Skip to main content
Erschienen in: Journal of Medical Systems 3/2019

01.03.2019 | Mobile & Wireless Health

Indoor Air Quality Assessment Using a CO2 Monitoring System Based on Internet of Things

verfasst von: Gonçalo Marques, Cristina Roque Ferreira, Rui Pitarma

Erschienen in: Journal of Medical Systems | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Indoor air quality (IAQ) parameters are not only directly related to occupational health but also have a significant impact on quality of life as people typically spend more than 90% of their time in indoor environments. Although IAQ is not usually monitored, it must be perceived as a relevant issue to follow up for the inhabitants’ well-being and comfort for enhanced living environments and occupational health. Carbon dioxide (CO2) has a substantial influence on public health and can be used as an essential index of IAQ. CO2 levels over 1000 ppm, indicates an indoor air potential problem. Monitoring CO2 concentration in real-time is essential to detect IAQ issues to quickly intervene in the building. The continuous technological advances in several areas such as Ambient Assisted Living and the Internet of Things (IoT) make it possible to build smart objects with significant capabilities for sensing and connecting. This paper presents the iAirCO2 system, a solution for CO2 real-time monitoring based on IoT architecture. The iAirCO2 is composed of a hardware prototype for ambient data collection and a Web and smartphone software for data consulting. In future, it is planned that these data can be accessed by doctors in order to support medical diagnostics. Compared to other solutions, the iAirCO2 is based on open-source technologies, providing a total Wi-Fi system, with several advantages such as its modularity, scalability, low-cost, and easy installation. The results reveal that the system can generate a viable IAQ appraisal, allowing to anticipate technical interventions that contribute to a healthier living environment.
Literatur
2.
Zurück zum Zitat Koleva, P., Tonchev, K., Balabanov, G., Manolova, A., Poulkov, V., Challenges in designing and implementation of an effective ambient assisted living system. Telecommunication in modern satellite, cable and broadcasting services (TELSIKS), 2015 12th international conference on. 305–308, 2015. Koleva, P., Tonchev, K., Balabanov, G., Manolova, A., Poulkov, V., Challenges in designing and implementation of an effective ambient assisted living system. Telecommunication in modern satellite, cable and broadcasting services (TELSIKS), 2015 12th international conference on. 305–308, 2015.
3.
Zurück zum Zitat Seguel, J. M., Merrill, R., Seguel, D., and Campagna, A. C., Indoor air quality. Am. J. Lifestyle Med. 11(4):284–2895, 2016.CrossRef Seguel, J. M., Merrill, R., Seguel, D., and Campagna, A. C., Indoor air quality. Am. J. Lifestyle Med. 11(4):284–2895, 2016.CrossRef
4.
Zurück zum Zitat Bruce, N., Perez-Padilla, R., and Albalak, R., Indoor air pollution in developing countries: A major environmental and public health challenge. Bull. World Health Org. 78(9):1078–1092, 2000.PubMed Bruce, N., Perez-Padilla, R., and Albalak, R., Indoor air pollution in developing countries: A major environmental and public health challenge. Bull. World Health Org. 78(9):1078–1092, 2000.PubMed
5.
Zurück zum Zitat Jones, A. P., Indoor air quality and health. Atmosph. Environ. 33(28):4535–4564, 1999.CrossRef Jones, A. P., Indoor air quality and health. Atmosph. Environ. 33(28):4535–4564, 1999.CrossRef
6.
Zurück zum Zitat Satish, U. et al., Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environmental Health Perspectives, 2012. Satish, U. et al., Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environmental Health Perspectives, 2012.
7.
Zurück zum Zitat Yu, T.-C. et al., Wireless sensor networks for indoor air quality monitoring. Med. Eng. Phys. 35(2):231–235, 2013.CrossRef Yu, T.-C. et al., Wireless sensor networks for indoor air quality monitoring. Med. Eng. Phys. 35(2):231–235, 2013.CrossRef
8.
Zurück zum Zitat Myers, S. S. et al., Increasing CO2 threatens human nutrition. Nature 510(7503):139–142, 2014.CrossRef Myers, S. S. et al., Increasing CO2 threatens human nutrition. Nature 510(7503):139–142, 2014.CrossRef
9.
Zurück zum Zitat Caragliu, A., Del Bo, C., and Nijkamp, P., Smart cities in Europe. J. Urb. Technol. 18(2):65–82, 2011.CrossRef Caragliu, A., Del Bo, C., and Nijkamp, P., Smart cities in Europe. J. Urb. Technol. 18(2):65–82, 2011.CrossRef
10.
Zurück zum Zitat Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nilsson, M., and Oliveira, A., Smart cities and the future internet: Towards cooperation frameworks for open innovation. In: Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco, S., Müller, H., Li, M.-S., Schaffers, H., Lotz, V., Alvarez, F., Stiller, B., Karnouskos, S., Avessta, S., Nilsson, M. (Eds), The future internet. Vol. 6656. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, 431–446.CrossRef Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nilsson, M., and Oliveira, A., Smart cities and the future internet: Towards cooperation frameworks for open innovation. In: Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco, S., Müller, H., Li, M.-S., Schaffers, H., Lotz, V., Alvarez, F., Stiller, B., Karnouskos, S., Avessta, S., Nilsson, M. (Eds), The future internet. Vol. 6656. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, 431–446.CrossRef
11.
Zurück zum Zitat Chourabi, H. et al., Understanding smart cities: An integrative. Framework:2289–2297, 2012. Chourabi, H. et al., Understanding smart cities: An integrative. Framework:2289–2297, 2012.
12.
Zurück zum Zitat Zanella, A., Bui, N., Castellani, A., Vangelista, L., and Zorzi, M., Internet of things for smart cities. IEEE Internet Things J. 1(1):22–32, 2014.CrossRef Zanella, A., Bui, N., Castellani, A., Vangelista, L., and Zorzi, M., Internet of things for smart cities. IEEE Internet Things J. 1(1):22–32, 2014.CrossRef
13.
Zurück zum Zitat Batty, M. et al., Smart cities of the future. Eur. Phys. J. Spec. Topics 214(1):481–518, 2012.CrossRef Batty, M. et al., Smart cities of the future. Eur. Phys. J. Spec. Topics 214(1):481–518, 2012.CrossRef
14.
Zurück zum Zitat Hernández-Muñoz, J. M. et al., Smart cities at the forefront of the future internet. In: Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco, S., Müller, H., Li, M.-S., Schaffers, H., Lotz, V., Alvarez, F., Stiller, B., Karnouskos, S., Avessta, S., Nilsson, M. (Eds), The future internet. Vol. 6656. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, 447–462.CrossRef Hernández-Muñoz, J. M. et al., Smart cities at the forefront of the future internet. In: Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco, S., Müller, H., Li, M.-S., Schaffers, H., Lotz, V., Alvarez, F., Stiller, B., Karnouskos, S., Avessta, S., Nilsson, M. (Eds), The future internet. Vol. 6656. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, 447–462.CrossRef
15.
Zurück zum Zitat Tran, T. V., Dang, N. T., and Chung, W.-Y., Battery-free smart-sensor system for real-time indoor air quality monitoring. Sensors and Actuators B: Chemical, 2017. Tran, T. V., Dang, N. T., and Chung, W.-Y., Battery-free smart-sensor system for real-time indoor air quality monitoring. Sensors and Actuators B: Chemical, 2017.
16.
Zurück zum Zitat Kim, J.-Y., Chu, C.-H., and Shin, S.-M., ISSAQ: An integrated sensing systems for real-time indoor air quality monitoring. IEEE Sens. J. 14(12):4230–4244, 2014.CrossRef Kim, J.-Y., Chu, C.-H., and Shin, S.-M., ISSAQ: An integrated sensing systems for real-time indoor air quality monitoring. IEEE Sens. J. 14(12):4230–4244, 2014.CrossRef
17.
Zurück zum Zitat Marques, G. and Pitarma, R., Health informatics for indoor air quality monitoring. Information Systems and technologies (CISTI), 2016 11th Iberian conference on. 1–6, 2016. Marques, G. and Pitarma, R., Health informatics for indoor air quality monitoring. Information Systems and technologies (CISTI), 2016 11th Iberian conference on. 1–6, 2016.
18.
Zurück zum Zitat Pitarma, R., Marques, G., and Ferreira, B. R., Monitoring indoor air quality for enhanced occupational health. J. Med. Syst. 41, no. 2, 2017. Pitarma, R., Marques, G., and Ferreira, B. R., Monitoring indoor air quality for enhanced occupational health. J. Med. Syst. 41, no. 2, 2017.
19.
Zurück zum Zitat Marques, G., and Pitarma, R., Monitoring health factors in indoor living environments using internet of things. In: Rocha, Á., Correia, A. M., Adeli, H., Reis, L. P., Costanzo, S. (Eds), Recent advances in information Systems and technologies. Vol. 570. Cham: Springer International Publishing, 2017, 785–794.CrossRef Marques, G., and Pitarma, R., Monitoring health factors in indoor living environments using internet of things. In: Rocha, Á., Correia, A. M., Adeli, H., Reis, L. P., Costanzo, S. (Eds), Recent advances in information Systems and technologies. Vol. 570. Cham: Springer International Publishing, 2017, 785–794.CrossRef
20.
Zurück zum Zitat Abraham, S., and Li, X., A cost-effective wireless sensor network system for indoor air quality monitoring applications. Proc. Comput. Sci. 34:165–171, 2014.CrossRef Abraham, S., and Li, X., A cost-effective wireless sensor network system for indoor air quality monitoring applications. Proc. Comput. Sci. 34:165–171, 2014.CrossRef
21.
Zurück zum Zitat Marques, G., and Pitarma, R., An indoor monitoring system for ambient assisted living based on internet of things architecture. Int. J. Environ. Res. Publ. Health 13(11):1152, 2016.CrossRef Marques, G., and Pitarma, R., An indoor monitoring system for ambient assisted living based on internet of things architecture. Int. J. Environ. Res. Publ. Health 13(11):1152, 2016.CrossRef
22.
Zurück zum Zitat Marques, G., Roque Ferreira, C., and Pitarma, R., A system based on the internet of things for real-time particle monitoring in buildings. Int. J. Environ. Res. Publ. Health 15(4):821, 2018.CrossRef Marques, G., Roque Ferreira, C., and Pitarma, R., A system based on the internet of things for real-time particle monitoring in buildings. Int. J. Environ. Res. Publ. Health 15(4):821, 2018.CrossRef
23.
Zurück zum Zitat Srivatsa, P. and Pandhare, A., Indoor air quality: IoT solution. National Conference “NCPCI, 2016. 19, 2016. Srivatsa, P. and Pandhare, A., Indoor air quality: IoT solution. National Conference “NCPCI, 2016. 19, 2016.
24.
Zurück zum Zitat Salamone, F., Belussi, L., Danza, L., Galanos, T., Ghellere, M., and Meroni, I., Design and development of a nearable wireless system to control indoor air quality and indoor lighting quality. Sensors 17(5):1021, 2017.CrossRef Salamone, F., Belussi, L., Danza, L., Galanos, T., Ghellere, M., and Meroni, I., Design and development of a nearable wireless system to control indoor air quality and indoor lighting quality. Sensors 17(5):1021, 2017.CrossRef
25.
Zurück zum Zitat Bhattacharya, S., Sridevi, S., and Pitchiah, R., Indoor air quality monitoring using wireless sensor network. 422–427, 2012. Bhattacharya, S., Sridevi, S., and Pitchiah, R., Indoor air quality monitoring using wireless sensor network. 422–427, 2012.
26.
Zurück zum Zitat Salamone, F., Belussi, L., Danza, L., Ghellere, M., and Meroni, I., Design and development of nEMoS, an all-in-one, low-cost, web-connected and 3D-printed device for environmental analysis. Sensors 15(6):13012–13027, 2015.CrossRef Salamone, F., Belussi, L., Danza, L., Ghellere, M., and Meroni, I., Design and development of nEMoS, an all-in-one, low-cost, web-connected and 3D-printed device for environmental analysis. Sensors 15(6):13012–13027, 2015.CrossRef
27.
Zurück zum Zitat Wang, S. K., Chew, S. P., Jusoh, M. T., Khairunissa, A., Leong, K. Y., and Azid, A. A., WSN based indoor air quality monitoring in classrooms. 020063, 2017. Wang, S. K., Chew, S. P., Jusoh, M. T., Khairunissa, A., Leong, K. Y., and Azid, A. A., WSN based indoor air quality monitoring in classrooms. 020063, 2017.
28.
Zurück zum Zitat Lee, S. ., and Chang, M., Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere 41(1–2):109–113, 2000.CrossRef Lee, S. ., and Chang, M., Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere 41(1–2):109–113, 2000.CrossRef
29.
Zurück zum Zitat Seppanen, O. A., Fisk, W. J., and Mendell, M. J., Association of Ventilation Rates and CO2 concentrations with health andOther responses in commercial and institutional buildings. Indoor Air 9(4):226–252, 1999.CrossRef Seppanen, O. A., Fisk, W. J., and Mendell, M. J., Association of Ventilation Rates and CO2 concentrations with health andOther responses in commercial and institutional buildings. Indoor Air 9(4):226–252, 1999.CrossRef
30.
Zurück zum Zitat Ramachandran, G. et al., Indoor air quality in two urban elementary schools—Measurements of airborne Fungi, carpet allergens, CO 2 , temperature, and relative humidity. J. Occup. Environ. Hyg. 2(11):553–566, 2005.CrossRef Ramachandran, G. et al., Indoor air quality in two urban elementary schools—Measurements of airborne Fungi, carpet allergens, CO 2 , temperature, and relative humidity. J. Occup. Environ. Hyg. 2(11):553–566, 2005.CrossRef
31.
Zurück zum Zitat Scheff, P. A., Paulius, V. K., Huang, S. W., and Conroy, L. M., Indoor air quality in a middle school, part I: Use of CO 2 as a tracer for effective ventilation. Appl. Occup. Environ. Hyg. 15(11):824–834, 2000.CrossRef Scheff, P. A., Paulius, V. K., Huang, S. W., and Conroy, L. M., Indoor air quality in a middle school, part I: Use of CO 2 as a tracer for effective ventilation. Appl. Occup. Environ. Hyg. 15(11):824–834, 2000.CrossRef
32.
Zurück zum Zitat Wargocki, P., Wyon, D. P., Sundell, J., Clausen, G., and Fanger, P. O., The effects of outdoor air supply rate in an office on perceived air quality, sick building syndrome (SBS) symptoms and productivity. Indoor Air 10(4):222–236, 2000.CrossRef Wargocki, P., Wyon, D. P., Sundell, J., Clausen, G., and Fanger, P. O., The effects of outdoor air supply rate in an office on perceived air quality, sick building syndrome (SBS) symptoms and productivity. Indoor Air 10(4):222–236, 2000.CrossRef
34.
Zurück zum Zitat Neuburg, M., iOS 7 programming fundamentals: Objective-c, xcode, and cocoa basics. O’Reilly Media, Inc., 2013. Neuburg, M., iOS 7 programming fundamentals: Objective-c, xcode, and cocoa basics. O’Reilly Media, Inc., 2013.
35.
Zurück zum Zitat Lacis, A. A., Schmidt, G. A., Rind, D., and Ruedy, R. A., Atmospheric CO2: Principal control knob governing Earth’s temperature. Science 330(6002):356–359, 2010.CrossRef Lacis, A. A., Schmidt, G. A., Rind, D., and Ruedy, R. A., Atmospheric CO2: Principal control knob governing Earth’s temperature. Science 330(6002):356–359, 2010.CrossRef
36.
Zurück zum Zitat Awbi, H. B., Ventilation of buildings. Taylor & Francis, 2003. Awbi, H. B., Ventilation of buildings. Taylor & Francis, 2003.
Metadaten
Titel
Indoor Air Quality Assessment Using a CO2 Monitoring System Based on Internet of Things
verfasst von
Gonçalo Marques
Cristina Roque Ferreira
Rui Pitarma
Publikationsdatum
01.03.2019
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 3/2019
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-019-1184-x

Weitere Artikel der Ausgabe 3/2019

Journal of Medical Systems 3/2019 Zur Ausgabe