Skip to main content
Erschienen in: European Archives of Oto-Rhino-Laryngology 2/2021

Open Access 14.08.2020 | Rhinology

Individual variability of olfactory fMRI in normosmia and olfactory dysfunction

verfasst von: Zang Yunpeng, Pengfei Han, Akshita Joshi, Thomas Hummel

Erschienen in: European Archives of Oto-Rhino-Laryngology | Ausgabe 2/2021

Abstract

Purpose

The diagnosis of olfactory dysfunction is mainly based on psychophysical measurements. The aim of the current study was to investigate how well the olfactory functional magnetic resonance imaging (fMRI) can effectively distinguish between normosmic people and subjects with olfactory dysfunction.

Methods

Thirty-eight participants were recruited for the study. Group 1 consisted of 22 subjects with olfactory dysfunction (mean age = 44.3 years, SD = 18.6), and Group two consisted of 16 participants with normal olfactory function (mean age = 49.6 years, SD = 11.6). Olfactory functions were assessed in great detail for all participants, and brain activation in response to odorous stimulation was assessed using fMRI.

Results

The between-group comparison showed stronger odor induced brain activation of the primary olfactory area and the insular cortex among the normosmic group as compared to the dysosmic group. As indicated by the individual analysis, positive responses in the primary olfactory cortex were significantly higher in normosmic people (94%) than in subjects with olfactory dysfunction (41%). However, there was no association between individual fMRI parameters (including the percentage of BOLD signal change, activated cluster size and peak z value), and psychophysical olfactory test scores. Receiver operating characteristic analysis suggested the subjects could not be differentiated from normosmics based on their BOLD signal from the primary olfactory area, orbitofrontal cortex, or the insular cortex.

Conclusion

There are large inter-individual variabilities for odor-induced brain activation among normosmic subjects and subjects with olfactory dysfunction, due to this variation, at present it appears problematic to diagnose olfactory dysfunction on an individual level using fMRI.
Hinweise
Zang Yunpeng and Pengfei Han contributed equally to this work.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Olfactory disorders are common with about one-fifth of the general population exhibiting decreased olfactory acuity and approximately 5% showing anosmia [1]. Olfactory dysfunction also can be seen as an early sign of neurodegenerative diseases such as Alzheimer's or Parkinson's disease [2] . Hence, detection of olfactory dysfunction receives an increasing amount of interest.
Overall, psychophysical tests including odor detection threshold, odor discrimination, and odor identification are widely distributed [3] While they are of high significance in the clinical routine, many factors may affect the reliability and repeatability of the test, such as culture [4] and education [5] Electrophysiological tests of olfactory function are available but are typically restricted to highly specialized centers [1]
Functional magnetic resonance imaging (fMRI) offers a noninvasive approach to assess olfactory function in an “objective” way [6]. On the cortical level, odor information is first processed in the primary olfactory areas (POC) including the piriform cortex, entorhinal cortex and amygdala. Further, olfactory information is processed in the secondary olfactory areas including the orbitofrontal cortex (OFC), insula, anterior cingulate cortex (ACC), striatal areas, thalamus, superior temporal gyrus, and hippocampus [79]. Previous studies have confirmed on a group level that subjects with olfactory dysfunction had reduced brain activation to odor stimuli in POC, OFC, and insular cortex compared to normosmic groups with normal olfaction [1012]. No research has been done specifically to look into olfactory fMRI on an individual level among subjects with olfactory dysfunction. Olfactory fMRI has not reached routine clinical applications in patients with olfactory dysfunction. Therefore, the present study set out to examine how well fMRI signals to odorous stimuli could discriminate between individuals with normal olfactory function and people with little or no olfactory function.

Materials and methods

Participants

Thirty-eight subjects participated (mean age 46.6 years; 21 females, males) in this study. The cohort was divided into two groups according to their olfactory function. Of those, 22 were subjects (11 females) with diagnosed olfactory dysfunction, which was confirmed followed a standardized method [13] including standardized psychophysical testing of olfactory threshold, identification, and discrimination with the “Sniffin’ Sticks” test battery [14] patients’ characteristics were listed in Table 1. The rest of the participants consisted of 16 normosmic subjects (10 females). A detailed medical history was taken including conditions that potentially may have affected olfaction such as significant head trauma, chronic rhino sinusitis, neurological/endocrinological disorders, and previous nasal surgery. All included participants were in good health. Prior to inclusion in the study they received an otorhinolaryngological examination including nasal endoscopy. All participants were informed of the testing procedures and signed written informed consent before the experiment. The study design was in accordance with the Declaration of Helsinki and had been approved by the Ethics Committee of the Medical Faculty Carl Gustav Carus at the Technical University of Dresden.
Table 1
Patients' characteristics
 
No
Overall olfactory function
Duration of olfactory loss [months]
Age
[years]
Sex
(TDI score)
Congenital olfactory loss (n = 14)
P01
13
 
67
Female
P02
11
 
64
Male
P03
12.5
 
48
Female
P04
14
 
23
Male
P05
17.5
 
19
Male
P06
12
 
34
Male
P07
11
 
27
Female
P08
7.25
 
30
Male
P09
13
 
30
Female
P10
16
 
39
Female
P11
12
 
23
Male
P12
10
 
76
Female
P13
9
 
22
Male
P14
15.25
 
22
Female
Idiopathic olfactory dysfunction (n = 8)
P15
10
9
33
Female
P16
18.25
12
64
Female
P17
14
108
57
Male
P18
11
48
54
Female
P19
6.25
48
70
Male
 
P20
1
96
55
Female
P21
18
36
58
Male
P22
9
84
60
Male

Assessment of olfactory function

All participants received birhinal olfactory testing using the validated and reliable "Sniffin' Sticks" battery (Burghart, Wedel, Germany). The test consists of measurements of odor sensitivity (phenyl ethyl alcohol odor detection thresholds), odor discrimination, and odor identification [14] First, odor threshold (T) is assessed using phenyl ethyl alcohol (a rose-like odor) presented by means of a single staircase, using stepwise dilutions in a row of 16 felt tip pens. Second, odor discrimination (D) is assessed by asking subjects to perform a three-alternative forced choice task using 16 pairs of odors. Third, odor identification (I) is assessed by asking subjects to identify 16 individual odors from a list of four verbal descriptors using a forced choice task. Scores from threshold (T), discrimination (D) and identification (I) were then added up to provide the TDI score The TDI score was the base for the diagnosis of olfactory dysfunction as well as its severity (e.g. hyposmia or anosmia). The TDI score ranges from 1 to 48, with a score above 30.5 being considered as normosmia, TDI score between 16 and 30.5 as hyposmia, and TDI score less than 16 as functional anosmia [15,16]

Odor stimulation paradigm

One odor was used as stimuli: “Coffee” odor (Frey und Lau, Henstedt-Ulzburg, Germany). Odorless air served as control stimulus. A block design was adopted for odor stimulation during fMRI measurements. During each functional run, each block lasted for 20 s, during one block, odorized air and was delivered to the participants’ bilateral nostril intermittently (8 s for odorized air, followed by 12 s of odorless air), in order to minimize adaptation to the odors which refers to a recent literature indicating larger BOLD signal in response to odor stimulation in shorter runs compared to longer but fewer runs [17], totally 12 blocks and lasting 240 s. Odorized and odorless air were delivered at a flow of 2l/min using a portable olfactometer.

MRI data acquisition and preprocessing

A 3 T MRI scanner (Siemens Prisma, Erlangen, Germany) with a 32-channel head coil was used for image acquisition. For functional image collection, a spin echo/echo planar imaging (EPI) sequence was applied with echo time (TE) = 30 ms, repetition time (TR) = 2000 ms, flip angle = 90°, and in-plan resolution 2 mm. A T1-weighted structural scan was collected after functional runs with 121 slices, voxel size 1 × 1 × 1 mm3.
Imaging data were analyzed by means of SPM12 (Wellcome Trust Centre for Neuroimaging, London, UK) implemented in Matlab (version 2013a, Mathworks, Natick, MA, USA). Functional image volumes were pre-processed, starting with realignment and unwarp. In addition, the high-resolution T1 image was co-registered to the mean image of the EPI series for each participant. Co-registered T1-weighted MR images were segmented for gray and white matter to compute spatial transformation parameters for normalization. The registered functional scans were normalized to a standard Montreal Neurological Institute (MNI) template. Normalized images were spatially smoothed with an 8-mm full-width half-maximum Gaussian kernel. Finally, removal of head motion artifacts using ArtRepair (version 4, Stanford University) was applied to the preprocessed images based on the following rules: image to image motion less than 0.5 mm/TR and total images repaired less than 20%.

MRI data analysis

First, MRI scans were checked by an experienced radiologist for possible pathological brain anomalies. On the first level, the contrast “odor ON vs odor OFF” was modeled for each participant, in each block, we used the first 8 s coffee odor stimulation compared to the last 8 s odorless air (Fig. 1). The 1st level contrasts were submitted into second level analysis to show: (1) brain activation in patients and normosmic groups separately, and (2) different brain activation between the two groups. Analyses were focused on three regions of interest (ROIs): the primary olfactory cortex (POC), the olfactory orbitofrontal cortex and the insular cortex. The anatomical mask defined by Fjaeldstad et al.[8] including the piriform cortex and part of the amygdala, was used as the mask for POC. The olfactory OFC mask was built based on a 10-mm sphere centered on the right (x, y, z: 24, 36, −12) or left putative olfactory OFC (x, y, z: −22,32,−16) [17]. The insular cortex ROI was defined with the WFU_PickAtlas software (ANSIR, Wake Forest University, Winston-Salem, NC, USA)[18] . The template of the region for each ROI was showed in Fig. 2.
On an individual level, we conducted anatomical region-of-interest (ROI) analyses by extracting the mean % BOLD signal change (% BOLD signal change is often calculated using a baseline of the mean of the time series on a voxel, the MarsBaR software will calculate a baseline from the mean signal over a small ROI of many voxels) for each participant from all voxels in three ROIs [19] The anatomical ROI approach increases statistical power by averaging BOLD activation across multiple voxels within a specific brain region using the MarsBaR toolbox [20]. thereby reducing noise and the need to correct for multiple comparisons. Critically, anatomical ROIs are independent of the functional data analyzed, resulting in unbiased estimates of effect size [21].
Next, the spatial distribution of activation extent (defined as the number of significantly activated voxels) and intensity (defined as the cluster peak z value) were also extracted for individual participants from each ROI. An activation was considered significant when surviving to an uncorrected threshold of p < 0.05. The overall visualization and screenshots were performed using the software of MRIcroGL (https://​www.​cabiatl.​com/​mricrogl/​). The receiver operating characteristic (ROC) curve was constructed to test the ability of the % BOLD signal change within each of the three ROIs to discriminate between people with normal olfaction and patient with olfactory dysfunctions, defined based on their TDI scores. The classification accuracy was quantified using the area under the (AUC) value. All statistical analysis was performed by means of SPSS 23 (SPSS Inc., Chicago, IL, USA). Pearson correlation was performed between activations response of odor stimulation of selected ROIs of individuals and the Sniffin’ Sticks test scores. Chi-square analysis was used in calculating the proportion of effective activations response of odor stimulation of selected ROIs of individuals between normosmics and subjects with olfactory dysfunction.

Results

Group level brain activation

Brain activations to odor stimulation in the normosmic group were shown in Fig. 3a, the local maxima of the main activated areas were found in the left POC (Montreal Neurological Institute [MNI] peak coordinates −26, −2, −18), insula (MNI peak coordinates −38, −8, 6 and 36, 0, 16), no obvious activations were found in the OFC (Fig. 3a). In subjects, the local maxima of the main activated areas were found in the left insula (MNI peak coordinates −36, −2, 18), no obvious activations were found in the POC and OFC regions (Fig. 3b). Between group comparison revealed stronger activation in the POC among normosmics as compared to subjects. Table 2 recaps maximum activation voxels and peak-z value responses to olfactory stimulation obtained from the the POC, OFC and insula regions in the group-level and found that the intensity of activation response to odor stimulation was much higher in the insular region than other ROIs.
Table 2
Data statistics for individuals, BOLD signal change obtained in POC, OFC, insular from each subject in response to odor stimulation
  
TDI
Age (years)
Sex
ROI (signal change%)
POC
OFC
Insular
Subject with olfactory dysfunction (n = 22)
P01
13.00
67
f
0.08
0.05
0.03
P02
11.00
64
m
0.04
0.11
0.00
P03
12.50
48
m
0.06
− 0.05
0.01
P04
14.00
23
m
− 0.20
− 0.11
− 0.09
P05
17.50
19
m
0.10
− 0.05
− 0.02
P06
12.00
34
m
− 0.05
− 0.04
− 0.04
P07
11.00
27
f
0.17
0.10
0.29
P08
7.25
30
m
0.02
0.08
− 0.07
P09
13.00
30
f
0.14
0.30
− 0.01
P10
10.00
33
f
0.00
− 0.02
− 0.16
P11
16.00
39
f
− 0.05
0.20
0.56
P12
18.25
64
f
0.00
− 0.01
− 0.07
P13
14.00
57
m
0.11
0.13
− 0.06
P14
12.00
23
m
− 0.26
− 0.16
− 0.28
P15
11.00
54
f
− 0.02
− 0.06
− 0.05
P16
6.25
70
m
− 0.21
− 0.06
− 0.25
P17
1.00
55
f
0.01
0.11
0.20
P18
10.00
76
f
0.07
− 0.05
− 0.17
P19
18.00
58
m
− 0.03
0.09
0.03
P20
9.00
22
m
− 0.11
0.02
− 0.09
P21
15.25
22
m
− 0.16
− 0.03
0.02
P22
9.00
60
m
− 0.04
0.05
− 0.03
Normosmia
(n = 16)
C01
30.75
59
f
0.14
0.14
0.07
C02
30.25
65
m
0.03
0.12
− 0.01
C03
34.00
48
f
− 0.14
0.07
0.05
C04
39.50
45
m
0.23
0.11
0.11
C05
38.00
49
f
− 0.04
− 0.01
0.12
C06
30.00
48
f
0.07
0.01
0.03
C07
36.00
30
f
− 0.06
− 0.06
− 0.05
C08
31.00
59
f
− 0.08
0.04
0.07
C09
39.50
57
f
0.04
0.12
0.02
C10
35.50
37
f
0.12
− 0.05
− 0.03
C11
38.50
64
f
− 0.02
− 0.09
− 0.12
C12
34.50
21
m
0.16
0.28
0.48
C13
40.50
48
m
− 0.13
− 0.14
− 0.17
C14
37.25
43
f
− 0.08
0.13
0.06
C15
30.75
55
m
0.04
0.24
0.12
C16
37.75
59
m
− 0.06
− 0.04
− 0.07

Individual variability

Tables 3 and 4 show the % of BOLD signal change, cluster size (assessment of significant activation in fMRI) and peak-z value (normalized magnitude of peak voxel from statistical parametric map from publication) in responses to odor stimulation obtained from the three ROIs ROI for each participant. No significant correlation between TDI scores and the % of BOLD signal change, cluster size or peak-z value was found (p > 0.05).
Table 3
Cluster size, peak-z value obtained in POC, OFC, Insular from each subject in response to odor stimulation
  
POC
OFC
Insular
Cluster size
(voxel)
Peak-z
score
Cluster size
(voxel)
Peak-z
score
Cluster size
(voxel)
Peak-z
score
Subject with olfactory dysfunction
(n = 22)
P01
5
1.65
20
2.04
9
2.17
P02
7
2.04
38
2.18
1
1.73
P03
 
− 4.00
P04
3
1.80
P05
3
1.72
P06
18
1.69
31
2.22
14
2.11
P07
8
1.94
46
2.40
P08
10
2.39
123
2.85
P09
59
2.22
104
2.92
128
3.60
P10
21
2.33
138
2.44
P11
6
2.14
P12
1
1.64
12
1.97
P13
P14
P15
P16
12
1.99
20
2.69
59
2.13
P17
23
2.28
7
1.85
90
2.63
P18
1
1.75
P19
2
1.41
P20
19
1.93
1
1.66
P21
14
2.26
12
1.89
P22
18
2.22
Normosmia
(n = 16)
C01
1
0.01
1
1.89
4
1.82
C02
16
1.85
27
2.14
36
2.26
C03
8
1.84
4
2.20
C04
C05
114
3.16
164
3.25
1503
5.57
C06
1
1.31
C07
7
1.84
C08
5
1.55
38
2.65
1
1.81
C09
5
1.56
C10
4
1.59
13
2.11
C11
3
1.42
1
1.79
2
1.87
C12
112
4.52
231
3.44
1443
5.12
C13
2
1.43
31
2.46
C14
2
1.41
72
2.65
3
1.98
C15
1
1.35
60
2.54
473
3.76
C16
12
2.34
10
 
–means no obvious activations obtained in this ROI
Table 4
Cluster size, peak-z value in response to odor stimulation obtained from POC, OFC and Insula ROIs in normosmic subjects, subjects with olfactory dysfunction and normosmic group against subjects with olfactory dysfunction
 
k
z
x
y
z
ROIs
Normosmics
2
2.76
−26
−2
−18
POC
 
OFC
646
4.29
−38
−8
6
Insula
Subjects with olfactory dysfunction
POC
 
OFC
16
2
−36
−2
18
Insula
Normosmics > subject with olfactory dysfunction
3
2.12
−26
8
−16
POC
 
OFC
201
2.65
−36
−6
4
Insula
–means no obvious activations obtained in this ROI.
Table 4 summarizes the cluster size and peak z-value of each ROIs for each participant. With the applied threshold (uncorrected p < 0.05), 93.8%, 62.5%, 62.5% of the normosmics showed detectable cluster (minimum 1 voxel) in the POC, OFC or insula, respectively. In the dysosmic group, the percentage of participants with observed activated clusters was 40.9%, 59.1% and 68.2% for the POC, OFC and insula, respectively. The proportion of activated clusters in POC in normosmic participants (93.8%) was significantly higher than that in subjects with olfactory dysfunction (40.9%) (X2 = 14.9, P < 0.001) ROC analyses showed no significant AUC for % BOLD signal change for all three ROIs (POC: AUC = 0.53, p = 0.72; OFC: AUC = 0.58, p = 0.41; insula: AUC = 0.67, p = 0.07), meaning that it was not possible to distinguish between normosmics and subjects with olfactory dysfunction by means of the % BOLD signal change.

Discussion

The present study explored the odor-induced brain activation at an individual level among subjects with olfactory dysfunction and normosmics with a normal sense of smell. Results suggest a large inter-individual variability, including the average BOLD signal in predicted ROIs, peak z value as well as the activated cluster size at a given threshold. While the between-group comparison revealed stronger activation among normosmics than subjects with olfactory dysfunction, subjects with olfactory loss could not be separated from normosmics according to their BOLD responses based on individual information. In other words, the BOLD signal on an individual level could not predict olfactory performance accurately, though the present study indicated that there is a significantly higher proportion of odor-induced activations in the POC of normosmics compared to subjects with olfactory dysfunction. Previous research has indicated high variability of olfactory fMRI among normosmics [22] . Our present results corroborate and extend these findings showing the variability in subjects with olfactory dysfunction.
The olfactory BOLD signal suffers from the magnetic artifact which decreases the signal-to-noise ratio (SNR), which in turn lowers the sensitivity to detect the BOLD signal in the olfactory system. Besides, physiological factors such as respiration and metabolic status also influence the sensitivity for detecting differences between groups. Some approaches have been suggested to increase SNR regarding the odor stimulation paradigm, e.g., short odor stimulation time [23,24] rapid repetition time (< 1 s) during brain image acquisition [25] or task protocols applied (e.g. synchronization of the breathing cycle with odor stimulation) [23] In addition, sequential stimulation with increasing intensities of odor may potentially offset potential habituation effects [26] Moreover, the presently used odors were familiar food-related. This association to food may constitute an angle through which the odor could be influenced by affective or metabolic factors. Unfamiliar neutral odors (e.g. “olfactory white” [27] may be a possible alternative choice.
The challenge of developing fMRI biomarkers for individual subjects is a general issue, due to the relatively low reliability of the fMRI signal [28,29]. As stated above, the individual difference measured with fMRI may also be attributed to the noise from the measurement [30]. Further, within-subject variance such as motion and physiological changes may also influence the stability of the measurement which additionally influences the weak olfactory signal with low signal-to-noise ratio. It has been suggested that precision functional mapping of individual human brains can be achieved with larger datasets [31].
One recent study demonstrated that odor-induced brain activation in the amygdala covaried with the participants’ odor sensitivity [23]. However, such correlation does not ensure the generalizability of the established relationship to out-of-sample individual subjects. Future research should aim to shift from such simple correlations to predictions. We may be able to interpret the fMRI-derived statistics of an individual subject in light of its distribution in a larger, normative sample. This approach could lead, for clinical imaging, to a more biologically informed science of human disease and a better basis for personalized treatment. Besides, with the advances in understanding the precise functional regions for olfactory processing and the higher resolution imaging technique, more precise location for the brain structures involved in initial processing of odor stimuli could be identified.

Conclusion

The present study showed poor separation between individual normosmics and individual subjects with olfactory dysfunction based on odor-induced activation in key olfactory brain regions. Across the two groups the POC region showed more activation to odors in normosmic subjects compared to subjects with olfactory dysfunction. At present it appears problematic to diagnose olfactory dysfunction on an individual level using fMRI.

Compliance with ethical standards

Conflict of interest

This research received financial support by the Deutsche Forschungsgemeinschaft to TH (DFG HU411/18-1). All other authors declare that they have no conflict of interest.

Research involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Ethics committee of the Medical Faculty of the Technical University of Dresden (EK441102016). This article does not contain any studies with animals performed by any of the authors.
Informed consent was obtained from all individual participants included in the study.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med HNO

Kombi-Abonnement

Mit e.Med HNO erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes HNO, den Premium-Inhalten der HNO-Fachzeitschriften, inklusive einer gedruckten HNO-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Hummel T, Whitcroft KL, Andrews P et al (2020) Position paper on olfactory dysfunction. Rhinology 56(1):1–30 Hummel T, Whitcroft KL, Andrews P et al (2020) Position paper on olfactory dysfunction. Rhinology 56(1):1–30
2.
Zurück zum Zitat Wilson RS, Arnold SE, Schneider JA, Boyle PA, Buchman AS, Bennett DA (2009) Olfactory impairment in presymptomatic Alzheimer's disease. Ann N Y Acad Sci 10:730–735CrossRef Wilson RS, Arnold SE, Schneider JA, Boyle PA, Buchman AS, Bennett DA (2009) Olfactory impairment in presymptomatic Alzheimer's disease. Ann N Y Acad Sci 10:730–735CrossRef
3.
Zurück zum Zitat Doty RL (2015) Olfactory dysfunction and its measurement in the clinic. World J Otorhinolaryngol Head Neck Surg 1(1):28–33CrossRef Doty RL (2015) Olfactory dysfunction and its measurement in the clinic. World J Otorhinolaryngol Head Neck Surg 1(1):28–33CrossRef
4.
Zurück zum Zitat Ribeiro JC, Simoes J, Silva F et al (2016) Cultural adaptation of the portuguese version of the "sniffin' sticks" smell test: reliability, validity, and normative data. PLoS ONE 11(2):e0148937CrossRef Ribeiro JC, Simoes J, Silva F et al (2016) Cultural adaptation of the portuguese version of the "sniffin' sticks" smell test: reliability, validity, and normative data. PLoS ONE 11(2):e0148937CrossRef
5.
Zurück zum Zitat Orhan KS, Karabulut B, Keles N, Deger K (2012) Evaluation of factors concerning the olfaction using the Sniffin’ Sticks test. Otolaryngol Head Neck Surg 146(2):240–246CrossRef Orhan KS, Karabulut B, Keles N, Deger K (2012) Evaluation of factors concerning the olfaction using the Sniffin’ Sticks test. Otolaryngol Head Neck Surg 146(2):240–246CrossRef
6.
Zurück zum Zitat Howard JD, Plailly J, Grueschow M, Haynes JD, Gottfried JA (2009) Odor quality coding and categorization in human posterior piriform cortex. Nat Neurosci 12(7):932–938CrossRef Howard JD, Plailly J, Grueschow M, Haynes JD, Gottfried JA (2009) Odor quality coding and categorization in human posterior piriform cortex. Nat Neurosci 12(7):932–938CrossRef
7.
Zurück zum Zitat Seubert J, Freiherr J, Djordjevic J, Lundstrom JN (2013) Statistical localization of human olfactory cortex. Neuroimage 66:333–342CrossRef Seubert J, Freiherr J, Djordjevic J, Lundstrom JN (2013) Statistical localization of human olfactory cortex. Neuroimage 66:333–342CrossRef
8.
Zurück zum Zitat Fjaeldstad A, Fernandes HM, Van Hartevelt TJ et al (2020) Brain fingerprints of olfaction: a novel structural method for assessing olfactory cortical networks in health and disease. Sci Rep 7:42534CrossRef Fjaeldstad A, Fernandes HM, Van Hartevelt TJ et al (2020) Brain fingerprints of olfaction: a novel structural method for assessing olfactory cortical networks in health and disease. Sci Rep 7:42534CrossRef
9.
Zurück zum Zitat Lundstrom JN, Boesveldt S, Albrecht J (2011) Central processing of the chemical senses: an overview. ACS chemical NeuroScience 2(1):5–16CrossRef Lundstrom JN, Boesveldt S, Albrecht J (2011) Central processing of the chemical senses: an overview. ACS chemical NeuroScience 2(1):5–16CrossRef
10.
Zurück zum Zitat Pellegrino R, Hahner A, Bojanowski V, Hummel C, Gerber J, Hummel T (2016) Olfactory function in patients with hyposmia compared to healthy subjects—an fMRI study. Rhinology 54(4):374–381CrossRef Pellegrino R, Hahner A, Bojanowski V, Hummel C, Gerber J, Hummel T (2016) Olfactory function in patients with hyposmia compared to healthy subjects—an fMRI study. Rhinology 54(4):374–381CrossRef
11.
Zurück zum Zitat Levy LM, Henkin RI, Hutter A, Lin CS, Schellinger D (1998) Mapping brain activation to odorants in patients with smell loss by functional MRI. J Comput Assist Tomogr 22(1):96–103CrossRef Levy LM, Henkin RI, Hutter A, Lin CS, Schellinger D (1998) Mapping brain activation to odorants in patients with smell loss by functional MRI. J Comput Assist Tomogr 22(1):96–103CrossRef
12.
Zurück zum Zitat Han P, Winkler N, Hummel C, Hahner A, Gerber J, Hummel T (2018) Impaired brain response to odors in patients with varied severity of olfactory loss after traumatic brain injury. J Neurol 265(10):2322–2332CrossRef Han P, Winkler N, Hummel C, Hahner A, Gerber J, Hummel T (2018) Impaired brain response to odors in patients with varied severity of olfactory loss after traumatic brain injury. J Neurol 265(10):2322–2332CrossRef
13.
Zurück zum Zitat Huart C, Rombaux P, Hummel T (2013) Plasticity of the human olfactory system: the olfactory bulb. Molecules 18(9):11586–11600CrossRef Huart C, Rombaux P, Hummel T (2013) Plasticity of the human olfactory system: the olfactory bulb. Molecules 18(9):11586–11600CrossRef
14.
Zurück zum Zitat Hummel T (1997) ‘Sniffin’sticks' olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses. 22(1):39–52CrossRef Hummel T (1997) ‘Sniffin’sticks' olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses. 22(1):39–52CrossRef
15.
Zurück zum Zitat Hummel T, Kobal G, Gudziol H, Mackay-Sim A (2007) Normative data for the "Sniffin' Sticks" including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3000 subjects. Eur Arch Otorhinolaryngol 264(3):237–243CrossRef Hummel T, Kobal G, Gudziol H, Mackay-Sim A (2007) Normative data for the "Sniffin' Sticks" including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3000 subjects. Eur Arch Otorhinolaryngol 264(3):237–243CrossRef
16.
Zurück zum Zitat Kobal G, Klimek L, Wolfensberger M et al (2000) Multicenter investigation of 1036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds. Eur Arch Oto-Rhino-Laryngol 257(4):205–211CrossRef Kobal G, Klimek L, Wolfensberger M et al (2000) Multicenter investigation of 1036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds. Eur Arch Oto-Rhino-Laryngol 257(4):205–211CrossRef
17.
Zurück zum Zitat Gottfried JA, Zald DH (2005) On the scent of human olfactory orbitofrontal cortex: meta-analysis and comparison to non-human primates. Brain Res Rev 50(2):287–304CrossRef Gottfried JA, Zald DH (2005) On the scent of human olfactory orbitofrontal cortex: meta-analysis and comparison to non-human primates. Brain Res Rev 50(2):287–304CrossRef
18.
Zurück zum Zitat Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 19(3):1233–1239CrossRef Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 19(3):1233–1239CrossRef
19.
Zurück zum Zitat Lawrence NS, Hinton EC, Parkinson JA, Lawrence AD (2012) Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. NeuroImage 63(1):415–422CrossRef Lawrence NS, Hinton EC, Parkinson JA, Lawrence AD (2012) Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. NeuroImage 63(1):415–422CrossRef
20.
Zurück zum Zitat Brett M, Anton J-L, Valabregue R, Poline J-B (2002) Region of interest analysis using an SPM toolbox paper presented at: 8th international conference on functional mapping of the human brain. NeuroImage 16:2 Brett M, Anton J-L, Valabregue R, Poline J-B (2002) Region of interest analysis using an SPM toolbox paper presented at: 8th international conference on functional mapping of the human brain. NeuroImage 16:2
21.
Zurück zum Zitat Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI (2009) Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 12(5):535–540CrossRef Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI (2009) Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 12(5):535–540CrossRef
22.
Zurück zum Zitat Morrot G, Bonny JM, Lehallier B, Zanca M (2013) FMRI of human olfaction at the individual level: interindividual variability. J Magn Reson Imaging 37(1):92–100CrossRef Morrot G, Bonny JM, Lehallier B, Zanca M (2013) FMRI of human olfaction at the individual level: interindividual variability. J Magn Reson Imaging 37(1):92–100CrossRef
23.
Zurück zum Zitat Kleinhans NM, Reilly M, Blake M et al (2019) FMRI correlates of olfactory processing in typically-developing school-aged children. Psychiatry Res Neuroimaging 283:67–76CrossRef Kleinhans NM, Reilly M, Blake M et al (2019) FMRI correlates of olfactory processing in typically-developing school-aged children. Psychiatry Res Neuroimaging 283:67–76CrossRef
24.
Zurück zum Zitat Han P, Zang Y, Hummel C, Faria V, Hummel T (2020) Short or long runs: an exploratory study of odor-induced fMRI design. Laryngoscope 130(5):1110–1115CrossRef Han P, Zang Y, Hummel C, Faria V, Hummel T (2020) Short or long runs: an exploratory study of odor-induced fMRI design. Laryngoscope 130(5):1110–1115CrossRef
25.
Zurück zum Zitat Georgiopoulos C, Witt ST, Haller S et al (2018) Olfactory fMRI: implications of stimulation length and repetition time. Chem Senses 43(6):389–398PubMed Georgiopoulos C, Witt ST, Haller S et al (2018) Olfactory fMRI: implications of stimulation length and repetition time. Chem Senses 43(6):389–398PubMed
26.
Zurück zum Zitat Karunanayaka P, Eslinger PJ, Wang JL et al (2014) Networks involved in olfaction and their dynamics using independent component analysis and unified structural equation modeling. Hum Brain Mapp 35(5):2055–2072CrossRef Karunanayaka P, Eslinger PJ, Wang JL et al (2014) Networks involved in olfaction and their dynamics using independent component analysis and unified structural equation modeling. Hum Brain Mapp 35(5):2055–2072CrossRef
27.
Zurück zum Zitat Weiss T, Snitz K, Yablonka A et al (2012) Perceptual convergence of multi-component mixtures in olfaction implies an olfactory white. Proc Natl Acad Sci U S A 109(49):19959–19964CrossRef Weiss T, Snitz K, Yablonka A et al (2012) Perceptual convergence of multi-component mixtures in olfaction implies an olfactory white. Proc Natl Acad Sci U S A 109(49):19959–19964CrossRef
28.
Zurück zum Zitat Holiga Š, Sambataro F, Luzy C et al (2018) Test-retest reliability of task-based and resting-state blood oxygen level dependence and cerebral blood flow measures. NeuroImage 13(11):e0206583 Holiga Š, Sambataro F, Luzy C et al (2018) Test-retest reliability of task-based and resting-state blood oxygen level dependence and cerebral blood flow measures. NeuroImage 13(11):e0206583
29.
Zurück zum Zitat Fröhner JH, Teckentrup V, Smolka MN, Kroemer NBJN (2019) Addressing the reliability fallacy in fMRI: similar group effects may arise from unreliable individual effects. NeuroImage 195:4–189CrossRef Fröhner JH, Teckentrup V, Smolka MN, Kroemer NBJN (2019) Addressing the reliability fallacy in fMRI: similar group effects may arise from unreliable individual effects. NeuroImage 195:4–189CrossRef
30.
Zurück zum Zitat Dubois J, Adolphs R (2016) Building a science of individual differences from fmri. Trends Cogn Sci 20(6):425–443CrossRef Dubois J, Adolphs R (2016) Building a science of individual differences from fmri. Trends Cogn Sci 20(6):425–443CrossRef
31.
Zurück zum Zitat Gordon EM, Laumann TO, Gilmore AW et al (2020) Precision functional mapping of individual human brains. Neuron 95(4):791–807CrossRef Gordon EM, Laumann TO, Gilmore AW et al (2020) Precision functional mapping of individual human brains. Neuron 95(4):791–807CrossRef
Metadaten
Titel
Individual variability of olfactory fMRI in normosmia and olfactory dysfunction
verfasst von
Zang Yunpeng
Pengfei Han
Akshita Joshi
Thomas Hummel
Publikationsdatum
14.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
European Archives of Oto-Rhino-Laryngology / Ausgabe 2/2021
Print ISSN: 0937-4477
Elektronische ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-020-06233-y

Weitere Artikel der Ausgabe 2/2021

European Archives of Oto-Rhino-Laryngology 2/2021 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.