Skip to main content
Erschienen in: Malaria Journal 1/2019

Open Access 01.12.2019 | Research

In vitro anti-malarial efficacy of chalcones: cytotoxicity profile, mechanism of action and their effect on erythrocytes

verfasst von: Shweta Sinha, Daniela I. Batovska, Bikash Medhi, B. D. Radotra, Ashish Bhalla, Nadezhda Markova, Rakesh Sehgal

Erschienen in: Malaria Journal | Ausgabe 1/2019

Abstract

Background

Malaria extensively leads to mortality and morbidity in endemic regions, and the emergence of drug resistant parasites is alarming. Plant derived synthetic pharmaceutical compounds are found to be a foremost research to obtain diverse range of potent leads. Amongst them, the chalcone scaffold is a functional template for drug discovery. The present study involves synthesis of ten chalcones with various substitution pattern in rings A and B and assessment of their anti-malarial efficacy against chloroquine sensitive and chloroquine resistant strains as well as of their cytotoxicity and effect on haemozoin production.

Methods

The chalcones were synthesized by Claisen-Schmidt condensation between equimolar quantities of substituted acetophenones and aryl benzaldehydes (or indole-3-carboxaldehyde) and were screened for anti-malarial activity by WHO Mark III schizont maturation inhibition assay. The cytotoxicity profile of a HeLa cell line was evaluated through MTT viability assay and the selectivity index (SI) was calculated. Haemozoin inhibition assay was performed to illustrate mode of action on a Plasmodium falciparum strain.

Results

The IC50 values of all compounds were in the range 0.10–0.40 μg/mL for MRC-2 (a chloroquine sensitive strain) and 0.14–0.55 μg/mL for RKL-9 (a chloroquine resistant strain) of P. falciparum. All the chalcones showed low cellular toxicity with minimal haemolysis. The statistically significant reduction (p < 0.05) in the haemozoin production suggests a similar mechanism than that of chloroquine.

Conclusions

Out of ten chalcones, number 7 was found to be a lead compound with the highest potency (IC50 = 0.11 µg/mL), as compared to licochalcone (IC50 = 1.43 µg/mL) and with high selectivity index of 85.05.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12936-019-3060-z.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ANOVA
analysis of variance
CC50
cytotoxicity concentration 50%
DELI assay
double-site enzyme-linked lactate dehydrogenase enzyme immunodetection assay
DMEM
Dulbecco Modified Eagle Medium
DMSO
dimethyl sulfoxide
EC50
half maximal effective concentration
HEPES buffer
N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) buffer
HTS assay
high-throughput screening assay
IC50
concentration for 50% inhibition
MSF assay
malaria SYBR green I-based fluorescence assay
MTT
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NAOH
sodium hydroxide
NCCS
National Centre for Cell Science
NIMR
National Institute of Malaria Research
PBS
phosphate-buffered saline
pLDH assay
parasite lactate dehydrogenase assay
RI
resistance index
RPMI media
Roswell Park Memorial Institute media
SD
standard deviation
SDS
sodium dodecyl sulfate
SI
selectivity index
SPSS
Statistical Package for the Social Sciences
WHO
World Health Organization

Background

Malaria control programmes are threatened due to a rapid expansion of resistance to distinct anti-malarial drugs. At present, 219 million cases are reported at a global scale, mostly in children under 5 years of age [1]. Out of the five species that cause human malaria, Plasmodium falciparum and Plasmodium vivax, are associated with life-threatening complications. There is confirmed resistance of both species against most of currently available anti-malarials. To combat drug resistant Plasmodium, artemisinin and its derivatives have been widely implicated all over in endemic regions, but appearance of artemisinin resistance, first in Cambodia in 2007 [2] and later its rapid spread to the south-east Asian region [37] has threatened all the previous success incurred by malaria control strategies.
Chalcones (1,3-diaryl-2-propen-1-ones) are basically plant secondary metabolites related to flavonoid family and are also crucial precursors of distinctive flavonoids and isoflavonoids [8]. They have been extensively studied due to their diverse pharmacological actions [9, 10], including anti-malarial activity (Fig. 1) [11, 12].
Moreover, chalcones can be simply synthesized by the cost-efficient Claisen-Schmidt condensation between variously substituted benzaldehydes and acetophenones [13] thus, providing an array of distinctive potential analogues with potent pharmacological effects [14]. Anti-malarial activity of such chalcones is mostly attributed to the specificity of the substitution pattern, and hydrophobicity and size of ring B (Fig. 2) [15]. The anti-malarial property of chalcone was first reported after an in vitro evaluation of an oxygenated chalcone, “licochalcone A” exclusively obtained from Chinese licorice, as an anti-malarial agent against chloroquine sensitive and chloroquine resistant Plasmodium strains [16]. Further, many more potential analogues of licochalcone A with different substitution pattern have been reported for substantial anti-malarial activity [17]. The simple structure and unambiguous synthesis of chalcones have fascinated the consideration of many chemists to find and expand distinct analogues of this unusual scaffold for various infectious diseases including malaria. For more than a decade, a panel of alkoxylated, prenylated, hydroxylated, quinolinated, oxygenated chalcones derived from either syntheses or natural sources have been assessed for antiplasmodial activity with promising outcomes [17, 18]. Although several mechanisms have been postulated for various chalcones [15, 1922], the exact mode of action still remains unclear. Besides, these chalcones are mostly supposed to show their anti-malarial activity through preventing host haemoglobin degradation by acting against malarial cysteine protease [23]. Molecular modelling research illustrated the linear and planar structure of chalcones, which enables them to fit appropriately within the active site of Plasmodium and Trypanosoma cysteine proteases suggesting a promising target for its action [23]. The present study describes synthesis of ten chalcones with different substitution pattern in rings A and B and assessment of their anti-malarial efficacy against chloroquine sensitive and chloroquine resistant strains as well as of their cytotoxicity and mode of action.

Methods

Chemicals and reagents

The chalcones were synthesized at the Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria. Chloroquine phosphate, quinine hydrochloride, glutamine, sodium bicarbonate, and β-haematin were purchased from Sigma Aldrich while artemisinin was from IPCA. The study was approved by Institute Ethics Committee Project No. NK/1265/Ph.D/23991 at Post Graduate Institute of Medical Education and Research, Chandigarh, for maintenance of P. falciparum strains in human erythrocytes and AB+ve human serum.

Chemistry

The chalcones were synthesized by Claisen-Schmidt condensation between equimolar quantities of substituted acetophenones and aryl aldehydes (or indole-3-carboxaldehyde) [24, 25]. The progress of the reactions was monitored by thin-layer chromatography on silica gel plates. The condensation step was carried out over 6 h to 36 h. After purification by either column chromatography on silica gel or recrystallization from methanol, all corresponding chalcones were obtained in yields over 90%.
Stock solutions of chloroquine phosphate, quinine hydrochloride, artemisinin and each chalcone were prepared by dissolving each compound in DMSO to achieve concentration of 1.00 mg/mL. The DMSO amount in diluted concentrations (1%) had negligible effect on the parasite growth. DMSO was used as negative control.

In vitro anti-malarial activity

Parasites and culture

Two P. falciparum strains, MRC-2 (sensitive to chloroquine) and RKL-9 (resistant to chloroquine), obtained from National Institute of Malaria Research (NIMR), New Delhi, India, were used in this study. These strains were perpetuated in vitro in continuous culture according to the method of Trager and Jensen [26] with slight modifications. Briefly, both sensitive and resistant strains of P. falciparum were maintained in A+ erythrocytes in RPMI-1640 medium (having glutamine, but without any sodium bicarbonate) comprising 1.00 g of dextrose, 5.94 g of HEPES buffer, 40.00 mg of gentamycin. Additionally supplemented with 5% sodium bicarbonate and 10% (v/v) inactivated human AB+ serum then incubated in gas mixture of 5% CO2, 5% O2 and 90% N2 at 37 °C. Parasitized erythrocytes at initial 5% haematocrit were suspended in above mentioned culture medium and parasitaemia was regularly checked to maintain level between 2 and 4% with further sub-culturing for parasitaemia beyond 5%. Growth and multiplication of parasite was monitored by microscopy using Giemsa-stained slides.

Synchronization

To obtain ring stages of the parasite, the cultures were synchronized using d-sorbitol [27]. The cultures, with majority of ring stages, were treated with equal volume of aqueous 5% d-sorbitol for 5 min and then after centrifugation pellet were suspended in complete medium and fresh erythrocytes synchronized culture with 1% parasitaemia and 5% haematocrit were used for compound concentration response assay.

Compound concentration response assay

The concentration of each test compound needed to hinder multiplication of parasites by 50% (IC50) against P. falciparum strains were obtained through concentration response assay performed in 96-well sterile tissue culture plates. Synchronized parasite cultures were applied to different doses of each compound. Dilutions were performed in gentamycin-free culture medium, and incubated at 37 °C having gaseous mixture (5% CO2, 5% O2 and 90% N2) supply for 24 h. The results were expressed as IC50 values computed from HN-NonLin Regression analysis [28], as well as mean percentage inhibition ± standard error examined by thick smear Giemsa stained slides [29, 30].
$$\begin{aligned}& \% {\text{Parasite}}\;{\text{Inhibition}}\;\left[ {29,\;30} \right] \\&\quad= 100 - \left[ {\left( {{\text{Total}}\;{\text{number}}\;{\text{of}}\;{\text{Schizonts}}\;{\text{in}}\;{\text{test}}\;{\text{wells}}} \right)/}\right.\\&\qquad\left.{\left( {{\text{Total}}\;{\text{number}}\;{\text{of}}\;{\text{Schizonts}}\;{\text{in}}\;{\text{control}}\;{\text{well}}} \right)*100} \right] \end{aligned}$$

Resistance index (RI)

The degree of resistance was determined by comparing the activity of chalcones on the chloroquine sensitive and chloroquine resistant strains of P. falciparum using the following formula [31]:
$$\begin{aligned} {\text{RI }}& = {\text{IC}}_{50} \;{\text{Choroquine}}\;{\text{resistant}}\;{\text{strain}}/\\&\quad{\text{IC}}_{50} \;{\text{Chloroquine}}\;{\text{sensitive}}\;{\text{strain}} \end{aligned}$$

Cytotoxicity assay and evaluation of selective index

Cytotoxicity of the compounds on mammalian cells were accomplished employing HeLa cell line (NCCS, Pune) cultured in DMEM supplemented with 10% FBS by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) microenzymatic method with certain modifications [32]. Briefly, cells (104 cells/200 μL/well) were seeded into 96-well flat-bottom sterile tissue culture plates in complete medium. After 24 h of seeding, the test compounds at different dilutions were added and kept for another 24 h in a humidified chamber with 5% CO2 at 37 °C. Twenty microlitres of MTT (5.00 mg/mL in 1XPBS) stock solution were pipetted into each well, mixed and incubated for at least 3–4 h. After incubation, the plates were centrifuged at 1500 rpm for 5 min. The supernatant was disposed cautiously and 100 μL of DMSO were added to each well to lyse the cell and dissolve the insoluble purple formazan product into a coloured solution. Absorbance was taken at 570 nm to determine formazan formation as a measurement of cell viability. Experiments were performed in triplicate. The 50% cytotoxic concentration (CC50) was assesses by analysis of dose–response curves. Selectivity Index (SI) was calculated as [31]:
$${\text{SI }} = {\text{CC}}_{ 50} /{\text{IC}}_{ 50}$$

Haemolysis assay

Haemolytic effect of all chalcones and standard anti-malarial drugs, chloroquine, quinine and artemisinin, was examined by incubating normal erythrocytes with all above mentioned compounds in phosphate-buffered saline (PBS), respectively. Briefly, fresh erythrocytes were centrifuged for 5 min at 1600 rpm for at least thrice in PBS and then the remaining pellet was re-suspended in PBS at 2% hematocrit. One hundred microlitres of this suspended pellet was added to 96-well sterile culture plate having test compounds at different desired concentrations. PBS alone (for baseline values) and 0.4% Triton X-100 in PBS (for 100% haemolysis) were employed as controls. After keeping at 37 °C for 3 h, the test samples were centrifuged and the supernatant was used for determination of the haemolytic activity quantified in terms of haemoglobin release as monitored spectrophotometrically by taking absorbance at 415 nm [33]. The experiment was done in triplicate and the mean ± SD was calculated [33, 34].
$$\begin{aligned}& \% \;{\text{Haemolysis }} = [\left( {{\text{Absorbance}}\;{\text{of}}\;{\text{sample}}_{{415\;{\text{nm}}}}}\right.\\&\quad\left.{ - {\text{Absorbance}}\;{\text{of}}\;{\text{blank}}\;{\text{sample}}_{{415\;{\text{nm}}}} } \right)/\\&\quad{\text{Absorbance}}\;{\text{of}}\;{\text{ positive}}\;{\text{control}}_{{415\;{\text{nm}}}} ]*100 \end{aligned}$$

Haemozoin inhibition assay

The haemozoin (β-haematin) inhibition by distinct drugs in P. falciparum cultures was assessed employing drug concentrations in the proximity of IC50 concentrations after completion of 48 h [35]. Briefly, the test cultures were centrifuged for 5–10 min at 1300 rpm to dispose of the culture medium. Infected erythrocyte pellet (mingled of β-haematin and erythrocyte membrane) were exposed to 0.01% saponin lysis for 10 min at 25 °C to lyse erythrocyte to release parasites. These released parasites were further washed three times with PBS, re-suspended in 2.5% sodium dodecyl sulfate buffer solution (SDS in PBS) and subjected to spin at 20,000 g for 1 h. The supernatant was disposed and the insoluble haemozoin pellet was washed in 2.5% SDS in PBS and then dissolved in 20 mM NaOH. The haemozoin content was quantified by taking the absorbance at 400 nm and using a standard curve prepared from β-haematin. The amount of haemozoin formed in relation to control was calculated. All assays were performed in triplicate.

Statistical analysis

Data were presented as mean ± SD. IBM SPSS Statistics version 21.0 was used for data analysis. p < 0.05 was taken as level of significance. Means were compared using one-way analysis of variance (ANOVA) followed by post hoc, Bonferroni multiple comparison test.

Results

Chemistry

The structures of the synthesized chalcones are represented in Table 1.
Table 1
Structure of the synthesized chalcones 1–10
Chalcone
R’
B
1
2′,4′,6′-Trimethoxy-
3,4-Dimethoxyphenyl-
2
2′,5′-Dimethoxy-
4-Methoxyphenyl-
3
2′,5′-Dimethoxy-
3,4-Methylenedioxyphenyl-
4
3′,4′,5′-Trimethoxy-
4-Fluorophenyl-
5
3′,4′,5′-Trimethoxy-
4-Dimethylaminophenyl-
6
3′,4′,5′-Trimethoxy-
4-Methoxyphenyl-
7
3′,4′,5′-Trimethoxy-
3,4-Dimethoxyphenyl-
8
3′,4′,5′-Trimethoxy-
3,4-Methylenedioxyphenyl-
9
4′-Chloro-
1H-Indole-2-yl-
10
4′-Iodo-
1H-Indole-2-yl-

Anti-malarial activity

The chloroquine sensitive (MRC-2) and chloroquine resistant (RKL-9) strains of P. falciparum were cultured in vitro under sufficient gaseous mixture in RPMI1640 medium and the culture was synchronized by treating with 5% d-sorbitol to acquire mainly ring stage Plasmodium as depicted in Fig. 3a, b.
Parasite at ring stage was used for compound concentration response assay with parasitaemia of 1% at 5% haematocrit. All chalcones, chloroquine, quinine and artemisinin were tested for anti-malarial activity on both strains by looking at percentage inhibition in schizont maturation following WHO Mark III protocol [36] in serially diluted range (6.25–0.09 μg/mL except artemisinin used in 6.25–0.09 ng/mL) of each drug concentration, Fig. 3c, d. The IC50 and IC90 values of all compounds were determined and the resistance index between the two sensitive and resistant strains was calculated (Table 2). The IC50 values acquired for all chalcones were in the range of 0.10–0.40 μg/mL for MRC-2 and 0.14–0.55 μg/mL for RKL-9. The chalcones 7 and 2 showed maximum potency with IC50 values of 0.11 and 0.13 μg/mL for MRC-2, and 0.18 and 0.14 μg/mL for RKL-9. The percentage inhibition in schizont maturation was also calculated after incubation of ring stage P. falciparum till 24 h at the same range of drug concentrations (Table 3).
Table 2
In vitro anti-malarial activity of the chalcones on P. falciparum chloroquineS and P. falciparum chloroquineR strains, their HeLa cell cytotoxicity and resistance (RI) and selectivity indices (SI)
Compounds/drugs code
P. falciparum
Chloroquines
Strain (MRC-2) IC50 (µg/mL)
P. falciparum
Chloroquines
Strain (MRC-2) IC90 (µg/mL)
P. falciparum
ChloroquineR
Strain (RKL-9) IC50 (µg/mL)
P. falciparum
ChloroquineR
Strain (RKL-9) IC90 (µg/mL)
Resistance Index (RI)
IC50 (RKL-9)/IC50 (MRC-2)
HeLa Cell
CC50
Selective index (SI)
P.falciparum chloroquines (MRC-2)
Selective index (SI)
P.falciparum chloroquineR (RKL-9)
1
0.34
5.54
0.23
1.42
0.68
4.36
12.82
18.96
2
0.13
0.51
0.14
0.36
1.08
1.06
8.15
7.57
3
0.17
0.75
0.29
1.15
1.71
7.79
45.82
26.86
4
0.15
0.40
0.51
2.26
3.40
0.84
5.60
1.65
5
0.16
1.08
0.23
0.92
1.43
8.45
52.81
36.74
6
0.35
5.23
0.19
0.98
0.54
1.66
4.74
8.74
7
0.11
0.46
0.18
0.67
1.64
15.31
139.18
85.05
8
0.29
1.01
0.26
5.31
0.90
2.20
7.59
8.46
9
0.25
0.96
0.21
0.95
0.84
1.65
6.60
7.85
10
0.20
0.89
0.19
0.81
0.95
1.88
9.40
9.90
CHL
0.17
1.14
31.04
182.58
QNN
0.25
1.59
30.31
121.24
ART (ng/mL)
0.15
0.15
49.11
327.4
ChloroquineS = Chloroquine Sensitive and ChloroquineR = Chloroquine Resistant
CHL chloroquine, QNN quinine hydrochloride, ART artemisinin
Table 3
Schizont maturation inhibition (%) and haemolysis of normal erythrocytes (%) with effect to the chalcones
Drugs/compound
% Schizont maturation inhibition ± SD (MRC-2) (Conc. = 6.25 μg/mL)
% Schizont maturation inhibition ± SD (RKL-9) (Conc. = 6.25 μg/mL)
% Hemolysis ± SD (Conc. = 12.5 μg/mL)
1
82.43 ± 20.51
49.66 ± 25.46
1.44 ± 0.005
2
71.76 ± 10.61
58.02 ± 21.21
0.86 ± 0.002
3
59.26 ± 4.95
63.71 ± 2.83
1.01 ± 0.003
4
47.48 ± 17.68
57.69 ± 7.78
0.94 ± 0.006
5
58.65 ± 7.78
40 ± 20.51
0.65 ± 0.001
6
51.05 ± 42.42
43.85 ± 33.23
1.15 ± 0.005
7
94.24 ± 2.21
85.82 ± 6.36
1.08 ± 0.001
8
75.17 ± 12.02
77.78 ± 1.41
0.83 ± 0.003
9
50.32 ± 33.23
48.87 ± 25.46
1.30 ± 0.009
10
64.44 ± 9.90
49.62 ± 19.79
1.51 ± 0.013
CHL
88.39 ± 0.71
0.86 ± 0.001
QNN
71.87 ± 16.26
2.16 ± 0.035
ART (ng/mL)
87.88 ± 2.12
1.94 ± 0.026
CHL chloroquine, QNN quinine hydrochloride, ART artemisinin

Cytotoxicity assay and evaluation of selectivity index

Compound cytotoxicity performed on HeLa cell line showed 50% inhibitory cellular cytotoxicity at concentration range from 0.80 to 16.00 μg/mL. The results are summarized in Table 4. The calculated selectivity index shown in Table 2 was 139.18 for 7, 52.81 for 5 and 45.82 for 3 and others had < 15.00 on the chloroquine sensitive strain. Similarly, 7 had higher selectivity index (85.05) as compared to other derivatives on the chloroquine resistance strain.
Table 4
Cell viability of chalcones and standard compounds on HeLa cell line (%)
Compounds
% Cell viability ± SD (Conc. = 12.5 µg/mL)
1
39.80 ± 0.06
2
47.57 ± 0.11
3
40.29 ± 0.07
4
33.98 ± 0.08
5
50.24 ± 0.08
6
41.74 ± 0.03
7
51.21 ± 0.04
8
42.71 ± 0.06
9
55.09 ± 0.09
10
47.08 ± 0.10
CHL
58.00 ± 0.06
QNN
62,62 ± 0.06
ART (ng/mL)
58.92 ± 0.06
CHL chloroquine, QNN quinine hydrochloride, ART artemisinin
The percentage viability of HeLa cells at different concentrations (12.5–0.09 μg/mL) of all compounds including standard anti-malarials is depicted in Additional file 1: Figure S1. At the highest concentration of 12.50 μg/mL (Table 4), the percentage cell viability of 9, 7, and 5 was more than 50%, which was found to be satisfactory compared to chloroquine (58.00 ± 0.06) and quinine (62.62 ± 0.06).

Effect on fresh erythrocytes (haemolysis)

Fresh erythrocytes treated with chalcones derivatives for 3 h at different concentrations in serial dilution (12.5–0.09 μg/mL) showed minimal percentages haemolysis below 5% (Table 3) when compared to the standard control triton X-100 (100% haemolysis).

Effect on haemozoin production

The quantity of haemozoin formed is directly related to the level of haemoglobin digestion. Data for the haemozoin production by the Plasmodium in the effect of chloroquine and the three most potent screened chalcone 2, 6, and 7 derivatives are represented in Fig. 4. The haemozoin production in non-treated infected erythrocytes was used as the positive control. The level of haemozoin production of the chalcone 7 (385.71 ± 4.76) was slightly higher than that of chloroquine (359.52 ± 2.38). Other chalcones also had lower level as compared to that of the control (547.61 ± 9.52).

Discussion

Chloroquine and quinine retain anti-malarial efficacy for past several decades. Afterwhile, artemisinin-based combination therapy is the most recommended therapy to curb any malaria [37]. However, due to appearance of drug resistance and failure to achieve desired anti-malarial efficacy of existing drugs in several part of world [3] emphasizes the effort made by pharmaceutical companies and research organizations to search for new leads with high efficacy and minimal toxicity. Most anti-malarial drugs, such as chloroquine, quinine, mefloquine, halofantrine, pyrimethamine, sulfadoxine, sulfones, tetracyclines, act on the erythrocytic stage of parasite during the course of infection, which is the primary symptomatic phase of infection, thereby terminating the clinical attacks of malaria and addressing the constant threat of drug resistance [38]. Erythrocytic stages in culture of P. falciparum under in vitro conditions is practically feasible with easier manipulation step in the laboratory and found to be a major initial tool to screen schizontocidal compounds. Though this morphological microscopic method is cumbersome and labour intensive, it has been established because of its reproducibility and simplicity. It is also an inexpensive assay in comparison to the various other anti-malarial assays like [3H]-hypoxanthine incorporation assay, lactate dehydrogenase (pLDH) assay, Malaria SYBR Green I-based fluorescence (MSF) assay, double-site enzyme-linked lactate dehydrogenase enzyme immunodetection (DELI) assay, flow cytometric haemozoin detection assay, luciferase-based high-throughput screening (HTS) assay [39, 40], that can be set up in smaller laboratories. The evidence for the anti-malarial activity of chalcones from natural [16, 18, 41] and synthetic source is well documented [4248].
In this study, 10 chalcones were analysed for anti-malarial activity and the results showed good activity against both chloroquine sensitive (MRC-2) strain (0.12–0.36 µg/mL) and chloroquine resistant (RKL-9) strain (0.15–0.52 µg/mL). The chalcones 7, 2 and 6 showed maximum anti-malarial potency as the most potent of them, 7, caused 94.24 ± 2.21% inhibition at concentration of 6.25 μg/mL (Table 3). In comparison, the chalcones with anti-malarial activity, described so far in the literature, have IC50 values between 1.1 and 12.3 µg/mL [11, 44, 4749].
The anti-plasmodial activity of chalcones related to the position of methoxy groups on rings A and B. Concerning ring A, the most successful pattern was that of the 3′,4′,5′-trimethoxyphenyl motif (Fig. 5) shown by the chalcone 7, which is a pharmacophore with diverse range of biological actions including anticancer, anti-invasive, antioxidant, and anti-inflammatory activities. Its effectivity against the MRC-2 strain decreased depending on the substituents in ring B, as followed: 3,4-dimethoxyphenyl-(3,4-diOCH3)>4-fluorophenyl-(4-F)>4-dimethylaminophenyl-(4-N(CH3)2)>3,4-methylenedioxyphenyl-(3,4-O(O)CH2CH2)>4-methoxyphenyl-(4-OCH3), while against the resistant strain, RKL-9, this order changed to: 3,4-diOCH3>4-OCH3 > 4-N(CH3)2>3,4-O(O)CH2CH2>4-F. This result shows that the presence of methylated hydroxyl and amino groups in ring B is more relevant to activity of the 3′,4′,5′-trimethoxychalcones against the chloroquine resistant strain, which might be useful for a future design of more potent chalcones with anti-malarial activity. However, exact relation between such substitutions patterns on ring B and anti-malarial activity is not known.
Meanwhile, one of the most active chalcones (2) possesses methoxy groups at C-2′ and C-5′ positions in ring A and at C-3 and C-4 in ring B, meaning that exploring anti-malarial activity of a larger series of 2′,5′-dimethoxy chalcones with various substituents in ring B is also worthy.
Further, to investigate cytotoxic effect of all these derivatives, results demonstrate very low cytotoxic activity of all derivatives. The chalcones 2, 6 and 7 produced minimal cytotoxicity. The selectivity index is defined as relative effectiveness of investigational compound in inhibiting cell proliferation as compared to inducing cell death. Therefore, it is preferable to have higher selective index that means maximal activity with least cellular toxicity [50]. The comparison of the SI values obtained for 7 and the reference compounds (chloroquine, artemisinin, and quinine) demonstrates good therapeutic effect of 7 and activity close to that of the reference drugs. The chalcone 7 has comparatively higher CC50 values (> 15.30 μg/mL) and good selective index (> 136.60) that defines optimum selective anti-malarial. Previously, Lim et al. [49], showed the most active chalcone in their study also having 3,4-diOCH3 substituents in ring B, but 2′-OH and 4′-OCH3 groups in ring A had prominent cytotoxicity towards FM3A cells, a model of the host, that has comparatively low EC50 values (> 3.3 μg/mL), indicating that the compound has non-selective anti-malarial activity. This shows that finding out the specific anti-malarial target is crucial for the design of chalcones with anti-malarial activity.
To evaluate the effect of all chalcones on normal erythrocytes, percentage haemolysis was measured. All the derivatives irrespective of the concentration range used in the study illustrate minimal haemolytic effect and did not shows any adverse events on erythrocytes at drug concentrations at which they eliminate the parasite which suggests that the anti-malarial effect of these chalcones were primarily not due to erythrocyte lysis.
Next to locate the chalcones, anti-malarial target, the study used to appraise the feasible inhibitory activity of the potent chalcones in haemozoin inhibition assay. The chalcones are supposed to interface and prohibit the P. falciparum cysteine protease (falcipain) action, a vital enzyme believed to be intricate in the haemoglobin digestion present inside the acidic food vacuole of the intra-erythrocytic parasite. Hindrance in haemoglobin digestion process is catastrophic for the Plasmodium. It is anticipated that malarial aspartic proteases (plasmepsin) and cysteine proteases (falcipain) mediate the haemoglobin digestion for releasing amino acids that are needed for intra-erythrocytic parasite multiplication and growth [51]. Also, these proteases form an interesting anti-malarial drug target [51]. Structure based analysis anticipate anti-malarial chalcones restriction on trophozoite cysteine protease as the probable mode of action [23]. The results showed significant reduction in the production of haemozoin when infected erythrocytes were treated with chloroquine and three other potent derivatives (2, 6, and 7), compared to untreated infected erythrocytes. This also suggests the similar mechanism of anti-malarial action of chalcones as the chloroquine does. Similar results were shown in the previous studies where different chalcone derivatives showed hindrance of plasmodial haemozoin formation in culture suggesting that these chalcones act on haemozoin formation pathways [5254]. However, few studies reported that some do not interfere with haemozoin formation [55, 56]. This variation is mostly due to substitution on the ring A or B of the chalcones.

Conclusion

Chalcones offer a very large repository of bioactive compounds with diverse molecular targets. Chalcones with even minor structural changes can result in targeting distinct cellular processes. The present in vitro study clearly indicates that finding the particular anti-malarial target is crucial for the design of potent chalcones. All chalcones here demonstrated potent anti-malarial activity in schizont maturation assay, with 7 having the highest potency (IC50 of 0.11 µg/mL) in contrast to licochalcone (1.43 µg/mL). Also, the inhibition in haemozoin production by these compounds suggests similar mechanism of action with chloroquine. However, extensive in vivo study is needed to confirm efficacy of these derivatives under influence of various physiological mechanism under-going inside animal models.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12936-019-3060-z.

Acknowledgements

We are thankful to ICMR, New Delhi for providing financial support in form of junior research fellowship and senior research fellowship to Shweta Sinha, DST- Joint Indo Bulgarian Project for Funding Project Work (INT/BULGARIA/P-06/12). Special thanks are given to Neena Valecha (Professor, Director), C. R. Pillai (Emeritus Professor), NIMR, New Delhi, for providing the P. falciparum strains.
The ethics approval was given by Institute Ethics Committee, Project ref No. NK/1265/Ph.D/23991 at Post Graduate Institute of Medical Education and Research, Chandigarh for maintenance of P. falciparum strains in culture.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat WHO. World malaria report. Geneva: World Health Organization; 2018. WHO. World malaria report. Geneva: World Health Organization; 2018.
2.
Zurück zum Zitat Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.PubMedPubMedCentralCrossRef Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Amaratunga C, Sreng S, Suon S, Phelps ES, Stepniewska K, Lim P, et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis. 2012;12:851–8.PubMedPubMedCentralCrossRef Amaratunga C, Sreng S, Suon S, Phelps ES, Stepniewska K, Lim P, et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis. 2012;12:851–8.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2012;371:411–23.CrossRef Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2012;371:411–23.CrossRef
5.
Zurück zum Zitat Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012;379:1960–6.PubMedPubMedCentralCrossRef Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012;379:1960–6.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Kyaw MP, Nyunt MH, Chit K, Aye MM, Aye KH, Aye MM, et al. Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar. PLoS ONE. 2013;8:e57689.PubMedPubMedCentralCrossRef Kyaw MP, Nyunt MH, Chit K, Aye MM, Aye KH, Aye MM, et al. Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar. PLoS ONE. 2013;8:e57689.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Rekol H, et al. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong Subregion: a molecular epidemiology observational study. Lancet Infect Dis. 2017;17:491–7.PubMedPubMedCentralCrossRef Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Rekol H, et al. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong Subregion: a molecular epidemiology observational study. Lancet Infect Dis. 2017;17:491–7.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Nowakowska Z. A review of anti-infective and antiinflammatory chalcones. Eur J Med Chem. 2007;42:125–37.PubMedCrossRef Nowakowska Z. A review of anti-infective and antiinflammatory chalcones. Eur J Med Chem. 2007;42:125–37.PubMedCrossRef
9.
Zurück zum Zitat Batovska DI, Todorova IT. Trends in utilization of the pharmacological potential of chalcones. Curr Clin Pharmacol. 2010;5:1–29.PubMedCrossRef Batovska DI, Todorova IT. Trends in utilization of the pharmacological potential of chalcones. Curr Clin Pharmacol. 2010;5:1–29.PubMedCrossRef
10.
Zurück zum Zitat de Mello TF, Bitencourt HR, Pedroso RB, Aristides SM, Lonardoni MV, Silveira TG. Leishmanicidal activity of synthetic chalcones in Leishmania (Viannia) braziliensis. Exp Parasitol. 2014;136:27–34.PubMedCrossRef de Mello TF, Bitencourt HR, Pedroso RB, Aristides SM, Lonardoni MV, Silveira TG. Leishmanicidal activity of synthetic chalcones in Leishmania (Viannia) braziliensis. Exp Parasitol. 2014;136:27–34.PubMedCrossRef
11.
Zurück zum Zitat Mishra N, Arora P, Kumar B, Mishra LC, Bhattacharya A, Awasthi SK, et al. Synthesis of novel substituted 1,3-diaryl propenone derivatives and their antimalarial activity in vitro. Eur J Med Chem. 2008;43:1530–5.PubMedCrossRef Mishra N, Arora P, Kumar B, Mishra LC, Bhattacharya A, Awasthi SK, et al. Synthesis of novel substituted 1,3-diaryl propenone derivatives and their antimalarial activity in vitro. Eur J Med Chem. 2008;43:1530–5.PubMedCrossRef
12.
Zurück zum Zitat Sinha S, Medhi B, Sehgal R. Chalcones as an emerging lead molecule for antimalarial therapy: a review. J Mod Med Chem. 2013;1:64–77. Sinha S, Medhi B, Sehgal R. Chalcones as an emerging lead molecule for antimalarial therapy: a review. J Mod Med Chem. 2013;1:64–77.
13.
Zurück zum Zitat Powers DG, Casebier DS, Fokas D, Ryan WJ, Troth JR, Coffen DL. Automated parallel synthesis of chalcone-based screening libraries. Tetrahedron. 1998;54:4085–96.CrossRef Powers DG, Casebier DS, Fokas D, Ryan WJ, Troth JR, Coffen DL. Automated parallel synthesis of chalcone-based screening libraries. Tetrahedron. 1998;54:4085–96.CrossRef
14.
Zurück zum Zitat Kumar R, Mohanakrishnan D, Sharma A, Kaushik NK, Kalia K, Sinha AK, et al. Reinvestigation of structure-activity relationship of methoxylated chalcones as antimalarials: synthesis and evaluation of 2,4,5-trimethoxy substituted patterns as lead candidates derived from abundantly available natural β-asarone. Eur J Med Chem. 2010;45:5292–301.PubMedCrossRef Kumar R, Mohanakrishnan D, Sharma A, Kaushik NK, Kalia K, Sinha AK, et al. Reinvestigation of structure-activity relationship of methoxylated chalcones as antimalarials: synthesis and evaluation of 2,4,5-trimethoxy substituted patterns as lead candidates derived from abundantly available natural β-asarone. Eur J Med Chem. 2010;45:5292–301.PubMedCrossRef
15.
Zurück zum Zitat Go ML, Liu M, Wilairat P, Rosenthal PJ, Saliba KJ, Kirk K. Antiplasmodial chalcones inhibit sorbitol-induced hemolysis of Plasmodium falciparum-infected erythrocytes. Antimicrob Agents Chemother. 2004;48:3241–5.PubMedPubMedCentralCrossRef Go ML, Liu M, Wilairat P, Rosenthal PJ, Saliba KJ, Kirk K. Antiplasmodial chalcones inhibit sorbitol-induced hemolysis of Plasmodium falciparum-infected erythrocytes. Antimicrob Agents Chemother. 2004;48:3241–5.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Chen M, Theander TG, Christensen SB, Hviid L, Zhai L, Kharazmi A. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob Agents Chemother. 1994;38:1470–5.PubMedPubMedCentralCrossRef Chen M, Theander TG, Christensen SB, Hviid L, Zhai L, Kharazmi A. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob Agents Chemother. 1994;38:1470–5.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Liu M, Wilairat P, Go ML. Antimalarial alkoxylated and hydroxylated chalones: structure-activity relationship analysis. J Med Chem. 2001;44:4443–52.PubMedCrossRef Liu M, Wilairat P, Go ML. Antimalarial alkoxylated and hydroxylated chalones: structure-activity relationship analysis. J Med Chem. 2001;44:4443–52.PubMedCrossRef
18.
Zurück zum Zitat Narender T, Shweta, Tanvir K, Rao MS, Srivastava K, Puri SK. Prenylated chalcones isolated from Crotalaria genus inhibits in vitro growth of the human malaria parasite Plasmodium falciparum. Bioorg Med Chem Lett. 2005;15:2453–5.PubMedCrossRef Narender T, Shweta, Tanvir K, Rao MS, Srivastava K, Puri SK. Prenylated chalcones isolated from Crotalaria genus inhibits in vitro growth of the human malaria parasite Plasmodium falciparum. Bioorg Med Chem Lett. 2005;15:2453–5.PubMedCrossRef
19.
Zurück zum Zitat Geyer JA, Prigge ST, Waters NC. Targeting malaria with specific CDK inhibitors. Biochim Biophys Acta. 2005;1754:160–70.PubMedCrossRef Geyer JA, Prigge ST, Waters NC. Targeting malaria with specific CDK inhibitors. Biochim Biophys Acta. 2005;1754:160–70.PubMedCrossRef
20.
Zurück zum Zitat Mi-Ichi F, Miyadera H, Kobayashi T, Takamiya S, Waki S, Iwata S, et al. Parasite mitochondria as a target of chemotherapy: inhibitory effect of licochalcone A on the Plasmodium falciparum respiratory chain. Ann N Y Acad Sci. 2005;1056:46–54.PubMedCrossRef Mi-Ichi F, Miyadera H, Kobayashi T, Takamiya S, Waki S, Iwata S, et al. Parasite mitochondria as a target of chemotherapy: inhibitory effect of licochalcone A on the Plasmodium falciparum respiratory chain. Ann N Y Acad Sci. 2005;1056:46–54.PubMedCrossRef
21.
Zurück zum Zitat Sriwilaijaroen N, Liu M, Go ML, Wilairat P. Plasmepsin II inhibitory activity of alkoxylated and hydroxylated chalcones. Southeast Asian J Trop Med Public Health. 2006;37:607–12.PubMed Sriwilaijaroen N, Liu M, Go ML, Wilairat P. Plasmepsin II inhibitory activity of alkoxylated and hydroxylated chalcones. Southeast Asian J Trop Med Public Health. 2006;37:607–12.PubMed
22.
Zurück zum Zitat Geyer JA, Keenan SM, Woodard CL, Thompson PA, Gerena L, Nichols DA, et al. Selectiveinhibition of Pfmrk, a Plasmodium falciparum CDK, by antimalarial 1, 3-diaryl-2-propenones. Bioorg Med Chem Lett. 2009;19:1982–5.PubMedCrossRef Geyer JA, Keenan SM, Woodard CL, Thompson PA, Gerena L, Nichols DA, et al. Selectiveinhibition of Pfmrk, a Plasmodium falciparum CDK, by antimalarial 1, 3-diaryl-2-propenones. Bioorg Med Chem Lett. 2009;19:1982–5.PubMedCrossRef
23.
Zurück zum Zitat Li R, Kenyon GL, Cohen FE, Chen X, Gong B, Dominguez JN, et al. In vitro antimalarial activity of chalcones and their derivatives. J Med Chem. 1995;38:5031–7.PubMedCrossRef Li R, Kenyon GL, Cohen FE, Chen X, Gong B, Dominguez JN, et al. In vitro antimalarial activity of chalcones and their derivatives. J Med Chem. 1995;38:5031–7.PubMedCrossRef
24.
Zurück zum Zitat Ivanova A, Batovska D, Engi H, Parushev S, Ocsovszki I, Kostova I, Molnar J. MDR-reversal activity of chalcones. In Vivo. 2008;22:379–84.PubMed Ivanova A, Batovska D, Engi H, Parushev S, Ocsovszki I, Kostova I, Molnar J. MDR-reversal activity of chalcones. In Vivo. 2008;22:379–84.PubMed
25.
Zurück zum Zitat Mehandzhiyski A, Tsvetkova I, Najdenski H, Batovska D. Synthesis of chalcones and their heterocyclic analogues with potential antibacterial activity. Bulg J Chem. 2012;1:53–9. Mehandzhiyski A, Tsvetkova I, Najdenski H, Batovska D. Synthesis of chalcones and their heterocyclic analogues with potential antibacterial activity. Bulg J Chem. 2012;1:53–9.
26.
Zurück zum Zitat Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193:673–5.PubMedCrossRef Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193:673–5.PubMedCrossRef
27.
Zurück zum Zitat Lambros E, Vanderberg JP. Synchronization of P. falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.PubMedCrossRef Lambros E, Vanderberg JP. Synchronization of P. falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.PubMedCrossRef
29.
Zurück zum Zitat WHO. In vitro micro-test (Mark III) for the assessment of P. falciparum to chloroquine, mefloquine, quinine, amodiaquine, sulfadoxine/pyrimethamine and artemisinin. Geneva: World Health Organization; CTD/MAL/9720 Rev 2; 2001. WHO. In vitro micro-test (Mark III) for the assessment of P. falciparum to chloroquine, mefloquine, quinine, amodiaquine, sulfadoxine/pyrimethamine and artemisinin. Geneva: World Health Organization; CTD/MAL/9720 Rev 2; 2001.
30.
Zurück zum Zitat Mishra K, Dash AP, Swain BK, Dey N. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin. Malar J. 2009;8:26.PubMedPubMedCentralCrossRef Mishra K, Dash AP, Swain BK, Dey N. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin. Malar J. 2009;8:26.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Smit FJ, van Biljon RA, Birkholtz LM, N’Da DD. Synthesis and in vitro biological evaluation of dihydroartemisinyl-chalcone esters. Eur J Med Chem. 2015;90:33–44.PubMedCrossRef Smit FJ, van Biljon RA, Birkholtz LM, N’Da DD. Synthesis and in vitro biological evaluation of dihydroartemisinyl-chalcone esters. Eur J Med Chem. 2015;90:33–44.PubMedCrossRef
32.
Zurück zum Zitat Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.PubMedCrossRef Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.PubMedCrossRef
33.
Zurück zum Zitat Kaushik NK, Sharma J, Sahal D. Anti-plasmodial action of de novo-designed, cationic, lysine-branched, amphipathic, helical peptides. Malar J. 2012;11:256.PubMedPubMedCentralCrossRef Kaushik NK, Sharma J, Sahal D. Anti-plasmodial action of de novo-designed, cationic, lysine-branched, amphipathic, helical peptides. Malar J. 2012;11:256.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Sharma P, Sharma JD. In vitro hemolysis of human erythrocytes—by plant extracts with antiplasmodial activity. J Ethnopharmacol. 2001;74:239–43.PubMedCrossRef Sharma P, Sharma JD. In vitro hemolysis of human erythrocytes—by plant extracts with antiplasmodial activity. J Ethnopharmacol. 2001;74:239–43.PubMedCrossRef
35.
Zurück zum Zitat Akompong T, Ghori N, Haldar K. In vitro activity of riboflavin against the human malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother. 2000;44:88–96.PubMedPubMedCentralCrossRef Akompong T, Ghori N, Haldar K. In vitro activity of riboflavin against the human malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother. 2000;44:88–96.PubMedPubMedCentralCrossRef
37.
38.
39.
Zurück zum Zitat Bhattacharya A, Mishra LC, Sharma M, Awasthi SK, Bhasin VK. Antimalarial pharmacodynamics of chalcone derivatives in combination with artemisinin against Plasmodium falciparum in vitro. Eur J Med Chem. 2009;44:3388–93.PubMedCrossRef Bhattacharya A, Mishra LC, Sharma M, Awasthi SK, Bhasin VK. Antimalarial pharmacodynamics of chalcone derivatives in combination with artemisinin against Plasmodium falciparum in vitro. Eur J Med Chem. 2009;44:3388–93.PubMedCrossRef
40.
Zurück zum Zitat Sinha S, Sarma P, Sehgal R, Medhi B. Development in assay methods for in vitro antimalarial drug efficacy testing: a systematic review. Front Pharmacol. 2017;8:754.PubMedPubMedCentralCrossRef Sinha S, Sarma P, Sehgal R, Medhi B. Development in assay methods for in vitro antimalarial drug efficacy testing: a systematic review. Front Pharmacol. 2017;8:754.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Yenesew A, Induli M, Derese S, Midiwo JO, Heydenreich M, Peter MG, et al. Anti-plasmodial flavonoids from the stem bark of Erythrina abyssinica. Phytochemistry. 2004;65:3029–32.PubMedCrossRef Yenesew A, Induli M, Derese S, Midiwo JO, Heydenreich M, Peter MG, et al. Anti-plasmodial flavonoids from the stem bark of Erythrina abyssinica. Phytochemistry. 2004;65:3029–32.PubMedCrossRef
42.
Zurück zum Zitat Chen M, Christensen S, Zhai L, Rasmussen MH, Theander TG, Frøkjaer S, et al. The novel oxygenated chalcone, 2,4-dimethoxy-4′-butoxychalcone, exhibits potent activity against human malaria parasite Plasmodium falciparum in vitro and rodent parasites Plasmodium berghei and Plasmodium yoelii in vivo. J Infect Dis. 1997;176:1327–33.PubMedCrossRef Chen M, Christensen S, Zhai L, Rasmussen MH, Theander TG, Frøkjaer S, et al. The novel oxygenated chalcone, 2,4-dimethoxy-4′-butoxychalcone, exhibits potent activity against human malaria parasite Plasmodium falciparum in vitro and rodent parasites Plasmodium berghei and Plasmodium yoelii in vivo. J Infect Dis. 1997;176:1327–33.PubMedCrossRef
43.
Zurück zum Zitat Domínguez JN, Charris JE, Lobo G, de Domínguez NG, Moreno MM, Riggione F, et al. Synthesis of quinolinylchalcones and evaluation of their antimalarial activity. Eur J Med Chem. 2001;36:555–60.PubMedCrossRef Domínguez JN, Charris JE, Lobo G, de Domínguez NG, Moreno MM, Riggione F, et al. Synthesis of quinolinylchalcones and evaluation of their antimalarial activity. Eur J Med Chem. 2001;36:555–60.PubMedCrossRef
44.
Zurück zum Zitat Awasthi SK, Mishra N, Kumar B, Sharma M, Bhattacharya A, Mishra LC, et al. Potent antimalarial activity of newly synthesized substituted chalcone analogs in vitro. Med Chem Res. 2009;18:407–20.CrossRef Awasthi SK, Mishra N, Kumar B, Sharma M, Bhattacharya A, Mishra LC, et al. Potent antimalarial activity of newly synthesized substituted chalcone analogs in vitro. Med Chem Res. 2009;18:407–20.CrossRef
45.
Zurück zum Zitat Acharya BN, Saraswat D, Tiwari M, Shrivastava AK, Ghorpade R, Bapna S, et al. Synthesis and antimalarial evaluation of 1,3,5-trisubstituted pyrazolines. Eur J Med Chem. 2010;45:430–8.PubMedCrossRef Acharya BN, Saraswat D, Tiwari M, Shrivastava AK, Ghorpade R, Bapna S, et al. Synthesis and antimalarial evaluation of 1,3,5-trisubstituted pyrazolines. Eur J Med Chem. 2010;45:430–8.PubMedCrossRef
46.
Zurück zum Zitat Domínguez JN, de Domínguez NG, Rodrigues J, Acosta ME, Caraballo N, León C. Synthesis and antimalarial activity of urenylBis-chalcone in vitro and in vivo. J Enzyme Inhib Med Chem. 2012;28:1267–73.PubMedCrossRef Domínguez JN, de Domínguez NG, Rodrigues J, Acosta ME, Caraballo N, León C. Synthesis and antimalarial activity of urenylBis-chalcone in vitro and in vivo. J Enzyme Inhib Med Chem. 2012;28:1267–73.PubMedCrossRef
47.
Zurück zum Zitat Yadav N, Dixit SK, Bhattacharya A, Mishra LC, Sharma M, Awasthi SK, et al. Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chem Biol Drug Des. 2012;80:340–7.PubMedCrossRef Yadav N, Dixit SK, Bhattacharya A, Mishra LC, Sharma M, Awasthi SK, et al. Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chem Biol Drug Des. 2012;80:340–7.PubMedCrossRef
48.
Zurück zum Zitat Tadigoppula N, Korthikunta V, Gupta S, Kancharla P, Khaliq T, Soni A, et al. Synthesis and insight into the structure activity relationships of chalcones as antimalarial agents. J Med Chem. 2013;56:31–45.PubMedCrossRef Tadigoppula N, Korthikunta V, Gupta S, Kancharla P, Khaliq T, Soni A, et al. Synthesis and insight into the structure activity relationships of chalcones as antimalarial agents. J Med Chem. 2013;56:31–45.PubMedCrossRef
49.
Zurück zum Zitat Lim SS, Kim HS, Lee DU. In vitro antimalarial activity of flavonoids and chalcones. Bull Korean Chem Soc. 2007;28:2495–7.CrossRef Lim SS, Kim HS, Lee DU. In vitro antimalarial activity of flavonoids and chalcones. Bull Korean Chem Soc. 2007;28:2495–7.CrossRef
51.
Zurück zum Zitat de Domínguez NDG, Rosenthal PJ. Cysteine proteinase inhibitors block early steps in hemoglobin degradation by cultured malaria parasites. Blood. 1996;87:4448–54.CrossRef de Domínguez NDG, Rosenthal PJ. Cysteine proteinase inhibitors block early steps in hemoglobin degradation by cultured malaria parasites. Blood. 1996;87:4448–54.CrossRef
52.
Zurück zum Zitat Domínguez JN, León C, Rodrigues J, de Domínguez NG, Gut J, Rosenthal PJ. Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Farmaco. 2005;60:307–11.PubMedCrossRef Domínguez JN, León C, Rodrigues J, de Domínguez NG, Gut J, Rosenthal PJ. Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Farmaco. 2005;60:307–11.PubMedCrossRef
53.
Zurück zum Zitat Frölich S, Schubert C, Bienzle U, Jenett-Siems K. In vitro antiplasmodial activity of prenylated chalcone derivatives of hops (Humulus lupulus) and their interaction with haemin. J Antimicrob Chemother. 2005;55:883–7.PubMedCrossRef Frölich S, Schubert C, Bienzle U, Jenett-Siems K. In vitro antiplasmodial activity of prenylated chalcone derivatives of hops (Humulus lupulus) and their interaction with haemin. J Antimicrob Chemother. 2005;55:883–7.PubMedCrossRef
54.
Zurück zum Zitat Pandey AV, Singh N, Tekwani BL, Puri SK, Chauhan VS. Assay of β-hematin formation by malaria parasite. J Pharm Biomed Anal. 1999;20:203–7.PubMedCrossRef Pandey AV, Singh N, Tekwani BL, Puri SK, Chauhan VS. Assay of β-hematin formation by malaria parasite. J Pharm Biomed Anal. 1999;20:203–7.PubMedCrossRef
55.
Zurück zum Zitat Mishra LC, Bhattacharya A, Bhasin VK. Phytochemical licochalcone A enhances antimalarial activity of artemisinin in vitro. Acta Trop. 2009;109:194–8.PubMedCrossRef Mishra LC, Bhattacharya A, Bhasin VK. Phytochemical licochalcone A enhances antimalarial activity of artemisinin in vitro. Acta Trop. 2009;109:194–8.PubMedCrossRef
56.
Zurück zum Zitat Sisodia BS, Negi AS, Darokar MP, Dwivedi UN, Khanuja SP. Antiplasmodial activity of steroidal chalcones: evaluation of their effect on hemozoin synthesis and the new permeation pathway of Plasmodium falciparum-infected erythrocyte membrane. Chem Biol Drug Des. 2012;9:610–5.CrossRef Sisodia BS, Negi AS, Darokar MP, Dwivedi UN, Khanuja SP. Antiplasmodial activity of steroidal chalcones: evaluation of their effect on hemozoin synthesis and the new permeation pathway of Plasmodium falciparum-infected erythrocyte membrane. Chem Biol Drug Des. 2012;9:610–5.CrossRef
Metadaten
Titel
In vitro anti-malarial efficacy of chalcones: cytotoxicity profile, mechanism of action and their effect on erythrocytes
verfasst von
Shweta Sinha
Daniela I. Batovska
Bikash Medhi
B. D. Radotra
Ashish Bhalla
Nadezhda Markova
Rakesh Sehgal
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Malaria Journal / Ausgabe 1/2019
Elektronische ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-3060-z

Weitere Artikel der Ausgabe 1/2019

Malaria Journal 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.