Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 2/2020

04.11.2019 | Original Article

Incorporating prior shape knowledge via data-driven loss model to improve 3D liver segmentation in deep CNNs

verfasst von: Saeed Mohagheghi, Amir Hossein Foruzan

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Convolutional neural networks (CNNs) have obtained enormous success in liver segmentation. However, there are several challenges, including low-contrast images, and large variations in the shape, and appearance of the liver. Incorporating prior knowledge in deep CNN models improves their performance and generalization.

Methods

A convolutional denoising auto-encoder is utilized to learn global information about 3D liver shapes in a low-dimensional latent space. Then, the deep data-driven knowledge is used to define a loss function and combine it with the Dice loss in the main segmentation model. The resultant hybrid model would be forced to learn the global shape information as prior knowledge, while it tries to produce accurate results and increase the Dice score.

Results

The proposed training strategy improved the performance of the 3D U-Net model and reached the Dice score of 97.62% on the Sliver07-I liver dataset, which is competitive to the state-of-the-art automatic segmentation methods. The proposed algorithm enhanced the generalization and robustness of the hybrid model and outperformed the 3D U-Net model in the prediction of unseen images.

Conclusions

The results indicate that the incorporation of prior shape knowledge enhances liver segmentation tasks in deep CNN models. The proposed method improves the generalization and robustness of the hybrid model due to the abstract features provided by the data-driven loss model.
Literatur
1.
Zurück zum Zitat Campadelli P, Casiraghi E, Esposito A (2009) Liver segmentation from computed tomography scans: a survey and a new algorithm. Artif Intell Med 45:185–196CrossRef Campadelli P, Casiraghi E, Esposito A (2009) Liver segmentation from computed tomography scans: a survey and a new algorithm. Artif Intell Med 45:185–196CrossRef
2.
Zurück zum Zitat Heimann T, Van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28:1251–1265CrossRef Heimann T, Van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28:1251–1265CrossRef
3.
Zurück zum Zitat Chen H, Dou Q, Yu L, Chen H, Jin Y, Yang X, Qin J, Heng P (2016) 3D deeply supervised network for automatic liver segmentation from CT volumes 3D deeply supervised network for automated segmentation of volumetric medical images. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 149–157 Chen H, Dou Q, Yu L, Chen H, Jin Y, Yang X, Qin J, Heng P (2016) 3D deeply supervised network for automatic liver segmentation from CT volumes 3D deeply supervised network for automated segmentation of volumetric medical images. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 149–157
4.
Zurück zum Zitat Lu F, Wu F, Hu P, Peng Z, Kong D (2017) Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int J Comput Assist Radiol Surg 12:171–182CrossRef Lu F, Wu F, Hu P, Peng Z, Kong D (2017) Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int J Comput Assist Radiol Surg 12:171–182CrossRef
5.
Zurück zum Zitat Hu P, Wu F, Peng J, Liang P, Kong D (2016) Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys Med Biol 61:8676CrossRef Hu P, Wu F, Peng J, Liang P, Kong D (2016) Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys Med Biol 61:8676CrossRef
6.
Zurück zum Zitat Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15:29CrossRef Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15:29CrossRef
7.
Zurück zum Zitat Masci J, Meier U, Ciresan D, Schmidhuber J (2011) Stacked convolutional AEs for hierarchical feature extraction. In: Icann. Springer, Berlin, pp 52–59 Masci J, Meier U, Ciresan D, Schmidhuber J (2011) Stacked convolutional AEs for hierarchical feature extraction. In: Icann. Springer, Berlin, pp 52–59
8.
Zurück zum Zitat Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78CrossRef Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78CrossRef
9.
Zurück zum Zitat Ravishankar H, Thiruvenkadam S, Venkataramani R (2017) Joint deep learning of foreground, background. In: International conference on information processing in medical imaging. Springer, Berlin, pp 622–632 Ravishankar H, Thiruvenkadam S, Venkataramani R (2017) Joint deep learning of foreground, background. In: International conference on information processing in medical imaging. Springer, Berlin, pp 622–632
10.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 234–241
11.
Zurück zum Zitat Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: Learning dense volumetric segmentation from sparse annotation BT—medical image computing and computer-assisted intervention—MICCAI 2016. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 424–432CrossRef Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: Learning dense volumetric segmentation from sparse annotation BT—medical image computing and computer-assisted intervention—MICCAI 2016. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 424–432CrossRef
12.
Zurück zum Zitat BenTaieb A, Hamarneh G (2016) Topology aware fully convolutional networks for histology gland segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 460–468CrossRef BenTaieb A, Hamarneh G (2016) Topology aware fully convolutional networks for histology gland segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 460–468CrossRef
13.
Zurück zum Zitat Chen H, Qi X, Yu L, Dou Q, Qin J, Heng P-A (2017) DCAN: deep contour-aware networks for object instance segmentation from histology images. Med Image Anal 36:135–146CrossRef Chen H, Qi X, Yu L, Dou Q, Qin J, Heng P-A (2017) DCAN: deep contour-aware networks for object instance segmentation from histology images. Med Image Anal 36:135–146CrossRef
14.
Zurück zum Zitat Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, Shi W (2017) Anatomically constrained neural networks (ACNN): application to cardiac image enhancement and segmentation-supplementary. In: Proceedings of the 30th IEEE conference on comput vis pattern recognition, CVPR 2017, pp 105–114. https://doi.org/10.1109/cvpr.2017.19 Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, Shi W (2017) Anatomically constrained neural networks (ACNN): application to cardiac image enhancement and segmentation-supplementary. In: Proceedings of the 30th IEEE conference on comput vis pattern recognition, CVPR 2017, pp 105–114. https://​doi.​org/​10.​1109/​cvpr.​2017.​19
15.
16.
Zurück zum Zitat Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3d shapenets: a deep representation for volumetric shapes BT. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920 Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3d shapenets: a deep representation for volumetric shapes BT. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920
17.
Zurück zum Zitat Sharma A, Grau O, Fritz M (2016) Vconv-dae: deep volumetric shape learning without object labels. In: European conference on computer vision. Springer, Berlin, pp 236–250 Sharma A, Grau O, Fritz M (2016) Vconv-dae: deep volumetric shape learning without object labels. In: European conference on computer vision. Springer, Berlin, pp 236–250
18.
Zurück zum Zitat Xue Y, Xu T, Zhang H, Long LR, Huang X (2018) Segan: adversarial network with multi-scale l1 loss for medical image segmentation. Neuroinformatics 16:383–392CrossRef Xue Y, Xu T, Zhang H, Long LR, Huang X (2018) Segan: adversarial network with multi-scale l1 loss for medical image segmentation. Neuroinformatics 16:383–392CrossRef
19.
Zurück zum Zitat Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
20.
Zurück zum Zitat Dalca AV, Guttag J, Sabuncu MR (2018) Anatomical priors in convolutional networks for unsupervised biomedical segmentation. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 9290–9299 Dalca AV, Guttag J, Sabuncu MR (2018) Anatomical priors in convolutional networks for unsupervised biomedical segmentation. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 9290–9299
21.
Zurück zum Zitat Ravishankar H, Venkataramani R, Thiruvenkadam S, Sudhakar P, Vaidya V (2017) Learning and incorporating shape models for semantic segmentation. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)CrossRef Ravishankar H, Venkataramani R, Thiruvenkadam S, Sudhakar P, Vaidya V (2017) Learning and incorporating shape models for semantic segmentation. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)CrossRef
22.
Zurück zum Zitat Clevert D-A, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (ELUS). arXiv Prepr arXiv:151107289 Clevert D-A, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (ELUS). arXiv Prepr arXiv:​151107289
23.
Zurück zum Zitat Pedamonti D (2018) Comparison of non-linear activation functions for deep neural networks on MNIST classification task. arXiv Prepr arXiv:180402763 Pedamonti D (2018) Comparison of non-linear activation functions for deep neural networks on MNIST classification task. arXiv Prepr arXiv:​180402763
24.
Zurück zum Zitat Van Ginneken B, Heimann T, Styner M (2007) MICCAI workshop on 3D segmentation in the clinic: a grand challenge. In: 3D segmentation in the Clinic: a grand challenge, pp 3–4 Van Ginneken B, Heimann T, Styner M (2007) MICCAI workshop on 3D segmentation in the clinic: a grand challenge. In: 3D segmentation in the Clinic: a grand challenge, pp 3–4
25.
Zurück zum Zitat Soler L, Hostettler A, Agnus V, Charnoz A, Fasquel J, Moreau J, Osswald A, Bouhadjar M, Marescaux J (2010) 3D image reconstruction for comparison of algorithm database: a patient-specific anatomical and medical image database. IRCAD, Strasbourg, Fr. Tech. Rep Soler L, Hostettler A, Agnus V, Charnoz A, Fasquel J, Moreau J, Osswald A, Bouhadjar M, Marescaux J (2010) 3D image reconstruction for comparison of algorithm database: a patient-specific anatomical and medical image database. IRCAD, Strasbourg, Fr. Tech. Rep
26.
28.
Zurück zum Zitat Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a system for large-scale machine learning. In: OSDI, pp 265–283 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a system for large-scale machine learning. In: OSDI, pp 265–283
31.
Zurück zum Zitat Al-Shaikhli SDS, Yang MY, Rosenhahn B (2015) Automatic 3D liver segmentation using sparse representation of global and local image information via level set formulation. arXiv Prepr arXiv:150801521 Al-Shaikhli SDS, Yang MY, Rosenhahn B (2015) Automatic 3D liver segmentation using sparse representation of global and local image information via level set formulation. arXiv Prepr arXiv:​150801521
32.
Zurück zum Zitat Dong C, Chen Y, Foruzan AH, Lin L, Han X, Tateyama T, Wu X, Xu G, Jiang H (2015) Segmentation of liver and spleen based on computational anatomy models. Comput Biol Med 67:146–160CrossRef Dong C, Chen Y, Foruzan AH, Lin L, Han X, Tateyama T, Wu X, Xu G, Jiang H (2015) Segmentation of liver and spleen based on computational anatomy models. Comput Biol Med 67:146–160CrossRef
Metadaten
Titel
Incorporating prior shape knowledge via data-driven loss model to improve 3D liver segmentation in deep CNNs
verfasst von
Saeed Mohagheghi
Amir Hossein Foruzan
Publikationsdatum
04.11.2019
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 2/2020
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-02085-y

Weitere Artikel der Ausgabe 2/2020

International Journal of Computer Assisted Radiology and Surgery 2/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.