Skip to main content

01.08.2016 | Report

Inactivation of the LKB1-AMPK signaling pathway does not contribute to salivary gland tumor development - a short report

verfasst von: Natascha Cidlinsky, Giada Dogliotti, Tobias Pukrop, Rudolf Jung, Florian Weber, Michael P. Krahn

Erschienen in: Cellular Oncology | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Activation of AMPK by the tumor suppressor LKB1 represents an essential gatekeeping step for cells under energetic stress to prevent their growth and proliferation by inhibiting mTOR activation, until the energy supply normalizes. The LKB1/AMPK pathway is frequently downregulated in various types of cancer, thereby uncoupling tumor cell growth and proliferation from energy supply. As yet, little information is available on the role of the LKB1/AMPK pathway in tumors derived from salivary gland tissues.

Methods

We performed LKB1 protein expression and AMPK and mTOR activation analyses in several salivary gland tumor types and their respective healthy control tissues using immunohistochemistry.

Results

No significant downregulation of LKB1 expression or decreased activation of AMPK or mTOR were observed in any of the salivary gland tumors tested. In contrast, we found that the salivary gland tumors exhibited an increased rather than a decreased AMPK activation. Although the PI3K/Akt pathway was found to be activated in most of the analyzed tumor samples, the unchanged robust activity of LKB1/AMPK likely prevents (over)activation of mTOR.

Conclusion

In contrast to many other types of cancer, inactivation or downregulation of the LKB1/AMPK pathway does not substantially contribute to the pathogenesis of salivary gland tumors.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat J. Spicer, S. Rayter, N. Young, R. Elliott, A. Ashworth, D. Smith, Regulation of the Wnt signalling component PAR1A by the Peutz-Jeghers syndrome kinase LKB1. Oncogene 22, 4752–4756 (2003)CrossRefPubMed J. Spicer, S. Rayter, N. Young, R. Elliott, A. Ashworth, D. Smith, Regulation of the Wnt signalling component PAR1A by the Peutz-Jeghers syndrome kinase LKB1. Oncogene 22, 4752–4756 (2003)CrossRefPubMed
2.
Zurück zum Zitat D. P. Smith, S. I. Rayter, C. Niederlander, J. Spicer, C. M. Jones, A. Ashworth, LIP1, A cytoplasmic protein functionally linked to the Peutz-Jeghers syndrome kinase LKB1. Hum. Mol. Genet. 10, 2869–2877 (2001)CrossRefPubMed D. P. Smith, S. I. Rayter, C. Niederlander, J. Spicer, C. M. Jones, A. Ashworth, LIP1, A cytoplasmic protein functionally linked to the Peutz-Jeghers syndrome kinase LKB1. Hum. Mol. Genet. 10, 2869–2877 (2001)CrossRefPubMed
3.
Zurück zum Zitat O. Ossipova, N. Bardeesy, R. A. DePinho, J. B. Green, LKB1 (XEEK1) regulates Wnt signalling in vertebrate development. Nat. Cell Biol. 5, 889–894 (2003)CrossRefPubMed O. Ossipova, N. Bardeesy, R. A. DePinho, J. B. Green, LKB1 (XEEK1) regulates Wnt signalling in vertebrate development. Nat. Cell Biol. 5, 889–894 (2003)CrossRefPubMed
4.
Zurück zum Zitat D. A. Guertin, D. M. Sabatini, Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007)CrossRefPubMed D. A. Guertin, D. M. Sabatini, Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007)CrossRefPubMed
5.
Zurück zum Zitat C. Boehlke, F. Kotsis, V. Patel, S. Braeg, H. Voelker, S. Bredt, T. Beyer, H. Janusch, C. Hamann, M. Godel, K. Muller, M. Herbst, M. Hornung, M. Doerken, M. Kottgen, R. Nitschke, P. Igarashi, G. Walz, E. W. Kuehn, Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat. Cell Biol. 12, 1115–1122 (2010)CrossRefPubMedPubMedCentral C. Boehlke, F. Kotsis, V. Patel, S. Braeg, H. Voelker, S. Bredt, T. Beyer, H. Janusch, C. Hamann, M. Godel, K. Muller, M. Herbst, M. Hornung, M. Doerken, M. Kottgen, R. Nitschke, P. Igarashi, G. Walz, E. W. Kuehn, Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat. Cell Biol. 12, 1115–1122 (2010)CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat H. Mehenni, N. Lin-Marq, K. Buchet-Poyau, A. Reymond, M. A. Collart, D. Picard, S. E. Antonarakis, LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes. Hum. Mol. Genet. 14, 2209–2219 (2005)CrossRefPubMed H. Mehenni, N. Lin-Marq, K. Buchet-Poyau, A. Reymond, M. A. Collart, D. Picard, S. E. Antonarakis, LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes. Hum. Mol. Genet. 14, 2209–2219 (2005)CrossRefPubMed
7.
Zurück zum Zitat P. Y. Zeng, S. L. Berger, LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation. Cancer Res. 66, 10701–10708 (2006)CrossRefPubMed P. Y. Zeng, S. L. Berger, LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation. Cancer Res. 66, 10701–10708 (2006)CrossRefPubMed
8.
Zurück zum Zitat K. Goetze, C. G. Fabian, A. Siebers, L. Binz, D. Faber, S. Indraccolo, G. Nardo, U. G. Sattler, W. Mueller-Klieser, Manipulation of tumor metabolism for therapeutic approaches: ovarian cancer-derived cell lines as a model system. Cell. Oncol. 38, 377–385 (2015)CrossRef K. Goetze, C. G. Fabian, A. Siebers, L. Binz, D. Faber, S. Indraccolo, G. Nardo, U. G. Sattler, W. Mueller-Klieser, Manipulation of tumor metabolism for therapeutic approaches: ovarian cancer-derived cell lines as a model system. Cell. Oncol. 38, 377–385 (2015)CrossRef
9.
Zurück zum Zitat H. R. Oh, C. H. An, N. J. Yoo, S. H. Lee, Somatic mutations of amino acid metabolism-related genes in gastric and colorectal cancers and their regional heterogeneity--a short report. Cell. Oncol. 37, 455–461 (2014)CrossRef H. R. Oh, C. H. An, N. J. Yoo, S. H. Lee, Somatic mutations of amino acid metabolism-related genes in gastric and colorectal cancers and their regional heterogeneity--a short report. Cell. Oncol. 37, 455–461 (2014)CrossRef
10.
Zurück zum Zitat M. Cargnello, J. Tcherkezian, P. P. Roux, The expanding role of mTOR in cancer cell growth and proliferation. Mutagenesis 30, 169–176 (2015)CrossRefPubMed M. Cargnello, J. Tcherkezian, P. P. Roux, The expanding role of mTOR in cancer cell growth and proliferation. Mutagenesis 30, 169–176 (2015)CrossRefPubMed
11.
Zurück zum Zitat K. Inoki, T. Zhu, K. L. Guan, TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003)CrossRefPubMed K. Inoki, T. Zhu, K. L. Guan, TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003)CrossRefPubMed
12.
Zurück zum Zitat Shaw, R. J., Bardeesy, N., Manning, B. D., Lopez, L., Kosmatka, M., DePinho, R. A., and Cantley, L. C. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 6, 91–99 (2004) Shaw, R. J., Bardeesy, N., Manning, B. D., Lopez, L., Kosmatka, M., DePinho, R. A., and Cantley, L. C. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 6, 91–99 (2004)
13.
Zurück zum Zitat D. M. Gwinn, D. B. Shackelford, D. F. Egan, M. M. Mihaylova, A. Mery, D. S. Vasquez, B. E. Turk, R. J. Shaw, AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008)CrossRefPubMedPubMedCentral D. M. Gwinn, D. B. Shackelford, D. F. Egan, M. M. Mihaylova, A. Mery, D. S. Vasquez, B. E. Turk, R. J. Shaw, AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008)CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat A. M. Arsham, J. J. Howell, M. C. Simon, A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J. Biol. Chem. 278, 29655–29660 (2003)CrossRefPubMed A. M. Arsham, J. J. Howell, M. C. Simon, A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J. Biol. Chem. 278, 29655–29660 (2003)CrossRefPubMed
15.
Zurück zum Zitat N. Kimura, C. Tokunaga, S. Dalal, C. Richardson, K. Yoshino, K. Hara, B. E. Kemp, L. A. Witters, O. Mimura, K. Yonezawa, A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells. 8, 65–79 (2003) N. Kimura, C. Tokunaga, S. Dalal, C. Richardson, K. Yoshino, K. Hara, B. E. Kemp, L. A. Witters, O. Mimura, K. Yonezawa, A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells. 8, 65–79 (2003)
16.
Zurück zum Zitat D. B. Shackelford, D. S. Vasquez, J. Corbeil, S. Wu, M. Leblanc, C. L. Wu, D. R. Vera, R. J. Shaw, mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc. Natl. Acad. Sci. U. S. A. 106, 11137–11142 (2009)CrossRefPubMedPubMedCentral D. B. Shackelford, D. S. Vasquez, J. Corbeil, S. Wu, M. Leblanc, C. L. Wu, D. R. Vera, R. J. Shaw, mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc. Natl. Acad. Sci. U. S. A. 106, 11137–11142 (2009)CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Corradetti, M. N., Inoki, K., Bardeesy, N., DePinho, R. A., and Guan, K. L. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev. 18, 1533–1538 (2004) Corradetti, M. N., Inoki, K., Bardeesy, N., DePinho, R. A., and Guan, K. L. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev. 18, 1533–1538 (2004)
18.
Zurück zum Zitat Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., and Cantley, L. C. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 310, 1642–1646 (2005) Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., and Cantley, L. C. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 310, 1642–1646 (2005)
19.
Zurück zum Zitat B. Faubert, E. E. Vincent, M. C. Poffenberger, R. G. Jones, The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator. Cancer Lett. 356, 165–170 (2015)CrossRefPubMed B. Faubert, E. E. Vincent, M. C. Poffenberger, R. G. Jones, The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator. Cancer Lett. 356, 165–170 (2015)CrossRefPubMed
20.
Zurück zum Zitat A. Hemminki, D. Markie, I. Tomlinson, E. Avizienyte, S. Roth, A. Loukola, G. Bignell, W. Warren, M. Aminoff, P. Hoglund, H. Jarvinen, P. Kristo, K. Pelin, M. Ridanpaa, R. Salovaara, T. Toro, W. Bodmer, S. Olschwang, A. S. Olsen, M. R. Stratton, A. de la Chapelle, L. A. Aaltonen, A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391, 184–187 (1998)CrossRefPubMed A. Hemminki, D. Markie, I. Tomlinson, E. Avizienyte, S. Roth, A. Loukola, G. Bignell, W. Warren, M. Aminoff, P. Hoglund, H. Jarvinen, P. Kristo, K. Pelin, M. Ridanpaa, R. Salovaara, T. Toro, W. Bodmer, S. Olschwang, A. S. Olsen, M. R. Stratton, A. de la Chapelle, L. A. Aaltonen, A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391, 184–187 (1998)CrossRefPubMed
21.
Zurück zum Zitat D. E. Jenne, H. Reimann, J. Nezu, W. Friedel, S. Loff, R. Jeschke, O. Muller, W. Back, M. Zimmer, Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat. Genet. 18, 38–43 (1998)CrossRefPubMed D. E. Jenne, H. Reimann, J. Nezu, W. Friedel, S. Loff, R. Jeschke, O. Muller, W. Back, M. Zimmer, Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat. Genet. 18, 38–43 (1998)CrossRefPubMed
22.
Zurück zum Zitat H. Jeghers, K. V. Mc, K. H. Katz, Generalized intestinal polyposis and melanin spots of the oral mucosa, lips and digits. a syndrome of diagnostic significance. N. Engl. J. Med. 241, 1031–1036 (1949)CrossRefPubMed H. Jeghers, K. V. Mc, K. H. Katz, Generalized intestinal polyposis and melanin spots of the oral mucosa, lips and digits. a syndrome of diagnostic significance. N. Engl. J. Med. 241, 1031–1036 (1949)CrossRefPubMed
23.
Zurück zum Zitat F. M. Giardiello, J. D. Brensinger, A. C. Tersmette, S. N. Goodman, G. M. Petersen, S. V. Booker, M. Cruz-Correa, J. A. Offerhaus, Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119, 1447–1453 (2000)CrossRefPubMed F. M. Giardiello, J. D. Brensinger, A. C. Tersmette, S. N. Goodman, G. M. Petersen, S. V. Booker, M. Cruz-Correa, J. A. Offerhaus, Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119, 1447–1453 (2000)CrossRefPubMed
24.
Zurück zum Zitat M. Sanchez-Cespedes, A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 26, 7825–7832 (2007)CrossRefPubMed M. Sanchez-Cespedes, A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 26, 7825–7832 (2007)CrossRefPubMed
25.
Zurück zum Zitat K. Vaahtomeri, T. P. Makela, Molecular mechanisms of tumor suppression by LKB1. FEBS Lett. 585, 944–951 (2011)CrossRefPubMed K. Vaahtomeri, T. P. Makela, Molecular mechanisms of tumor suppression by LKB1. FEBS Lett. 585, 944–951 (2011)CrossRefPubMed
26.
Zurück zum Zitat B. Gao, Y. Sun, J. Zhang, Y. Ren, R. Fang, X. Han, L. Shen, X. Y. Liu, W. Pao, H. Chen, H. Ji, Spectrum of LKB1, EGFR, and KRAS mutations in chinese lung adenocarcinomas. J Thorac Oncol. 5, 1130–1135 (2010) B. Gao, Y. Sun, J. Zhang, Y. Ren, R. Fang, X. Han, L. Shen, X. Y. Liu, W. Pao, H. Chen, H. Ji, Spectrum of LKB1, EGFR, and KRAS mutations in chinese lung adenocarcinomas. J Thorac Oncol. 5, 1130–1135 (2010)
27.
Zurück zum Zitat H. Ji, M. R. Ramsey, D. N. Hayes, C. Fan, K. McNamara, P. Kozlowski, C. Torrice, M. C. Wu, T. Shimamura, S. A. Perera, M. C. Liang, D. Cai, G. N. Naumov, L. Bao, C. M. Contreras, D. Li, L. Chen, J. Krishnamurthy, J. Koivunen, L. R. Chirieac, R. F. Padera, R. T. Bronson, N. I. Lindeman, D. C. Christiani, X. Lin, G. I. Shapiro, P. A. Janne, B. E. Johnson, M. Meyerson, D. J. Kwiatkowski, D. H. Castrillon, N. Bardeesy, N. E. Sharpless, K. K. Wong, LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807–810 (2007)CrossRefPubMed H. Ji, M. R. Ramsey, D. N. Hayes, C. Fan, K. McNamara, P. Kozlowski, C. Torrice, M. C. Wu, T. Shimamura, S. A. Perera, M. C. Liang, D. Cai, G. N. Naumov, L. Bao, C. M. Contreras, D. Li, L. Chen, J. Krishnamurthy, J. Koivunen, L. R. Chirieac, R. F. Padera, R. T. Bronson, N. I. Lindeman, D. C. Christiani, X. Lin, G. I. Shapiro, P. A. Janne, B. E. Johnson, M. Meyerson, D. J. Kwiatkowski, D. H. Castrillon, N. Bardeesy, N. E. Sharpless, K. K. Wong, LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807–810 (2007)CrossRefPubMed
28.
Zurück zum Zitat J. P. Koivunen, J. Kim, J. Lee, A. M. Rogers, J. O. Park, X. Zhao, K. Naoki, I. Okamoto, K. Nakagawa, B. Y. Yeap, M. Meyerson, K. K. Wong, W. G. Richards, D. J. Sugarbaker, B. E. Johnson, P. A. Janne, Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients. Br. J. Cancer 99, 245–252 (2008)CrossRefPubMedPubMedCentral J. P. Koivunen, J. Kim, J. Lee, A. M. Rogers, J. O. Park, X. Zhao, K. Naoki, I. Okamoto, K. Nakagawa, B. Y. Yeap, M. Meyerson, K. K. Wong, W. G. Richards, D. J. Sugarbaker, B. E. Johnson, P. A. Janne, Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients. Br. J. Cancer 99, 245–252 (2008)CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat M. Sanchez-Cespedes, P. Parrella, M. Esteller, S. Nomoto, B. Trink, J. M. Engles, W. H. Westra, J. G. Herman, D. Sidransky, Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 62, 3659–3662 (2002)PubMed M. Sanchez-Cespedes, P. Parrella, M. Esteller, S. Nomoto, B. Trink, J. M. Engles, W. H. Westra, J. G. Herman, D. Sidransky, Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 62, 3659–3662 (2002)PubMed
30.
Zurück zum Zitat S. N. Wingo, T. D. Gallardo, E. A. Akbay, M. C. Liang, C. M. Contreras, T. Boren, T. Shimamura, D. S. Miller, N. E. Sharpless, N. Bardeesy, D. J. Kwiatkowski, J. O. Schorge, K. K. Wong, D. H. Castrillon, Somatic LKB1 mutations promote cervical cancer progression. PLoS One 4, e5137 (2009)CrossRefPubMedPubMedCentral S. N. Wingo, T. D. Gallardo, E. A. Akbay, M. C. Liang, C. M. Contreras, T. Boren, T. Shimamura, D. S. Miller, N. E. Sharpless, N. Bardeesy, D. J. Kwiatkowski, J. O. Schorge, K. K. Wong, D. H. Castrillon, Somatic LKB1 mutations promote cervical cancer progression. PLoS One 4, e5137 (2009)CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat C. M. Contreras, S. Gurumurthy, J. M. Haynie, L. J. Shirley, E. A. Akbay, S. N. Wingo, J. O. Schorge, R. R. Broaddus, K. K. Wong, N. Bardeesy, D. H. Castrillon, Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas. Cancer Res. 68, 759–766 (2008)CrossRefPubMed C. M. Contreras, S. Gurumurthy, J. M. Haynie, L. J. Shirley, E. A. Akbay, S. N. Wingo, J. O. Schorge, R. R. Broaddus, K. K. Wong, N. Bardeesy, D. H. Castrillon, Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas. Cancer Res. 68, 759–766 (2008)CrossRefPubMed
32.
Zurück zum Zitat A. Rowan, M. Churchman, R. Jefferey, A. Hanby, R. Poulsom, I. Tomlinson, In situ analysis of LKB1/STK11 mRNA expression in human normal tissues and tumours. J. Pathol. 192, 203–206 (2000)CrossRefPubMed A. Rowan, M. Churchman, R. Jefferey, A. Hanby, R. Poulsom, I. Tomlinson, In situ analysis of LKB1/STK11 mRNA expression in human normal tissues and tumours. J. Pathol. 192, 203–206 (2000)CrossRefPubMed
33.
Zurück zum Zitat I. P. Ribeiro, F. Marques, F. Caramelo, J. Pereira, M. Patricio, H. Prazeres, J. Ferrao, M. J. Juliao, M. Castelo-Branco, J. B. de Melo, I. P. Baptista, I. M. Carreira, Genetic gains and losses in oral squamous cell carcinoma: impact on clinical management. Cell. Oncol. 37, 29–39 (2014)CrossRef I. P. Ribeiro, F. Marques, F. Caramelo, J. Pereira, M. Patricio, H. Prazeres, J. Ferrao, M. J. Juliao, M. Castelo-Branco, J. B. de Melo, I. P. Baptista, I. M. Carreira, Genetic gains and losses in oral squamous cell carcinoma: impact on clinical management. Cell. Oncol. 37, 29–39 (2014)CrossRef
34.
Zurück zum Zitat T. Nakaoka, A. Ota, T. Ono, S. Karnan, H. Konishi, A. Furuhashi, Y. Ohmura, Y. Yamada, Y. Hosokawa, Y. Kazaoka, Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells. Cell. Oncol. 37, 119–129 (2014)CrossRef T. Nakaoka, A. Ota, T. Ono, S. Karnan, H. Konishi, A. Furuhashi, Y. Ohmura, Y. Yamada, Y. Hosokawa, Y. Kazaoka, Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells. Cell. Oncol. 37, 119–129 (2014)CrossRef
35.
Zurück zum Zitat C. Salazar, R. Nagadia, P. Pandit, J. Cooper-White, N. Banerjee, N. Dimitrova, W. B. Coman, C. Punyadeera, A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell. Oncol. 37, 331–338 (2014)CrossRef C. Salazar, R. Nagadia, P. Pandit, J. Cooper-White, N. Banerjee, N. Dimitrova, W. B. Coman, C. Punyadeera, A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell. Oncol. 37, 331–338 (2014)CrossRef
36.
Zurück zum Zitat L. Thompson, World Health Organization classification of tumours: pathology and genetics of head and neck tumours. Ear Nose Throat J. 85, 74 (2006)PubMed L. Thompson, World Health Organization classification of tumours: pathology and genetics of head and neck tumours. Ear Nose Throat J. 85, 74 (2006)PubMed
37.
Zurück zum Zitat S. Kato, S. K. Elkin, M. Schwaederle, B. N. Tomson, T. Helsten, J. L. Carter, R. Kurzrock, Genomic landscape of salivary gland tumors. Oncotarget 28, 25631–25645 (2015)CrossRef S. Kato, S. K. Elkin, M. Schwaederle, B. N. Tomson, T. Helsten, J. L. Carter, R. Kurzrock, Genomic landscape of salivary gland tumors. Oncotarget 28, 25631–25645 (2015)CrossRef
38.
Zurück zum Zitat T. Ettl, S. Schwarz-Furlan, F. Haubner, S. Muller, J. Zenk, M. Gosau, T. E. Reichert, K. Zeitler, The PI3K/AKT/mTOR signalling pathway is active in salivary gland cancer and implies different functions and prognoses depending on cell localisation. Oral Oncol. 48, 822–830 (2012)CrossRefPubMed T. Ettl, S. Schwarz-Furlan, F. Haubner, S. Muller, J. Zenk, M. Gosau, T. E. Reichert, K. Zeitler, The PI3K/AKT/mTOR signalling pathway is active in salivary gland cancer and implies different functions and prognoses depending on cell localisation. Oral Oncol. 48, 822–830 (2012)CrossRefPubMed
39.
Zurück zum Zitat N. M. Ghahhari, H. M. Ghahhari, M. Kadivar, Could a possible crosstalk between AMPK and TGF-beta signaling pathways be a key player in benign and malignant salivary gland tumors? Onkologie 35, 770–774 (2012)CrossRefPubMed N. M. Ghahhari, H. M. Ghahhari, M. Kadivar, Could a possible crosstalk between AMPK and TGF-beta signaling pathways be a key player in benign and malignant salivary gland tumors? Onkologie 35, 770–774 (2012)CrossRefPubMed
40.
Zurück zum Zitat A. Sen, Z. Nagy-Zsver-Vadas, M. P. Krahn, Drosophila PATJ supports adherens junction stability by modulating Myosin light chain activity. J. Cell Biol. 199, 685–698 (2012)CrossRefPubMedPubMedCentral A. Sen, Z. Nagy-Zsver-Vadas, M. P. Krahn, Drosophila PATJ supports adherens junction stability by modulating Myosin light chain activity. J. Cell Biol. 199, 685–698 (2012)CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat J. Boudeau, A. Kieloch, D. R. Alessi, A. Stella, G. Guanti, N. Resta, Functional analysis of LKB1/STK11 mutants and two aberrant isoforms found in Peutz-Jeghers syndrome patients. Hum. Mutat. 21, 172 (2003)CrossRefPubMed J. Boudeau, A. Kieloch, D. R. Alessi, A. Stella, G. Guanti, N. Resta, Functional analysis of LKB1/STK11 mutants and two aberrant isoforms found in Peutz-Jeghers syndrome patients. Hum. Mutat. 21, 172 (2003)CrossRefPubMed
42.
Zurück zum Zitat C. Forcet, S. Etienne-Manneville, H. Gaude, L. Fournier, S. Debilly, M. Salmi, A. Baas, S. Olschwang, H. Clevers, M. Billaud, Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Hum. Mol. Genet. 14, 1283–1292 (2005)CrossRefPubMed C. Forcet, S. Etienne-Manneville, H. Gaude, L. Fournier, S. Debilly, M. Salmi, A. Baas, S. Olschwang, H. Clevers, M. Billaud, Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Hum. Mol. Genet. 14, 1283–1292 (2005)CrossRefPubMed
43.
Zurück zum Zitat A. F. Baas, J. Boudeau, G. P. Sapkota, L. Smit, R. Medema, N. A. Morrice, D. R. Alessi, H. C. Clevers, Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J. 22, 3062–3072 (2003)CrossRefPubMedPubMedCentral A. F. Baas, J. Boudeau, G. P. Sapkota, L. Smit, R. Medema, N. A. Morrice, D. R. Alessi, H. C. Clevers, Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J. 22, 3062–3072 (2003)CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat J. Boudeau, A. F. Baas, M. Deak, N. A. Morrice, A. Kieloch, M. Schutkowski, A. R. Prescott, H. C. Clevers, D. R. Alessi, MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 22, 5102–5114 (2003)CrossRefPubMedPubMedCentral J. Boudeau, A. F. Baas, M. Deak, N. A. Morrice, A. Kieloch, M. Schutkowski, A. R. Prescott, H. C. Clevers, D. R. Alessi, MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 22, 5102–5114 (2003)CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Dorfman, J., and Macara, I. G. STRADalpha regulates LKB1 localization by blocking access to importin-alpha, and by association with Crm1 and exportin-7. Mol Biol Cell. 19, 1614–1626 (2008) Dorfman, J., and Macara, I. G. STRADalpha regulates LKB1 localization by blocking access to importin-alpha, and by association with Crm1 and exportin-7. Mol Biol Cell. 19, 1614–1626 (2008)
46.
Zurück zum Zitat Y. Nakada, T. G. Stewart, C. G. Pena, S. Zhang, N. Zhao, N. Bardeesy, N. E. Sharpless, K. K. Wong, D. N. Hayes, D. H. Castrillon, The LKB1 tumor suppressor as a biomarker in mouse and human tissues. PLoS One 8, e73449 (2013)CrossRefPubMedPubMedCentral Y. Nakada, T. G. Stewart, C. G. Pena, S. Zhang, N. Zhao, N. Bardeesy, N. E. Sharpless, K. K. Wong, D. N. Hayes, D. H. Castrillon, The LKB1 tumor suppressor as a biomarker in mouse and human tissues. PLoS One 8, e73449 (2013)CrossRefPubMedPubMedCentral
48.
Metadaten
Titel
Inactivation of the LKB1-AMPK signaling pathway does not contribute to salivary gland tumor development - a short report
verfasst von
Natascha Cidlinsky
Giada Dogliotti
Tobias Pukrop
Rudolf Jung
Florian Weber
Michael P. Krahn
Publikationsdatum
01.08.2016
Verlag
Springer Netherlands
Erschienen in
Cellular Oncology / Ausgabe 4/2016
Print ISSN: 2211-3428
Elektronische ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-016-0290-8

Neu im Fachgebiet Pathologie