Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2014

Open Access 01.12.2014 | Research

Increased prediction of right nonrecurrent laryngeal nerve in thyroid surgery using preoperative computed tomography with intraoperative neuromonitoring identification

verfasst von: Er-li Gao, Xian Zou, Ye-hui Zhou, Dao-hai Xie, Jin Lan, Hong-geng Guan

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

A nonrecurrent laryngeal nerve (NRLN) is a rare but potentially serious anatomical variant. Although the incidence is reported to be 0.3% to 1.3%, it carries a much higher risk of palsy during thyroid surgery. The objective of this study is to investigate the usefulness of computed tomography (CT) for preoperative identification and intraoperative neuromonitoring identification (IONM) of NRLN in thyroid cancer patients.

Methods

The preoperative neck CT scans from 1,574 patients who needed thyroid surgery were examined. Absence of the brachiocephalic artery (BCA) and the presence of arteria lusoria were defined as positive with NRLN. Systematic intraoperative neuromonitoring (IONM) was also carried out for these 1,574 patients to localize and identify NRLN. A negative electromyography (EMG) response from lower vagal stimulation but a positive EMG response from the upper position indicated the occurrence of an NRLN.

Results

Nine NRLN (0.57%) were intraoperatively identified out of the 1,574 patients, and no patient with a NRLN showed preoperative clinical symptoms related to NRLN. Prior to the operation, surgeons identified only seven suspected NRLN cases based on identification of arteria lusoria. But a review of CT scans revealed that all cases could be identified by vascular anomalies. All patients were successfully detected at an early stage of operation using intraoperative neuromonitoring (IONM). Postoperative vocal cord function was normal in all patients.

Conclusions

CT of the neck is a reliable method for predicting NRLN before thyroid cancer surgery. However, some image features can be easily missed. Neurophysiology helps the surgeon to identify the NRLNs more precisely. Combining the two evaluation methods may decrease the incidence of nerve palsy, especially in cases of NRLN. Considering that CT is expensive, requires an X-ray, and achieves less information than ultrasound (US) concerning thyroid nodules, we suggest that applying US and IONM is more reasonable.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1477-7819-12-262) contains supplementary material, which is available to authorized users.
Er-li Gao, Xian Zou contributed equally to this work.

Competing interests

The authors declare that they have no competing interest.

Authors’ contributions

ELG substantially contributed to the conception and design, acquisition of data, drafting and revision of the article. XZ participated in the data collection and revisions. YHZ substantially contributed to the analysis and interpretation of the data and revision of the article. DHX is the main radiologist for evaluating the imaging of computed tomography. XZ, JL and HGG made up the surgical team involved with most of the patients. JL and HGG also acted as corresponding authors, contributed to the study’s conception and participated in manuscript revisions. All authors read and approved the final manuscript.
Abkürzungen
BCA
brachiocephalic artery
CT
computed tomography
CTA
computed tomographic angiography
EMG
electromyography
IONM
intraoperative neuromonitoring identification
MRA
magnetic resonance angiographic imaging
NRLN
nonrecurrent laryngeal nerve
RLN
recurrent laryngeal nerve.

Background

The nonrecurrent inferior laryngeal nerve (NRLN) is a rare anatomical variant. In 1823, Stedman first reported a case of NRLN[1]. It almost always exists on the right side (0.3% to 1.6%), while the left NRLN is even rarer, appears to have an incidence rate of approximately 0.04% and is always associated with situs inversus[25]. Although the incidence is extremely low, NRLN is vulnerable to damage during thyroid cancer surgery, with resultant vocal cord paralysis[2, 4, 6]. The reported incidence of nerve injury during surgery in cases of NRLN is nearly 12.9%, while in the recurrent laryngeal nerve (RLN) it is 1.8%[4]. Hence, preservation of the nonrecurrent inferior laryngeal nerve intraoperatively is an extremely challenging procedure, even to experienced surgeons. To avoid nerve injury, a modification of standard thyroid surgery techniques is not only required, but preoperative identification of NRLN is even more crucial. Computed tomography (CT) scans of the neck have been widely applied as a routine preoperative evaluation for head and neck surgery. On the other side, in order to predict inadvertent nerve injury, intraoperative neuromonitoring (IONM) has commonly been applied in thyroid cancer operation to localize and identify RLN, but the usefulness of IONM for detecting NRLN has been described by only a few studies[5, 7, 8]. Although some imaging characteristics of preoperative neck CT suggest the presence of an NRLN, it can also occur without a subclavian artery anomaly or even occur on the left side[2, 9, 10]. Furthermore, there is no research describing the combined usage of the two techniques. The aim of this study is to assess the value of preoperative neck CT examination and IONM and to investigate whether the two evaluation procedures may assist diagnosis of NRLN.

Methods

From September 2008 to December 2012, a consecutive 1,574 patients with thyroid nodule required surgical treatment in the Department of Surgery at the Institute of Thyroid Disease, Wuxi, China. This study was reviewed and approved by the hospital ethical committee and required informed consent from each patient for use of individual data profiles. Preoperative CT of the neck and intraoperative neuromonitoring (IONM) was routinely performed on all patients. Preoperative and postoperative vocal cord function was assessed by laryngoscope in every patient in the study, focusing particularly on those with NRLN.
To determine whether NRLN could be identified preoperatively, CT scanning images were reviewed retrospectively by the expert radiologist (Dr. Xie) in this study. An arteria lusoria was identified on CT scans as a tubular structure that arose from the dorsal side of the aortic arch. It passed through the midline behind the trachea and esophagus, entered the right base of the neck and proceeded as a right subclavian artery that joined the right common carotid artery. Based on the positional relationship between the NRLN and thyroid artery observed by the surgeons intraoperatively, the NRLN was classified into three types (Figure 1), as described by Toniato et al.[4].
All patients underwent thyroid cancer operations with the application of IONM. An electromyography (EMG) signal was recorded on an NIM-response 2.0 monitor (Medtronic Xomed). The four-step procedure of IONM (V1/R1/V2/R2) was systematically performed as recommended by Chiang et al.[11]. The original EMG signal from the vagus nerve was routinely tested by touching it directly with the nerve stimulator. The vagus was also stimulated at the level of the inferior thyroid pole with a current of 2 mA. Negative EMG signals at a lower position and positive EMG signals at an upper position indicated the occurrence of an NRLN, especially for those cases suspected on preoperative CT scan. The separation point and path of NRLN were localized and identified precisely. The thyroid gland was not removed until the NRLN was dissected.

Results

Nine NRLN cases were identified out of 1,574 patients, and all were right-sided. Table 1 summarizes the clinical characteristic of the patients. There were only seven cases recognized in the CT images by the surgeons and radiologist. However, we reviewed the CT scans of all nine patients, and the other two cases were also identified retrospectively by the expert radiologist based on the absence of the right brachiocephalic trunk. Further observation shows that eight cases are type 1 and only one case is type 2A.
Table 1
Clinical characteristics of nine nonrecurrent laryngeal nerve (NRLN) patients
No.
Sex
Age (y)
Type of operation
Pathology
1
Male
40
Thyroidectomy + right-central cervical lymph node dissection
Papillary carcinoma on the right side
2
Male
59
Total thyroidectomy
Papillary microcarcinoma on the right side
3
Male
59
Right thyroidectomy
Nodular goiter
4
Female
71
Thyroidectomy + left-central cervical lymph node dissection
Papillary carcinoma on the left side
5
Female
55
Total thyroidectomy
Papillary microcarcinoma on the right side
6
Female
58
Thyroidectomy + bilateral central neck lymph node dissection
Papillary carcinoma at the isthmus
7
Male
54
Total thyroidectomy
Papillary carcinoma on the left side
8
Male
60
Total thyroidectomy + left-central cervical lymph node dissection
Papillary carcinoma on the left side
9
Female
24
Right thyroidectomy
Nodular goiter
All nine NRLNs (0.58%) were detected with IONM. Specifically, the two patients without preoperative recognition were also detected due to the negative EMG signals from the lower portion but positive responses from the upper portion vagal stimulation. None of the nine cases developed permanent or temporary palsy after surgery. There was not any complication attributed to the application of IONM. Computed tomographic angiography (CTA) was performed in five cases. The imaging showed that the arteria lusoria originated from the distal part of the aortic arch, traveled through the esophagus posteriorly and reached the right axillary area (Figures 2 and3). Magnetic resonance angiographic (MRA) imaging also showed that the brachiocephalic artery was absent but that the arteria lusoria was present (Figure 4).

Discussion

The anatomic variant of a nonrecurrent laryngeal nerve is extremely rare. The first observation of it was described by Stedman in 1823[1]. It nearly always occurs on the right side, while the left NRLN is even rarer with an incidence of approximately only 0.004% and is always associated with dextrocardia or even more complex vascular anomalies[2, 4, 12]. In our study, the incidence of NRLN, as surgically confirmed, was 0.57% (9/1,574). In spite of the low incidence, the presence of NRLN has become a high-risk factor for nerve injury during surgery, especially for thyroid cancer surgery.
Nowadays, most experts believe that the occurrence of the NRLN results from an abnormality of aortic arches during the development of the early embryo. During the growth of the embryo and descent of the heart, the laryngeal nerve lies beneath the sixth aortic arch and ascends to the larynx. On the left side, the RLN wraps around the sixth aortic arch, which ultimately forms the ligamentum arteriosum; meanwhile, on the right side, the distal parts of the sixth aortic arch and the fifth aortic arch disappear, and the nerve moves upward to lie beneath the fourth aortic arch, which forms the initial part of the subclavian artery. If the right fourth aortic arch is absent, the right RLN is free to move upward, originating directly from the vagus nerve at a cervical level and entering the larynx transversely. That is why the NRLN is almost always observed on the right side as left-side cases require the coexistence of a right aortic arch associated with dextrocardia, a left subclavian artery with a lusoria course, and the absence of an arterial ligament on the left side[2]. The right subclavian artery is often formed from the distal portion of the right dorsal aorta and the seventh intersegmental artery, and originates just below the left subclavian artery to reach the right axillary area in most NRLN cases. The presence of this aberrant right subclavian artery was first named arteria lusoria by Stedman[1].
There are three types of NRLN described in literature, and these are based primarily on the traveling course of the nerve[4] (Figure 1). In type 1, the nerve arises directly from the cervical vagus and runs together with the superior thyroid pedicle. In type 2A, the nerve runs transversely over the trunk of the inferior thyroid artery. In type 2B, the nerve runs transversely under the trunk or between the branches of the inferior thyroid artery. Our study also used this typing method. The results observed show that the most common is type 1 (8/9) and only one case is type 2A, which is different from the study by Lee[3].
Because the NRLN is very vulnerable, we lack effective methods to make it 100% safe. Most cases are diagnosed intraoperatively, as they do not have characteristic clinical symptoms or signs. However, we should pay attention to the fact that the NRLN usually associates with a vascular anomaly. Hence, if we could identify such vascular anomalies before the operation, we can make a preoperative diagnosis and avoid nerve injury.
Various methods have been described to make a preoperative diagnosis, but each examination has its own limitation. Barium esophagogram is recommended as a part of the preoperative procedure before head and neck surgery in patients with dysphagia. The results of a barium swallow test usually reveal a notch on the left edge of the posterior esophagus. However, this sign can be caused by thyroid nodules and can also easily be missed if not carefully examined[13, 14]. Ultrasonography is a noninvasive, rapid and inexpensive method to evaluate thyroid diseases preoperatively. Unfortunately, a study of its efficacy in identification of an NRLN has not been evaluated. But more than one study has found that ultrasonography is a very reliable and simple method for identifying vascular anomalies associated with NRLN preoperatively[13, 15, 16]. MRI and endoscopic ultrasound are both reliable methods with high diagnostic accuracy. But whereas MRI is limited because of its high cost, endoscopic ultrasound is limited because of its invasiveness and high cost[14, 17, 18]. Angiography is one of the most effective and directive methods to diagnose vascular anomalies, but it is inappropriate to use before thyroid cancer surgery because the dye for angiography contains a lot of iodine, which may affect the postoperative radioactive iodine treatment[19].
Computed tomography of the neck is accepted as a routine procedure before thyroid cancer surgery in some medical centers. The presence of an arteria lusoria and the absence of the brachiocephalic artery can be seen directly and establish a diagnosis of NRLN[20, 21]. The result of the present study shows that it is possible to predict NRLN by identifying the presence of a vascular anomaly. Despite this, we identified missed diagnoses (2/9), probably because some radiologists do not expect to find it.
The occurrence of nerve injury of the NRLN in thyroid surgery is higher than RLN (12.9% versus 1.8%)[4]. The incidence may be higher when the surgeons are unfamiliar with the anatomical variation[22]. And most cases were confirmed during thyroid surgery. Thus, prevention of nerve injury requires not only an accurate preoperative diagnosis of the NRLN but also a method to localize its separation point and path precisely during the thyroid cancer surgery.
Although CT or US of the neck has the ability to predict the presence of the NRLN preoperatively, it cannot ensure absolutely the safety of the nerve during the surgery. Intraoperative neuromonitoring (IONM) has been accepted as a method to localize and identify the RLN and predict postoperative cord function[23, 24]. Recently, Donatini et al. demonstrated that systematic IONM revealed a higher incidence of NRLN than expected[5]. The present study also successfully detected another two NRLN cases that were misdiagnosed with CT scans before the surgery. When NRLN is suspected from the CT scan or ultrasound images, surgeons should pay more attention to measurements of the EMG signals from IONM and then dissect the vagus nerve. Once the EMG signal is absent from the lower position but positive at the upper position, we could consider the occurrence of an NRLN. Our experience demonstrates the following: (1) the position where the nerve penetrates the larynx is important to the anatomy no matter whether it is recurrent; (2) when we cannot find the RLN during the surgery, we should expect the occurrence of an NRLN; (3) preoperative CT scans could be performed, especially for those who are suspected thyroid cancer patients, but since CT is expensive, requires X-ray and achieve less information than US concerning thyroid nodules, we suggest that routinely using ultrasound should be more reasonable; and (4) routine application of IONM is advised to localize and identify the RLN and further predict the dysfunction of the vocal cord.

Conclusions

In summary, when thyroid cancer is suspected, we recommend that imaging examination (US/CT) should be performed preoperatively, and IONM should be applied during the surgery. Combining the two reliable methods is effective in predicting vocal cord dysfunction, especially for those patients with NRLN.

Authors’ information

Gao Erli is a surgeon in the Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China. Zou Xian is a surgeon in the Department of General Surgery, Jiangyuan Hospital Affiliated to Jiangsu Institution of Nuclear Medicine, Wuxi Institution of Thyroid disease, Wuxi, Jiangsu, People's Republic of China. Zhou Yehui is a surgeon in the Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China. Xie Daohai is a radiologist in the Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China. Lan Jin is a surgeon in the Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China. Guan Honggeng is an Associate Chief Physician of the Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China.

Acknowledgements

This work was supported by the Project of Youth Foundation in Science and Education of Department of Public Health of Suzhou (No. KJXW2013001).
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​ ) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interest.

Authors’ contributions

ELG substantially contributed to the conception and design, acquisition of data, drafting and revision of the article. XZ participated in the data collection and revisions. YHZ substantially contributed to the analysis and interpretation of the data and revision of the article. DHX is the main radiologist for evaluating the imaging of computed tomography. XZ, JL and HGG made up the surgical team involved with most of the patients. JL and HGG also acted as corresponding authors, contributed to the study’s conception and participated in manuscript revisions. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Stedman G: A singular distribution of some of the nerves and arteries of the neck and top of the thorax. Edin Med Surg. 1823, 19: 564-565. Stedman G: A singular distribution of some of the nerves and arteries of the neck and top of the thorax. Edin Med Surg. 1823, 19: 564-565.
2.
Zurück zum Zitat Henry J, Audiffret J, Denizot A, Plan M: The nonrecurrent inferior laryngeal nerve: review of 33 cases, including two on the left side. Surgery. 1988, 104: 977-984.PubMed Henry J, Audiffret J, Denizot A, Plan M: The nonrecurrent inferior laryngeal nerve: review of 33 cases, including two on the left side. Surgery. 1988, 104: 977-984.PubMed
3.
Zurück zum Zitat Lee YS, Son EJ, Chang H-S, Chung WY, Nam K-H, Park CS: Computed tomography is useful for preoperative identification of nonrecurrent laryngeal nerve in thyroid cancer patients. Otolaryngol Head Neck Surg. 2011, 145: 204-207. 10.1177/0194599811406670.CrossRefPubMed Lee YS, Son EJ, Chang H-S, Chung WY, Nam K-H, Park CS: Computed tomography is useful for preoperative identification of nonrecurrent laryngeal nerve in thyroid cancer patients. Otolaryngol Head Neck Surg. 2011, 145: 204-207. 10.1177/0194599811406670.CrossRefPubMed
4.
Zurück zum Zitat Toniato A, Mazzarotto R, Piotto A, Bernante P, Pagetta C, Pelizzo MR: Identification of the nonrecurrent laryngeal nerve during thyroid surgery: 20-year experience. World J Surg. 2004, 28: 659-661.CrossRefPubMed Toniato A, Mazzarotto R, Piotto A, Bernante P, Pagetta C, Pelizzo MR: Identification of the nonrecurrent laryngeal nerve during thyroid surgery: 20-year experience. World J Surg. 2004, 28: 659-661.CrossRefPubMed
5.
Zurück zum Zitat Donatini G, Carnaille B, Dionigi G: Increased Detection of Non-recurrent Inferior Laryngeal Nerve (NRLN) During Thyroid Surgery Using Systematic Intraoperative Neuromonitoring (IONM). World J Surg. 2013, 37: 91-93. 10.1007/s00268-012-1782-y.CrossRefPubMed Donatini G, Carnaille B, Dionigi G: Increased Detection of Non-recurrent Inferior Laryngeal Nerve (NRLN) During Thyroid Surgery Using Systematic Intraoperative Neuromonitoring (IONM). World J Surg. 2013, 37: 91-93. 10.1007/s00268-012-1782-y.CrossRefPubMed
6.
Zurück zum Zitat Avisse C, Marcus C, Delattre J, Cailliez-Tomasi J, Palot J, Ladam-Marcus V, Menanteau B, Flament J: Right nonrecurrent inferior laryngeal nerve and arteria lusoria: the diagnostic and therapeutic implications of an anatomic anomaly. Surg Radiol Anat. 1998, 20: 227-232.CrossRefPubMed Avisse C, Marcus C, Delattre J, Cailliez-Tomasi J, Palot J, Ladam-Marcus V, Menanteau B, Flament J: Right nonrecurrent inferior laryngeal nerve and arteria lusoria: the diagnostic and therapeutic implications of an anatomic anomaly. Surg Radiol Anat. 1998, 20: 227-232.CrossRefPubMed
7.
Zurück zum Zitat Brauckhoff M, Walls G, Brauckhoff K, Thanh P, Thomusch O, Dralle H: Identification of the non-recurrent inferior laryngeal nerve using intraoperative neurostimulation. Langenbecks Arch Surg. 2002, 386: 482-487. 10.1007/s00423-001-0253-y.CrossRefPubMed Brauckhoff M, Walls G, Brauckhoff K, Thanh P, Thomusch O, Dralle H: Identification of the non-recurrent inferior laryngeal nerve using intraoperative neurostimulation. Langenbecks Arch Surg. 2002, 386: 482-487. 10.1007/s00423-001-0253-y.CrossRefPubMed
8.
Zurück zum Zitat Chiang F-Y, Lu I, Tsai C-J, Hsiao P-J, Lee K-W, Wu C-W: Detecting and identifying nonrecurrent laryngeal nerve with the application of intraoperative neuromonitoring during thyroid and parathyroid operation. Am J Otolaryngol. 2012, 33: 1-5. 10.1016/j.amjoto.2010.11.011.CrossRefPubMed Chiang F-Y, Lu I, Tsai C-J, Hsiao P-J, Lee K-W, Wu C-W: Detecting and identifying nonrecurrent laryngeal nerve with the application of intraoperative neuromonitoring during thyroid and parathyroid operation. Am J Otolaryngol. 2012, 33: 1-5. 10.1016/j.amjoto.2010.11.011.CrossRefPubMed
9.
Zurück zum Zitat Fellmer PT, Böhner H, Wolf A, Röher H-D, Goretzki PE: A left nonrecurrent inferior laryngeal nerve in a patient with right-sided aorta, truncus arteriosus communis, and an aberrant left innominate artery. Thyroid. 2008, 18: 647-649. 10.1089/thy.2007.0284.CrossRefPubMed Fellmer PT, Böhner H, Wolf A, Röher H-D, Goretzki PE: A left nonrecurrent inferior laryngeal nerve in a patient with right-sided aorta, truncus arteriosus communis, and an aberrant left innominate artery. Thyroid. 2008, 18: 647-649. 10.1089/thy.2007.0284.CrossRefPubMed
10.
Zurück zum Zitat Tateda M, Hasegawa J, Sagai S, Nakanome A, Katagiri K, Ishida E, Kanno R, Hasegawa T, Kobayashi T: Nonrecurrent inferior laryngeal nerve without vascular anomaly as a genuine entity. Tohoku J Exp Med. 2008, 216: 133-137. 10.1620/tjem.216.133.CrossRefPubMed Tateda M, Hasegawa J, Sagai S, Nakanome A, Katagiri K, Ishida E, Kanno R, Hasegawa T, Kobayashi T: Nonrecurrent inferior laryngeal nerve without vascular anomaly as a genuine entity. Tohoku J Exp Med. 2008, 216: 133-137. 10.1620/tjem.216.133.CrossRefPubMed
11.
Zurück zum Zitat Chiang F-Y, Lu I, Kuo W-R, Lee K-W, Chang N-C, Wu C-W: The mechanism of recurrent laryngeal nerve injury during thyroid surgery—the application of intraoperative neuromonitoring. Surgery. 2008, 143: 743-749. 10.1016/j.surg.2008.02.006.CrossRefPubMed Chiang F-Y, Lu I, Kuo W-R, Lee K-W, Chang N-C, Wu C-W: The mechanism of recurrent laryngeal nerve injury during thyroid surgery—the application of intraoperative neuromonitoring. Surgery. 2008, 143: 743-749. 10.1016/j.surg.2008.02.006.CrossRefPubMed
12.
Zurück zum Zitat Uludag M, Isgor A, Yetkin G, Citgez B: Anatomic variations of the non-recurrent inferior laryngeal nerve. BMJ. 2009, doi:10.1136/bcr.10.2008.1107 Uludag M, Isgor A, Yetkin G, Citgez B: Anatomic variations of the non-recurrent inferior laryngeal nerve. BMJ. 2009, doi:10.1136/bcr.10.2008.1107
13.
Zurück zum Zitat Yetisir F, Salman AE, Onal O, Ciftci B, Teber A, Kiliç M: Efficacy of ultrasonography in identification of non-recurrent laryngeal nerve. Int J Surg. 2012, 10: 506-509. 10.1016/j.ijsu.2012.07.006.CrossRefPubMed Yetisir F, Salman AE, Onal O, Ciftci B, Teber A, Kiliç M: Efficacy of ultrasonography in identification of non-recurrent laryngeal nerve. Int J Surg. 2012, 10: 506-509. 10.1016/j.ijsu.2012.07.006.CrossRefPubMed
14.
Zurück zum Zitat Yusuf TE, Levy MJ, Wiersema MJ, Clain JE, Harewood GC, Rajan E, Topazian MD, Wang KK: Utility of endoscopic ultrasound in the diagnosis of aberrant right subclavian artery. J Gastroenterol Hepatol. 2007, 22: 1717-1721. 10.1111/j.1440-1746.2006.04622.x.CrossRefPubMed Yusuf TE, Levy MJ, Wiersema MJ, Clain JE, Harewood GC, Rajan E, Topazian MD, Wang KK: Utility of endoscopic ultrasound in the diagnosis of aberrant right subclavian artery. J Gastroenterol Hepatol. 2007, 22: 1717-1721. 10.1111/j.1440-1746.2006.04622.x.CrossRefPubMed
15.
Zurück zum Zitat Iacobone M, Viel G, Zanella S, Bottussi M, Frego M, Favia G: The usefulness of preoperative ultrasonographic identification of nonrecurrent inferior laryngeal nerve in neck surgery. Langenbecks Arch Surg. 2008, 393: 633-638. 10.1007/s00423-008-0372-9.CrossRefPubMed Iacobone M, Viel G, Zanella S, Bottussi M, Frego M, Favia G: The usefulness of preoperative ultrasonographic identification of nonrecurrent inferior laryngeal nerve in neck surgery. Langenbecks Arch Surg. 2008, 393: 633-638. 10.1007/s00423-008-0372-9.CrossRefPubMed
16.
Zurück zum Zitat Solorzano CC, Carneiro-Pla DM, Irvin GL: Surgeon-performed ultrasonography as the initial and only localizing study in sporadic primary hyperparathyroidism. J Am Coll Surg. 2006, 202: 18-24. 10.1016/j.jamcollsurg.2005.08.014.CrossRefPubMed Solorzano CC, Carneiro-Pla DM, Irvin GL: Surgeon-performed ultrasonography as the initial and only localizing study in sporadic primary hyperparathyroidism. J Am Coll Surg. 2006, 202: 18-24. 10.1016/j.jamcollsurg.2005.08.014.CrossRefPubMed
17.
Zurück zum Zitat De Luca L, Bergman JJ, Tytgat GN, Fockens P: EUS imaging of the arteria lusoria: case series and review. Gastrointest Endosc. 2000, 52: 670-673. 10.1067/mge.2000.109808.CrossRefPubMed De Luca L, Bergman JJ, Tytgat GN, Fockens P: EUS imaging of the arteria lusoria: case series and review. Gastrointest Endosc. 2000, 52: 670-673. 10.1067/mge.2000.109808.CrossRefPubMed
18.
Zurück zum Zitat Deveze A, Sebag F, Hubbard J, Jaunay M, Maweja S, Henry J-F: Identification of patients with a non-recurrent inferior laryngeal nerve by duplex ultrasound of the brachiocephalic artery. Surg Radiol Anat. 2003, 25: 263-269. 10.1007/s00276-003-0135-9.CrossRefPubMed Deveze A, Sebag F, Hubbard J, Jaunay M, Maweja S, Henry J-F: Identification of patients with a non-recurrent inferior laryngeal nerve by duplex ultrasound of the brachiocephalic artery. Surg Radiol Anat. 2003, 25: 263-269. 10.1007/s00276-003-0135-9.CrossRefPubMed
19.
Zurück zum Zitat Epstein DA, DeBord JR: Abnormalities associated with aberrant right subclavian arteries a case report. Vasc Endovascular Surg. 2002, 36: 297-303. 10.1177/153857440203600408.CrossRefPubMed Epstein DA, DeBord JR: Abnormalities associated with aberrant right subclavian arteries a case report. Vasc Endovascular Surg. 2002, 36: 297-303. 10.1177/153857440203600408.CrossRefPubMed
20.
Zurück zum Zitat Hermans R, Dewandel P, Debruyne F, Delaere PR: Arteria lusoria identified on preoperative CT and nonrecurrent inferior laryngeal nerve during thyroidectomy: a retrospective study. Head Neck. 2003, 25: 113-117. 10.1002/hed.10180.CrossRefPubMed Hermans R, Dewandel P, Debruyne F, Delaere PR: Arteria lusoria identified on preoperative CT and nonrecurrent inferior laryngeal nerve during thyroidectomy: a retrospective study. Head Neck. 2003, 25: 113-117. 10.1002/hed.10180.CrossRefPubMed
21.
Zurück zum Zitat Wang Y, Ji Q, Li D, Wu Y, Zhu Y, Huang C, Shen Q, Wang Z, Zhang L, Sun T: Preoperative CT diagnosis of right nonrecurrent inferior laryngeal nerve. Head Neck. 2011, 33: 232-238. 10.1002/hed.21434.CrossRefPubMed Wang Y, Ji Q, Li D, Wu Y, Zhu Y, Huang C, Shen Q, Wang Z, Zhang L, Sun T: Preoperative CT diagnosis of right nonrecurrent inferior laryngeal nerve. Head Neck. 2011, 33: 232-238. 10.1002/hed.21434.CrossRefPubMed
22.
Zurück zum Zitat Sampatkumr P: Non-recurrent laryngeal nerve during thyroid surgery. WebmedCentral SURGERY. 2012, 3 (1): WMC002915- Sampatkumr P: Non-recurrent laryngeal nerve during thyroid surgery. WebmedCentral SURGERY. 2012, 3 (1): WMC002915-
23.
Zurück zum Zitat Chiang F-Y, Lee K-W, Chen H-C, Chen H-Y, Lu I-C, Kuo W-R, Hsieh M-C, Wu C-W: Standardization of intraoperative neuromonitoring of recurrent laryngeal nerve in thyroid operation. World J Surg. 2010, 34: 223-229. 10.1007/s00268-009-0316-8.CrossRefPubMed Chiang F-Y, Lee K-W, Chen H-C, Chen H-Y, Lu I-C, Kuo W-R, Hsieh M-C, Wu C-W: Standardization of intraoperative neuromonitoring of recurrent laryngeal nerve in thyroid operation. World J Surg. 2010, 34: 223-229. 10.1007/s00268-009-0316-8.CrossRefPubMed
24.
Zurück zum Zitat Snyder SK, Lairmore TC, Hendricks JC, Roberts JW: Elucidating mechanisms of recurrent laryngeal nerve injury during thyroidectomy and parathyroidectomy. J Am Coll Surg. 2008, 206: 123-130. 10.1016/j.jamcollsurg.2007.07.017.CrossRefPubMed Snyder SK, Lairmore TC, Hendricks JC, Roberts JW: Elucidating mechanisms of recurrent laryngeal nerve injury during thyroidectomy and parathyroidectomy. J Am Coll Surg. 2008, 206: 123-130. 10.1016/j.jamcollsurg.2007.07.017.CrossRefPubMed
Metadaten
Titel
Increased prediction of right nonrecurrent laryngeal nerve in thyroid surgery using preoperative computed tomography with intraoperative neuromonitoring identification
verfasst von
Er-li Gao
Xian Zou
Ye-hui Zhou
Dao-hai Xie
Jin Lan
Hong-geng Guan
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2014
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/1477-7819-12-262

Weitere Artikel der Ausgabe 1/2014

World Journal of Surgical Oncology 1/2014 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.