Skip to main content
Erschienen in: Strahlentherapie und Onkologie 8/2018

17.05.2018 | Original Article

Inclusion of dosimetric data as covariates in toxicity-related radiogenomic studies

A systematic review

verfasst von: Noorazrul Yahya, Xin-Jane Chua, Hanani A. Manan, Fuad Ismail

Erschienen in: Strahlentherapie und Onkologie | Ausgabe 8/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

This systematic review evaluates the completeness of dosimetric features and their inclusion as covariates in genetic-toxicity association studies.

Materials and methods

Original research studies associating genetic features and normal tissue complications following radiotherapy were identified from PubMed. The use of dosimetric data was determined by mining the statement of prescription dose, dose fractionation, target volume selection or arrangement and dose distribution. The consideration of the dosimetric data as covariates was based on the statement mentioned in the statistical analysis section. The significance of these covariates was extracted from the results section. Descriptive analyses were performed to determine their completeness and inclusion as covariates.

Results

A total of 174 studies were found to satisfy the inclusion criteria. Studies published ≥2010 showed increased use of dose distribution information (p = 0.07). 33% of studies did not include any dose features in the analysis of gene-toxicity associations. Only 29% included dose distribution features as covariates and reported the results. 59% of studies which included dose distribution features found significant associations to toxicity.

Conclusion

A large proportion of studies on the correlation of genetic markers with radiotherapy-related side effects considered no dosimetric parameters. Significance of dose distribution features was found in more than half of the studies including these features, emphasizing their importance. Completeness of radiation-specific clinical data may have increased in recent years which may improve gene-toxicity association studies.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Rosenstein BS (2017) Radiogenomics: identification of genomic predictors for radiation toxicity. Semin Radiat Oncol 27:300–309CrossRefPubMed Rosenstein BS (2017) Radiogenomics: identification of genomic predictors for radiation toxicity. Semin Radiat Oncol 27:300–309CrossRefPubMed
3.
Zurück zum Zitat Rosenstein BS, West CM, Bentzen SM et al (2014) Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol Biol Phys 89:709–713CrossRefPubMedPubMedCentral Rosenstein BS, West CM, Bentzen SM et al (2014) Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol Biol Phys 89:709–713CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Reuther S, Szymczak S, Raabe A et al (2014) Association between SNPs in defined functional pathways and risk of early or late toxicity as well as individual radiosensitivity. Strahlenther Onkol 191:59–66CrossRefPubMed Reuther S, Szymczak S, Raabe A et al (2014) Association between SNPs in defined functional pathways and risk of early or late toxicity as well as individual radiosensitivity. Strahlenther Onkol 191:59–66CrossRefPubMed
5.
Zurück zum Zitat Lambin P, van Stiphout RGPM, Starmans MHW et al (2012) Predicting outcomes in radiation oncology—multifactorial decision support systems. Nat Rev Clin Oncol 10:27–40CrossRefPubMedPubMedCentral Lambin P, van Stiphout RGPM, Starmans MHW et al (2012) Predicting outcomes in radiation oncology—multifactorial decision support systems. Nat Rev Clin Oncol 10:27–40CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Peeken JC, Nüsslin F, Combs SE (2017) “Radio-oncomics”. Strahlenther Onkol 193:767–779CrossRefPubMed Peeken JC, Nüsslin F, Combs SE (2017) “Radio-oncomics”. Strahlenther Onkol 193:767–779CrossRefPubMed
7.
Zurück zum Zitat Matsuo Y, Shibuya K, Nakamura M et al (2012) Dose–volume metrics associated with radiation pneumonitis after stereotactic body radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys 83:e545–e549CrossRefPubMed Matsuo Y, Shibuya K, Nakamura M et al (2012) Dose–volume metrics associated with radiation pneumonitis after stereotactic body radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys 83:e545–e549CrossRefPubMed
8.
Zurück zum Zitat Wang S, Liao Z, Wei X et al (2006) Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 66:1399–1407CrossRefPubMed Wang S, Liao Z, Wei X et al (2006) Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 66:1399–1407CrossRefPubMed
9.
Zurück zum Zitat Asakura H, Hashimoto T, Zenda S et al (2010) Analysis of dose–volume histogram parameters for radiation pneumonitis after definitive concurrent chemoradiotherapy for esophageal cancer. Radiother Oncol 95:240–244CrossRefPubMed Asakura H, Hashimoto T, Zenda S et al (2010) Analysis of dose–volume histogram parameters for radiation pneumonitis after definitive concurrent chemoradiotherapy for esophageal cancer. Radiother Oncol 95:240–244CrossRefPubMed
10.
Zurück zum Zitat Yahya N, Ebert MA, Bulsara M et al (2015) Urinary symptoms following external beam radiotherapy of the prostate: dose–symptom correlates with multiple-event and event-count models. Radiother Oncol 117:277–282CrossRefPubMed Yahya N, Ebert MA, Bulsara M et al (2015) Urinary symptoms following external beam radiotherapy of the prostate: dose–symptom correlates with multiple-event and event-count models. Radiother Oncol 117:277–282CrossRefPubMed
11.
Zurück zum Zitat Valdagni R, Vavassori V, Rancati T et al (2012) Increasing the risk of late rectal bleeding after high-dose radiotherapy for prostate cancer: the case of previous abdominal surgery. Results from a prospective trial. Radiother Oncol 103:252–255CrossRefPubMed Valdagni R, Vavassori V, Rancati T et al (2012) Increasing the risk of late rectal bleeding after high-dose radiotherapy for prostate cancer: the case of previous abdominal surgery. Results from a prospective trial. Radiother Oncol 103:252–255CrossRefPubMed
12.
Zurück zum Zitat Roeder F, Friedrich J, Timke C et al (2010) Correlation of patient-related factors and dose-volume histogram parameters with the onset of radiation pneumonitis in patients with small cell lung cancer. Strahlenther Onkol 186:149–156CrossRefPubMed Roeder F, Friedrich J, Timke C et al (2010) Correlation of patient-related factors and dose-volume histogram parameters with the onset of radiation pneumonitis in patients with small cell lung cancer. Strahlenther Onkol 186:149–156CrossRefPubMed
13.
Zurück zum Zitat Yoon H, Oh D, Park HC et al (2013) Predictive factors for gastroduodenal toxicity based on endoscopy following radiotherapy in patients with hepatocellular carcinoma. Strahlenther Onkol 189:541–546CrossRefPubMed Yoon H, Oh D, Park HC et al (2013) Predictive factors for gastroduodenal toxicity based on endoscopy following radiotherapy in patients with hepatocellular carcinoma. Strahlenther Onkol 189:541–546CrossRefPubMed
14.
Zurück zum Zitat Takahashi S, Go T, Kasai Y, Yokomise H, Shibata T (2016) Relationship between dose–volume parameters and pulmonary complications after neoadjuvant chemoradiotherapy followed by surgery for lung cancer. Strahlenther Onkol 192:658–667CrossRefPubMed Takahashi S, Go T, Kasai Y, Yokomise H, Shibata T (2016) Relationship between dose–volume parameters and pulmonary complications after neoadjuvant chemoradiotherapy followed by surgery for lung cancer. Strahlenther Onkol 192:658–667CrossRefPubMed
15.
Zurück zum Zitat Chen WS, Townsend JP, James BY (2017) Radiation-specific clinical data should be included in existing large-scale genomic datasets. Int J Radiat Oncol Biol Phys 98:8–10CrossRefPubMed Chen WS, Townsend JP, James BY (2017) Radiation-specific clinical data should be included in existing large-scale genomic datasets. Int J Radiat Oncol Biol Phys 98:8–10CrossRefPubMed
16.
Zurück zum Zitat Guo Z, Shu Y, Wang H, Zhou H, Zhang W (2015) Radiogenomics helps to achieve personalized therapy by evaluating patient responses to radiation treatment. Carcinogenesis 36:307–317CrossRefPubMed Guo Z, Shu Y, Wang H, Zhou H, Zhang W (2015) Radiogenomics helps to achieve personalized therapy by evaluating patient responses to radiation treatment. Carcinogenesis 36:307–317CrossRefPubMed
17.
Zurück zum Zitat Bentzen SM, Parliament M, Deasy JO et al (2010) Biomarkers and surrogate endpoints for normal-tissue effects of radiation therapy: the importance of dose–volume effects. Int J Radiat Oncol Biol Phys 76:S145–S150CrossRefPubMedPubMedCentral Bentzen SM, Parliament M, Deasy JO et al (2010) Biomarkers and surrogate endpoints for normal-tissue effects of radiation therapy: the importance of dose–volume effects. Int J Radiat Oncol Biol Phys 76:S145–S150CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Dörr W, Herrmann T, Baumann M (2014) Application of organ tolerance dose-constraints in clinical studies in radiation oncology. Strahlenther Onkol 190:621–627CrossRefPubMed Dörr W, Herrmann T, Baumann M (2014) Application of organ tolerance dose-constraints in clinical studies in radiation oncology. Strahlenther Onkol 190:621–627CrossRefPubMed
19.
Zurück zum Zitat West CM, Barnett GC (2011) Genetics and genomics of radiotherapy toxicity: towards prediction. Genome Med 3:1CrossRef West CM, Barnett GC (2011) Genetics and genomics of radiotherapy toxicity: towards prediction. Genome Med 3:1CrossRef
20.
Zurück zum Zitat Kerns SL, De Ruysscher D, Andreassen CN et al (2014) STROGAR—strengthening the reporting of genetic association studies in radiogenomics. Radiother Oncol 110:182–188CrossRefPubMed Kerns SL, De Ruysscher D, Andreassen CN et al (2014) STROGAR—strengthening the reporting of genetic association studies in radiogenomics. Radiother Oncol 110:182–188CrossRefPubMed
21.
Zurück zum Zitat Bentzen SM, Constine LS, Deasy JO et al (2010) Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys 76:S3–S9CrossRefPubMedPubMedCentral Bentzen SM, Constine LS, Deasy JO et al (2010) Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys 76:S3–S9CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Mehta V (2005) Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 63:5–24CrossRefPubMed Mehta V (2005) Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 63:5–24CrossRefPubMed
23.
Zurück zum Zitat Roach M 3rd, Gandara DR, Yuo HS et al (1995) Radiation pneumonitis following combined modality therapy for lung cancer: analysis of prognostic factors. J Clin Oncol 13:2606–2612CrossRefPubMed Roach M 3rd, Gandara DR, Yuo HS et al (1995) Radiation pneumonitis following combined modality therapy for lung cancer: analysis of prognostic factors. J Clin Oncol 13:2606–2612CrossRefPubMed
24.
Zurück zum Zitat Zhao J, Yorke ED, Li L et al (2016) Simple factors associated with radiation-induced lung toxicity after stereotactic body radiation therapy of the thorax: a pooled analysis of 88 studies. Int J Radiat Oncol Biol Phys 95:1357–1366CrossRefPubMedPubMedCentral Zhao J, Yorke ED, Li L et al (2016) Simple factors associated with radiation-induced lung toxicity after stereotactic body radiation therapy of the thorax: a pooled analysis of 88 studies. Int J Radiat Oncol Biol Phys 95:1357–1366CrossRefPubMedPubMedCentral
25.
26.
Zurück zum Zitat Yahya N, Ebert MA, House MJ et al (2017) Modeling urinary dysfunction after external beam radiation therapy of the prostate using bladder dose-surface maps: evidence of spatially variable response of the bladder surface. Int J Radiat Oncol Biol Phys 97:420–426CrossRefPubMed Yahya N, Ebert MA, House MJ et al (2017) Modeling urinary dysfunction after external beam radiation therapy of the prostate using bladder dose-surface maps: evidence of spatially variable response of the bladder surface. Int J Radiat Oncol Biol Phys 97:420–426CrossRefPubMed
27.
Zurück zum Zitat Wortel RC, Witte MG, van der Heide UA et al (2015) Dose–surface maps identifying local dose-effects for acute gastrointestinal toxicity after radiotherapy for prostate cancer. Radiother Oncol 117:515–520CrossRefPubMed Wortel RC, Witte MG, van der Heide UA et al (2015) Dose–surface maps identifying local dose-effects for acute gastrointestinal toxicity after radiotherapy for prostate cancer. Radiother Oncol 117:515–520CrossRefPubMed
Metadaten
Titel
Inclusion of dosimetric data as covariates in toxicity-related radiogenomic studies
A systematic review
verfasst von
Noorazrul Yahya
Xin-Jane Chua
Hanani A. Manan
Fuad Ismail
Publikationsdatum
17.05.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Strahlentherapie und Onkologie / Ausgabe 8/2018
Print ISSN: 0179-7158
Elektronische ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-018-1303-5

Weitere Artikel der Ausgabe 8/2018

Strahlentherapie und Onkologie 8/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.