-rich plasma enhance bone formation in sinus grafting: a histomorphometric study in minipigs. J Clin Periodontol 35:539–546CrossRefPubMed Pieri F, Lucarelli E, Corinaldesi G et al (2008) Mesenchymal stem cells and platelet-rich plasma enhance bone formation in sinus grafting: a histomorphometric study in minipigs. J Clin Periodontol 35:539–546CrossRefPubMed
Zurück zum Zitat Rajzer I, Menaszek E, Kwiatkowski R, Chrzanowski W (2014) Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering. J Mater Sci Mater Med 25:1239–1247CrossRefPubMedPubMedCentral Rajzer I, Menaszek E, Kwiatkowski R, Chrzanowski W (2014) Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering. J Mater Sci Mater Med 25:1239–1247CrossRefPubMedPubMedCentral
Zurück zum Zitat Ribatti D, Nico B, Vacca A, Presta M (2006) The gelatin sponge-chorioallantoic membrane assay. Nat Protoc 1(1):85–91CrossRefPubMed Ribatti D, Nico B, Vacca A, Presta M (2006) The gelatin sponge-chorioallantoic membrane assay. Nat Protoc 1(1):85–91CrossRefPubMed
Zurück zum Zitat Rumpel E, Wolf E, Kauschke E et al (2006) The biodegradation of hydroxyapatite bone graft substitues in vivo. Folia Morphol (Warsz) 65:43–48 Rumpel E, Wolf E, Kauschke E et al (2006) The biodegradation of hydroxyapatite bone graft substitues in vivo. Folia Morphol (Warsz) 65:43–48
Zurück zum Zitat Smith LA, Liu X, Hu J, Ma PX (2010) The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials 31:5526–5535CrossRefPubMedPubMedCentral Smith LA, Liu X, Hu J, Ma PX (2010) The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials 31:5526–5535CrossRefPubMedPubMedCentral
Zurück zum Zitat Suzuki O, Nakamura M, Miyasaka Y, Kagayama M, Sakurai M (1991) Bone formation on synthetic precursors of hydroxyapatite. Tohoku J Exp Med 164:37–50CrossRefPubMed Suzuki O, Nakamura M, Miyasaka Y, Kagayama M, Sakurai M (1991) Bone formation on synthetic precursors of hydroxyapatite. Tohoku J Exp Med 164:37–50CrossRefPubMed
Zurück zum Zitat Tovar N, Jimbo R, Witek L et al (2014) The physicochemical characterization and in vivo response of micro/nanoporous bioactive ceramic particulate bone graft materials. Mater Sci Eng C Mater Biol Appl 43:472–480CrossRefPubMed Tovar N, Jimbo R, Witek L et al (2014) The physicochemical characterization and in vivo response of micro/nanoporous bioactive ceramic particulate bone graft materials. Mater Sci Eng C Mater Biol Appl 43:472–480CrossRefPubMed
Zurück zum Zitat Yoo JJ, Kim HJ, Seo SM, Oh KS (2014) Preparation of a hemiporous hydroxyapatite scaffold and evaluation as a cell-mediated bone substitute. Ceram Int 40:3079–3087CrossRef Yoo JJ, Kim HJ, Seo SM, Oh KS (2014) Preparation of a hemiporous hydroxyapatite scaffold and evaluation as a cell-mediated bone substitute. Ceram Int 40:3079–3087CrossRef
Zurück zum Zitat Yuann H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20:1799–1806CrossRef Yuann H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20:1799–1806CrossRef
Zurück zum Zitat Yun JH, Han SH, Choi SH et al (2014) Effects of bone marrow-derived mesenchymal stem cells and platelet-rich plasma on bone regeneration for osseointegration of dental implants: preliminary study in canine three-wall intrabony defects. J Biomed Mater Res B Appl Biomater 102:1021–1030CrossRefPubMed Yun JH, Han SH, Choi SH et al (2014) Effects of bone marrow-derived mesenchymal stem cells and platelet-rich plasma on bone regeneration for osseointegration of dental implants: preliminary study in canine three-wall intrabony defects. J Biomed Mater Res B Appl Biomater 102:1021–1030CrossRefPubMed
Zurück zum Zitat Zhang Q, Lu H, Kawazoe N, Chen G (2013) Preparation of collagen scaffolds with controlled pore structures and improved mechanical property for cartilage tissue engineering. J Bioact Compat Polym 28:426–438CrossRef Zhang Q, Lu H, Kawazoe N, Chen G (2013) Preparation of collagen scaffolds with controlled pore structures and improved mechanical property for cartilage tissue engineering. J Bioact Compat Polym 28:426–438CrossRef
Zurück zum Zitat Zwadlo-Klarwasser G, Görlitz K, Hafemann B, Klee D, Klosterfalfen B (2001) The chorioallantoic membrane of the chick embryo as a simple model for the study of the angiogenic and inflammatory response to biomaterials. J Mater Sci Mater Med 12:195–199CrossRefPubMed Zwadlo-Klarwasser G, Görlitz K, Hafemann B, Klee D, Klosterfalfen B (2001) The chorioallantoic membrane of the chick embryo as a simple model for the study of the angiogenic and inflammatory response to biomaterials. J Mater Sci Mater Med 12:195–199CrossRefPubMed
Metadaten
Titel
In vitro and in vivo study of microporous ceramics using MC3T3 cells, CAM assay and a pig animal model
verfasst von
Marek Tomco
Eva Petrovova
Maria Giretova
Viera Almasiova
Katarina Holovska
Viera Cigankova
Andrej Jenca Jr.
Janka Jencova
Andrej Jenca
Martin Boldizar
Kosa Balazs
Lubomir Medvecky
Publikationsdatum
16.08.2016
Verlag
Springer Japan
Erschienen in
Anatomical Science International / Ausgabe 4/2017
Print ISSN: 1447-6959
Elektronische ISSN: 1447-073X
DOI
https://doi.org/10.1007/s12565-016-0362-x

Weitere Artikel der Ausgabe 4/2017

Anatomical Science International 4/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.