Skip to main content
Erschienen in: Clinical Autonomic Research 4/2019

10.01.2019 | Review article

Induced pluripotent stem cells for disease modeling, cell therapy and drug discovery in genetic autonomic disorders: a review

verfasst von: Kenyi Saito-Diaz, Nadja Zeltner

Erschienen in: Clinical Autonomic Research | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

The autonomic nervous system (ANS) regulates all organs in the body independent of consciousness, and is thus essential for maintaining homeostasis of the entire organism. Diseases of the ANS can arise due to environmental insults such as injury, toxins/drugs and infections or due to genetic lesions. Human studies and animal models have been instrumental to understanding connectivity and regulation of the ANS and its disorders. However, research into cellular pathologies and molecular mechanisms of ANS disorders has been hampered by the difficulties in accessing human patient-derived ANS cells in large numbers to conduct meaningful research, mainly because patient neurons cannot be easily biopsied and primary human neuronal cultures cannot be expanded.
Human-induced pluripotent stem cell (hiPSC) technology can elegantly bridge these issues, allowing unlimited access of patient-derived ANS cell types for cellular, molecular and biochemical analysis, facilitating the discovery of novel therapeutic targets, and eventually leading to drug discovery. Additionally, such cells may provide a source for cell replacement therapy to replenish lost or injured ANS tissue in patients.
Here, we first review the anatomy and embryonic development of the ANS, as this knowledge is crucial for understanding disease modeling approaches. We then review the current advances in human stem cell technology for modeling diseases of the ANS, recent strides toward cell replacement therapy and drug discovery initiatives.
Literatur
1.
Zurück zum Zitat Lassiter RN, Stark MR, Zhao T et al (2014) Signaling mechanisms controlling cranial placode neurogenesis and delamination. Dev Biol 389(1):39–49CrossRefPubMed Lassiter RN, Stark MR, Zhao T et al (2014) Signaling mechanisms controlling cranial placode neurogenesis and delamination. Dev Biol 389(1):39–49CrossRefPubMed
2.
Zurück zum Zitat Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9(5):286–294CrossRefPubMed Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9(5):286–294CrossRefPubMed
3.
Zurück zum Zitat Gershon MD (1999) The enteric nervous system: a second brain. Hosp Pract 34(7):31–35CrossRef Gershon MD (1999) The enteric nervous system: a second brain. Hosp Pract 34(7):31–35CrossRef
4.
Zurück zum Zitat Stone JB, DeAngelis LM (2016) Cancer-treatment-induced neurotoxicity–focus on newer treatments. Nat Rev Clin Oncol 13(2):92–105CrossRefPubMed Stone JB, DeAngelis LM (2016) Cancer-treatment-induced neurotoxicity–focus on newer treatments. Nat Rev Clin Oncol 13(2):92–105CrossRefPubMed
5.
Zurück zum Zitat Bolande RP (1997) Neurocristopathy: its growth and development in 20 years. Pediatr Pathol Lab Med 17(1):1–25CrossRefPubMed Bolande RP (1997) Neurocristopathy: its growth and development in 20 years. Pediatr Pathol Lab Med 17(1):1–25CrossRefPubMed
6.
Zurück zum Zitat Goldstein DS, Holmes C, Lopez GJ et al (2018) Cardiac sympathetic denervation predicts PD in at-risk individuals. Parkinsonism Relat Disord 52:90–93CrossRefPubMed Goldstein DS, Holmes C, Lopez GJ et al (2018) Cardiac sympathetic denervation predicts PD in at-risk individuals. Parkinsonism Relat Disord 52:90–93CrossRefPubMed
7.
Zurück zum Zitat Saffrey MJ (2013) Cellular changes in the enteric nervous system during ageing. Dev Biol 382(1):344–355CrossRefPubMed Saffrey MJ (2013) Cellular changes in the enteric nervous system during ageing. Dev Biol 382(1):344–355CrossRefPubMed
8.
Zurück zum Zitat Vega J, Bisognano JD (2014) The prevalence, incidence, prognosis, and associated conditions of resistant hypertension. Semin Nephrol 34(3):247–256CrossRefPubMed Vega J, Bisognano JD (2014) The prevalence, incidence, prognosis, and associated conditions of resistant hypertension. Semin Nephrol 34(3):247–256CrossRefPubMed
9.
Zurück zum Zitat Froeschl M, Hadziomerovic A, Ruzicka M (2014) Percutaneous renal sympathetic denervation: 2013 and beyond. Can J Cardiol 30(1):64–74CrossRefPubMed Froeschl M, Hadziomerovic A, Ruzicka M (2014) Percutaneous renal sympathetic denervation: 2013 and beyond. Can J Cardiol 30(1):64–74CrossRefPubMed
10.
Zurück zum Zitat Morini E, Dietrich P, Salani M et al (2016) Sensory and Autonomic deficits in a new humanized mouse model of familial dysautonomia. Hum Mol Genet 25:116–1128CrossRef Morini E, Dietrich P, Salani M et al (2016) Sensory and Autonomic deficits in a new humanized mouse model of familial dysautonomia. Hum Mol Genet 25:116–1128CrossRef
11.
Zurück zum Zitat Pearson J, Pytel BA (1978) Quantitative studies of sympathetic ganglia and spinal cord intermedio-lateral gray columns in familial dysautonomia. J Neurol Sci 39(1):47–59CrossRefPubMed Pearson J, Pytel BA (1978) Quantitative studies of sympathetic ganglia and spinal cord intermedio-lateral gray columns in familial dysautonomia. J Neurol Sci 39(1):47–59CrossRefPubMed
12.
Zurück zum Zitat Cuajungco MP, Leyne M, Mull J et al (2003) Tissue-specific reduction in splicing efficiency of IKBKAP due to the major mutation associated with familial dysautonomia. Am J Hum Genet 72(3):749–758CrossRefPubMedPubMedCentral Cuajungco MP, Leyne M, Mull J et al (2003) Tissue-specific reduction in splicing efficiency of IKBKAP due to the major mutation associated with familial dysautonomia. Am J Hum Genet 72(3):749–758CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147CrossRefPubMed Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147CrossRefPubMed
14.
Zurück zum Zitat Barker RA, Parmar M, Studer L et al (2017) Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: dawn of a new era. Cell Stem Cell 21(5):569–573CrossRefPubMed Barker RA, Parmar M, Studer L et al (2017) Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: dawn of a new era. Cell Stem Cell 21(5):569–573CrossRefPubMed
15.
Zurück zum Zitat Lefler S, Cohen MA, Kantor G et al (2015) Familial dysautonomia (FD) human embryonic stem cell derived PNS neurons reveal that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation. PLoS One 10(10):e0138807CrossRefPubMedPubMedCentral Lefler S, Cohen MA, Kantor G et al (2015) Familial dysautonomia (FD) human embryonic stem cell derived PNS neurons reveal that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation. PLoS One 10(10):e0138807CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Soldner F, Laganiere J, Cheng AW et al (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146(2):318–331CrossRefPubMedPubMedCentral Soldner F, Laganiere J, Cheng AW et al (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146(2):318–331CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872CrossRefPubMed Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872CrossRefPubMed
18.
Zurück zum Zitat Brouwer M, Zhou H, Nadif Kasri N (2016) Choices for Induction of pluripotency: recent developments in human induced pluripotent stem cell reprogramming strategies. Stem Cell Rev 12(1):54–72CrossRef Brouwer M, Zhou H, Nadif Kasri N (2016) Choices for Induction of pluripotency: recent developments in human induced pluripotent stem cell reprogramming strategies. Stem Cell Rev 12(1):54–72CrossRef
19.
Zurück zum Zitat Meraviglia V, Zanon A, Lavdas AA et al (2015) Generation of induced pluripotent stem cells from frozen buffy coats using non-integrating episomal plasmids. J Vis Exp 100:e52885 Meraviglia V, Zanon A, Lavdas AA et al (2015) Generation of induced pluripotent stem cells from frozen buffy coats using non-integrating episomal plasmids. J Vis Exp 100:e52885
20.
Zurück zum Zitat Aasen T, Raya A, Barrero MJ et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284CrossRefPubMed Aasen T, Raya A, Barrero MJ et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284CrossRefPubMed
21.
Zurück zum Zitat Hanna J, Markoulaki S, Schorderet P et al (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133(2):250–264CrossRefPubMedPubMedCentral Hanna J, Markoulaki S, Schorderet P et al (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133(2):250–264CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Hochedlinger K, Jaenisch R (2015) Induced pluripotency and epigenetic reprogramming. Cold Spring Harb Perspect Biol 7:12CrossRef Hochedlinger K, Jaenisch R (2015) Induced pluripotency and epigenetic reprogramming. Cold Spring Harb Perspect Biol 7:12CrossRef
23.
Zurück zum Zitat Zeltner N, Studer L (2015) Pluripotent stem cell-based disease modeling: current hurdles and future promise. Curr Opin Cell Biol 37:102–110CrossRefPubMed Zeltner N, Studer L (2015) Pluripotent stem cell-based disease modeling: current hurdles and future promise. Curr Opin Cell Biol 37:102–110CrossRefPubMed
24.
Zurück zum Zitat Chambers SM, Qi Y, Mica Y et al (2012) Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol 30(7):715–720CrossRefPubMedPubMedCentral Chambers SM, Qi Y, Mica Y et al (2012) Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol 30(7):715–720CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Nostro MC, Sarangi F, Yang C et al (2015) Efficient generation of NKX6-1 + pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Rep 4(4):591–604CrossRef Nostro MC, Sarangi F, Yang C et al (2015) Efficient generation of NKX6-1 + pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Rep 4(4):591–604CrossRef
27.
Zurück zum Zitat Huch M, Knoblich JA, Lutolf MP et al (2017) The hope and the hype of organoid research. Development 144(6):938–941CrossRefPubMed Huch M, Knoblich JA, Lutolf MP et al (2017) The hope and the hype of organoid research. Development 144(6):938–941CrossRefPubMed
28.
Zurück zum Zitat Douarin NML (1986) Cell line segregation during peripheral nervous system ontogeny. Science 231(4745):1515–1522CrossRefPubMed Douarin NML (1986) Cell line segregation during peripheral nervous system ontogeny. Science 231(4745):1515–1522CrossRefPubMed
29.
Zurück zum Zitat Briggs JA, Weinreb C, Wagner DE et al (2018) The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science (New York) 360:6392CrossRef Briggs JA, Weinreb C, Wagner DE et al (2018) The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science (New York) 360:6392CrossRef
30.
Zurück zum Zitat Wagner DE, Weinreb C, Collins ZM et al (2018) Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science (New York) 360(6392):981–987CrossRef Wagner DE, Weinreb C, Collins ZM et al (2018) Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science (New York) 360(6392):981–987CrossRef
31.
Zurück zum Zitat Farrell JA, Wang Y, Riesenfeld SJ et al (2018) Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science (New York) 360:6392CrossRef Farrell JA, Wang Y, Riesenfeld SJ et al (2018) Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science (New York) 360:6392CrossRef
32.
Zurück zum Zitat Labosky PA, Kaestner KH (1998) The winged helix transcription factor Hfh2 is expressed in neural crest and spinal cord during mouse development. Mech Dev 76(1–2):185–190CrossRefPubMed Labosky PA, Kaestner KH (1998) The winged helix transcription factor Hfh2 is expressed in neural crest and spinal cord during mouse development. Mech Dev 76(1–2):185–190CrossRefPubMed
33.
Zurück zum Zitat Southard-Smith EM, Kos L, Pavan WJ (1998) Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 18(1):60–64CrossRefPubMed Southard-Smith EM, Kos L, Pavan WJ (1998) Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 18(1):60–64CrossRefPubMed
34.
Zurück zum Zitat Aruga J, Tohmonda T, Homma S et al (2002) Zic1 promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation. Dev Biol 244(2):329–341CrossRefPubMed Aruga J, Tohmonda T, Homma S et al (2002) Zic1 promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation. Dev Biol 244(2):329–341CrossRefPubMed
35.
Zurück zum Zitat Garnett AT, Square TA, Medeiros DM (2012) BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border. Development (Cambridge, England) 139(22):4220–4231CrossRefPubMedCentral Garnett AT, Square TA, Medeiros DM (2012) BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border. Development (Cambridge, England) 139(22):4220–4231CrossRefPubMedCentral
36.
Zurück zum Zitat McKeown SJ, Wallace AS, Anderson RB (2013) Expression and function of cell adhesion molecules during neural crest migration. Dev Biol 373(2):244–257CrossRefPubMed McKeown SJ, Wallace AS, Anderson RB (2013) Expression and function of cell adhesion molecules during neural crest migration. Dev Biol 373(2):244–257CrossRefPubMed
37.
Zurück zum Zitat Theveneau E, Mayor R (2011) Collective cell migration of the cephalic neural crest: the art of integrating information. Genesis (New York) 49(4):164–176CrossRef Theveneau E, Mayor R (2011) Collective cell migration of the cephalic neural crest: the art of integrating information. Genesis (New York) 49(4):164–176CrossRef
38.
Zurück zum Zitat Simões-Costa M, Bronner ME (2015) Establishing neural crest identity: a gene regulatory recipe. Development (Cambridge, England) 142(2):242–257CrossRef Simões-Costa M, Bronner ME (2015) Establishing neural crest identity: a gene regulatory recipe. Development (Cambridge, England) 142(2):242–257CrossRef
39.
Zurück zum Zitat Clay MR, Halloran MC (2013) Rho activation is apically restricted by Arhgap1 in neural crest cells and drives epithelial-to-mesenchymal transition. Development (Cambridge, England) 140(15):3198–3209CrossRef Clay MR, Halloran MC (2013) Rho activation is apically restricted by Arhgap1 in neural crest cells and drives epithelial-to-mesenchymal transition. Development (Cambridge, England) 140(15):3198–3209CrossRef
40.
Zurück zum Zitat Kasemeier-Kulesa JC, Kulesa PM, Lefcort F (2005) Imaging neural crest cell dynamics during formation of dorsal root ganglia and sympathetic ganglia. Development (Cambridge, England) 132(2):235–245CrossRef Kasemeier-Kulesa JC, Kulesa PM, Lefcort F (2005) Imaging neural crest cell dynamics during formation of dorsal root ganglia and sympathetic ganglia. Development (Cambridge, England) 132(2):235–245CrossRef
41.
Zurück zum Zitat Teddy JM, Kulesa PM (2004) In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development (Cambridge, England) 131(24):6141–6151CrossRef Teddy JM, Kulesa PM (2004) In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development (Cambridge, England) 131(24):6141–6151CrossRef
42.
Zurück zum Zitat Martik ML, Bronner ME (2017) Regulatory logic underlying diversification of the neural crest. TIG 33(10):715–727CrossRefPubMed Martik ML, Bronner ME (2017) Regulatory logic underlying diversification of the neural crest. TIG 33(10):715–727CrossRefPubMed
43.
44.
Zurück zum Zitat Trainor P (2013) Neural crest cells evolution, development and disease. Academic Press, Cambridge Trainor P (2013) Neural crest cells evolution, development and disease. Academic Press, Cambridge
45.
46.
Zurück zum Zitat Nagy N, Goldstein AM (2017) Enteric nervous system development: a crest cell’s journey from neural tube to colon. Semin Cell Dev Biol 66:94–106CrossRefPubMedPubMedCentral Nagy N, Goldstein AM (2017) Enteric nervous system development: a crest cell’s journey from neural tube to colon. Semin Cell Dev Biol 66:94–106CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Pattyn A, Morin X, Cremer H et al (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399(6734):366–370CrossRefPubMed Pattyn A, Morin X, Cremer H et al (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399(6734):366–370CrossRefPubMed
48.
Zurück zum Zitat Lasrado R, Boesmans W, Kleinjung J et al (2017) Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science (New York) 356(6339):722–726CrossRef Lasrado R, Boesmans W, Kleinjung J et al (2017) Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science (New York) 356(6339):722–726CrossRef
49.
Zurück zum Zitat Simkin JE, Zhang D, Rollo BN et al (2013) Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut. PLoS One 8(5):e64077CrossRefPubMedPubMedCentral Simkin JE, Zhang D, Rollo BN et al (2013) Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut. PLoS One 8(5):e64077CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Nagy N, Goldstein AM (2006) Endothelin-3 regulates neural crest cell proliferation and differentiation in the hindgut enteric nervous system. Dev Biol 293(1):203–217CrossRefPubMed Nagy N, Goldstein AM (2006) Endothelin-3 regulates neural crest cell proliferation and differentiation in the hindgut enteric nervous system. Dev Biol 293(1):203–217CrossRefPubMed
51.
Zurück zum Zitat Barlow A, de Graaff E, Pachnis V (2003) Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 40(5):905–916CrossRefPubMed Barlow A, de Graaff E, Pachnis V (2003) Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 40(5):905–916CrossRefPubMed
53.
Zurück zum Zitat Jiang Y, Liu M-T, Gershon MD (2003) Netrins and DCC in the guidance of migrating neural crest-derived cells in the developing bowel and pancreas. Dev Biol 258(2):364–384CrossRefPubMed Jiang Y, Liu M-T, Gershon MD (2003) Netrins and DCC in the guidance of migrating neural crest-derived cells in the developing bowel and pancreas. Dev Biol 258(2):364–384CrossRefPubMed
54.
Zurück zum Zitat Young HM, Hearn CJ, Farlie PG et al (2001) GDNF is a chemoattractant for enteric neural cells. Dev Biol 229(2):503–516CrossRefPubMed Young HM, Hearn CJ, Farlie PG et al (2001) GDNF is a chemoattractant for enteric neural cells. Dev Biol 229(2):503–516CrossRefPubMed
55.
Zurück zum Zitat Chalazonitis A, Pham TD, Li Z et al (2008) Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: relationship to timing of cell cycle exit. J Comp Neurol 509(5):474–492CrossRefPubMedPubMedCentral Chalazonitis A, Pham TD, Li Z et al (2008) Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: relationship to timing of cell cycle exit. J Comp Neurol 509(5):474–492CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Shtukmaster S, Schier MC, Huber K et al (2013) Sympathetic neurons and chromaffin cells share a common progenitor in the neural crest in vivo. Neural Dev 8:12CrossRefPubMedPubMedCentral Shtukmaster S, Schier MC, Huber K et al (2013) Sympathetic neurons and chromaffin cells share a common progenitor in the neural crest in vivo. Neural Dev 8:12CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Saito D, Takase Y, Murai H et al (2012) The dorsal aorta initiates a molecular cascade that instructs sympatho-adrenal specification. Science 336(6088):1578–1581CrossRefPubMed Saito D, Takase Y, Murai H et al (2012) The dorsal aorta initiates a molecular cascade that instructs sympatho-adrenal specification. Science 336(6088):1578–1581CrossRefPubMed
59.
Zurück zum Zitat Santiago A, Erickson CA (2002) Ephrin-B ligands play a dual role in the control of neural crest cell migration. Development (Cambridge, England) 129(15):3621–3632 Santiago A, Erickson CA (2002) Ephrin-B ligands play a dual role in the control of neural crest cell migration. Development (Cambridge, England) 129(15):3621–3632
60.
Zurück zum Zitat Young HM, Cane KN, Anderson CR (2011) Development of the autonomic nervous system: a comparative view. Auton Neurosci 165(1):10–27CrossRefPubMed Young HM, Cane KN, Anderson CR (2011) Development of the autonomic nervous system: a comparative view. Auton Neurosci 165(1):10–27CrossRefPubMed
61.
Zurück zum Zitat Saito D, Takase Y, Murai H et al (2012) The dorsal aorta initiates a molecular cascade that instructs sympatho-adrenal specification. Science 336(6088):1578–1581CrossRefPubMed Saito D, Takase Y, Murai H et al (2012) The dorsal aorta initiates a molecular cascade that instructs sympatho-adrenal specification. Science 336(6088):1578–1581CrossRefPubMed
62.
Zurück zum Zitat Britsch S, Li L, Kirchhoff S et al (1998) The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev 12(12):1825–1836CrossRefPubMedPubMedCentral Britsch S, Li L, Kirchhoff S et al (1998) The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev 12(12):1825–1836CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Biaggioni I, Low PA, Polinsky RJ et al (2011) Primer on the autonomic nervous system. Elsevier, San Diego Biaggioni I, Low PA, Polinsky RJ et al (2011) Primer on the autonomic nervous system. Elsevier, San Diego
65.
Zurück zum Zitat Guillemot F, Lo LC, Johnson JE et al (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75(3):463–476CrossRefPubMed Guillemot F, Lo LC, Johnson JE et al (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75(3):463–476CrossRefPubMed
66.
Zurück zum Zitat Wildner H, Gierl MS, Strehle M et al (2008) Insm1 (IA-1) is a crucial component of the transcriptional network that controls differentiation of the sympatho-adrenal lineage. Development (Cambridge, England) 135(3):473–481CrossRef Wildner H, Gierl MS, Strehle M et al (2008) Insm1 (IA-1) is a crucial component of the transcriptional network that controls differentiation of the sympatho-adrenal lineage. Development (Cambridge, England) 135(3):473–481CrossRef
67.
Zurück zum Zitat Howard MJ (2005) Mechanisms and perspectives on differentiation of autonomic neurons. Dev Biol 277(2):271–286CrossRefPubMed Howard MJ (2005) Mechanisms and perspectives on differentiation of autonomic neurons. Dev Biol 277(2):271–286CrossRefPubMed
68.
Zurück zum Zitat Sieber-Blum M (2000) Factors controlling lineage specification in the neural crest. Int Rev Cytol 197:1–33CrossRefPubMed Sieber-Blum M (2000) Factors controlling lineage specification in the neural crest. Int Rev Cytol 197:1–33CrossRefPubMed
69.
Zurück zum Zitat Lee VM, Sechrist JW, Luetolf S et al (2003) Both neural crest and placode contribute to the ciliary ganglion and oculomotor nerve. Dev Biol 263(2):176–190CrossRefPubMed Lee VM, Sechrist JW, Luetolf S et al (2003) Both neural crest and placode contribute to the ciliary ganglion and oculomotor nerve. Dev Biol 263(2):176–190CrossRefPubMed
70.
Zurück zum Zitat Chan WY, Cheung CS, Yung KM et al (2004) Cardiac neural crest of the mouse embryo: axial level of origin, migratory pathway and cell autonomy of the splotch (Sp2H) mutant effect. Development 131(14):3367–3379CrossRefPubMed Chan WY, Cheung CS, Yung KM et al (2004) Cardiac neural crest of the mouse embryo: axial level of origin, migratory pathway and cell autonomy of the splotch (Sp2H) mutant effect. Development 131(14):3367–3379CrossRefPubMed
71.
Zurück zum Zitat Dyachuk V, Furlan A, Shahidi MK et al (2014) Neurodevelopment. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science 345(6192):82–87CrossRefPubMed Dyachuk V, Furlan A, Shahidi MK et al (2014) Neurodevelopment. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science 345(6192):82–87CrossRefPubMed
72.
Zurück zum Zitat Espinosa-Medina I, Outin E, Picard CA et al (2014) Neurodevelopment. Parasympathetic ganglia derive from Schwann cell precursors. Science 345(6192):87–90CrossRefPubMed Espinosa-Medina I, Outin E, Picard CA et al (2014) Neurodevelopment. Parasympathetic ganglia derive from Schwann cell precursors. Science 345(6192):87–90CrossRefPubMed
73.
Zurück zum Zitat Müller F, Rohrer H (2002) Molecular control of ciliary neuron development: BMPs and downstream transcriptional control in the parasympathetic lineage. Development 129(24):5707–5717CrossRefPubMed Müller F, Rohrer H (2002) Molecular control of ciliary neuron development: BMPs and downstream transcriptional control in the parasympathetic lineage. Development 129(24):5707–5717CrossRefPubMed
74.
Zurück zum Zitat Enomoto H, Heuckeroth RO, Golden JP et al (2000) Development of cranial parasympathetic ganglia requires sequential actions of GDNF and neurturin. Development (Cambridge, England) 127(22):4877–4889 Enomoto H, Heuckeroth RO, Golden JP et al (2000) Development of cranial parasympathetic ganglia requires sequential actions of GDNF and neurturin. Development (Cambridge, England) 127(22):4877–4889
75.
Zurück zum Zitat Lee G, Kim H, Elkabetz Y et al (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 25(12):1468–1475CrossRefPubMed Lee G, Kim H, Elkabetz Y et al (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 25(12):1468–1475CrossRefPubMed
76.
Zurück zum Zitat Lee G, Chambers SM, Tomishima MJ et al (2010) Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 5(4):688–701CrossRefPubMed Lee G, Chambers SM, Tomishima MJ et al (2010) Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 5(4):688–701CrossRefPubMed
77.
Zurück zum Zitat Zeltner N, Lafaille FG, Fattahi F et al (2014) Feeder-free derivation of neural crest progenitor cells from human pluripotent stem cells. J Vis Exp 87:56 Zeltner N, Lafaille FG, Fattahi F et al (2014) Feeder-free derivation of neural crest progenitor cells from human pluripotent stem cells. J Vis Exp 87:56
78.
Zurück zum Zitat Menendez L, Yatskievych TA, Antin PB et al (2011) Wnt signaling and a Smad pathway blockade direct the differentiation of human pluripotent stem cells to multipotent neural crest cells. Proc Natl Acad Sci USA 108(48):19240–19245CrossRefPubMedPubMedCentral Menendez L, Yatskievych TA, Antin PB et al (2011) Wnt signaling and a Smad pathway blockade direct the differentiation of human pluripotent stem cells to multipotent neural crest cells. Proc Natl Acad Sci USA 108(48):19240–19245CrossRefPubMedPubMedCentral
79.
Zurück zum Zitat Liu Q, Spusta SC, Mi R et al (2012) Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med 1(4):266–278CrossRefPubMedPubMedCentral Liu Q, Spusta SC, Mi R et al (2012) Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med 1(4):266–278CrossRefPubMedPubMedCentral
80.
Zurück zum Zitat Kam MK, Lui VC (2015) Roles of Hoxb5 in the development of vagal and trunk neural crest cells. Dev Growth Differ 57(2):158–168CrossRefPubMed Kam MK, Lui VC (2015) Roles of Hoxb5 in the development of vagal and trunk neural crest cells. Dev Growth Differ 57(2):158–168CrossRefPubMed
81.
Zurück zum Zitat Mica Y, Lee G, Chambers SM et al (2013) Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs. Cell Rep 3(4):1140–1152CrossRefPubMedPubMedCentral Mica Y, Lee G, Chambers SM et al (2013) Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs. Cell Rep 3(4):1140–1152CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Fattahi F, Steinbeck JA, Kriks S et al (2016) Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 531(7592):105–109CrossRefPubMedPubMedCentral Fattahi F, Steinbeck JA, Kriks S et al (2016) Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 531(7592):105–109CrossRefPubMedPubMedCentral
83.
Zurück zum Zitat Zeltner N, Fattahi F, Dubois NC et al (2016) Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med 22:1421CrossRefPubMedPubMedCentral Zeltner N, Fattahi F, Dubois NC et al (2016) Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med 22:1421CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Oh Y, Cho GS, Li Z et al (2016) Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons. Cell Stem Cell 19:95–106CrossRefPubMedPubMedCentral Oh Y, Cho GS, Li Z et al (2016) Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons. Cell Stem Cell 19:95–106CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Kirino K, Nakahata T, Taguchi T et al (2018) Efficient derivation of sympathetic neurons from human pluripotent stem cells with a defined condition. Sci Rep 8(1):12865CrossRefPubMedPubMedCentral Kirino K, Nakahata T, Taguchi T et al (2018) Efficient derivation of sympathetic neurons from human pluripotent stem cells with a defined condition. Sci Rep 8(1):12865CrossRefPubMedPubMedCentral
87.
Zurück zum Zitat Axelrod FB, Nachtigal R, Dancis J (1974) Familial dysautonomia: diagnosis, pathogenesis and management. Adv Pediatr 21:75–96PubMed Axelrod FB, Nachtigal R, Dancis J (1974) Familial dysautonomia: diagnosis, pathogenesis and management. Adv Pediatr 21:75–96PubMed
88.
89.
Zurück zum Zitat Slaugenhaupt SA, Blumenfeld A, Gill SP et al (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68(3):598–605CrossRefPubMedPubMedCentral Slaugenhaupt SA, Blumenfeld A, Gill SP et al (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68(3):598–605CrossRefPubMedPubMedCentral
90.
Zurück zum Zitat Close P, Hawkes N, Cornez I et al (2006) Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia. Mol Cell 22(4):521–531CrossRefPubMed Close P, Hawkes N, Cornez I et al (2006) Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia. Mol Cell 22(4):521–531CrossRefPubMed
91.
92.
Zurück zum Zitat Lee G, Papapetrou EP, Kim H et al (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461(7262):402–406CrossRefPubMedPubMedCentral Lee G, Papapetrou EP, Kim H et al (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461(7262):402–406CrossRefPubMedPubMedCentral
93.
Zurück zum Zitat Valensi-Kurtz M, Lefler S, Cohen MA et al (2010) Enriched population of PNS neurons derived from human embryonic stem cells as a platform for studying peripheral neuropathies. PLoS One 5(2):e9290CrossRefPubMedPubMedCentral Valensi-Kurtz M, Lefler S, Cohen MA et al (2010) Enriched population of PNS neurons derived from human embryonic stem cells as a platform for studying peripheral neuropathies. PLoS One 5(2):e9290CrossRefPubMedPubMedCentral
94.
Zurück zum Zitat Wainger BJ, Buttermore ED, Oliveira JT et al (2015) Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat Neurosci 18(1):17–24CrossRefPubMed Wainger BJ, Buttermore ED, Oliveira JT et al (2015) Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat Neurosci 18(1):17–24CrossRefPubMed
95.
Zurück zum Zitat Graziadei PP, Monti Graziadei GA (1980) Neurogenesis and neuron regeneration in the olfactory system of mammals. III. Deafferentation and reinnervation of the olfactory bulb following section of the fila olfactoria in rat. J Neurocytol 9(2):145–162CrossRefPubMed Graziadei PP, Monti Graziadei GA (1980) Neurogenesis and neuron regeneration in the olfactory system of mammals. III. Deafferentation and reinnervation of the olfactory bulb following section of the fila olfactoria in rat. J Neurocytol 9(2):145–162CrossRefPubMed
96.
Zurück zum Zitat Boone N, Loriod B, Bergon A et al (2010) Olfactory stem cells, a new cellular model for studying molecular mechanisms underlying familial dysautonomia. PLoS One 5(12):e15590CrossRefPubMedPubMedCentral Boone N, Loriod B, Bergon A et al (2010) Olfactory stem cells, a new cellular model for studying molecular mechanisms underlying familial dysautonomia. PLoS One 5(12):e15590CrossRefPubMedPubMedCentral
97.
Zurück zum Zitat Boone N, Bergon A, Loriod B et al (2012) Genome-wide analysis of familial dysautonomia and kinetin target genes with patient olfactory ecto-mesenchymal stem cells. Hum Mutat 33(3):530–540CrossRefPubMed Boone N, Bergon A, Loriod B et al (2012) Genome-wide analysis of familial dysautonomia and kinetin target genes with patient olfactory ecto-mesenchymal stem cells. Hum Mutat 33(3):530–540CrossRefPubMed
98.
Zurück zum Zitat Herve M, Ibrahim EC (2016) MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia. Dis Model Mech 9(8):899–909CrossRefPubMedPubMedCentral Herve M, Ibrahim EC (2016) MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia. Dis Model Mech 9(8):899–909CrossRefPubMedPubMedCentral
99.
Zurück zum Zitat Herve M, Ibrahim EC (2017) Proteasome inhibitors to alleviate aberrant IKBKAP mRNA splicing and low IKAP/hELP1 synthesis in familial dysautonomia. Neurobiol Dis 103:113–122CrossRefPubMed Herve M, Ibrahim EC (2017) Proteasome inhibitors to alleviate aberrant IKBKAP mRNA splicing and low IKAP/hELP1 synthesis in familial dysautonomia. Neurobiol Dis 103:113–122CrossRefPubMed
100.
Zurück zum Zitat Manganelli F, Parisi S, Nolano M et al (2017) Novel mutations in dystonin provide clues to the pathomechanisms of HSAN-VI. Neurology 88:2132–2140CrossRefPubMedPubMedCentral Manganelli F, Parisi S, Nolano M et al (2017) Novel mutations in dystonin provide clues to the pathomechanisms of HSAN-VI. Neurology 88:2132–2140CrossRefPubMedPubMedCentral
101.
Zurück zum Zitat Lai FP, Lau ST, Wong JK et al (2017) Correction of Hirschsprung-associated mutations in human induced pluripotent stem cells via clustered regularly interspaced short palindromic repeats/Cas9, restores neural crest cell function. Gastroenterology 153(1):139–153CrossRefPubMed Lai FP, Lau ST, Wong JK et al (2017) Correction of Hirschsprung-associated mutations in human induced pluripotent stem cells via clustered regularly interspaced short palindromic repeats/Cas9, restores neural crest cell function. Gastroenterology 153(1):139–153CrossRefPubMed
102.
Zurück zum Zitat Lee G, Ramirez CN, Kim H et al (2012) Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat Biotechnol 30(12):1244–1248CrossRefPubMedPubMedCentral Lee G, Ramirez CN, Kim H et al (2012) Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat Biotechnol 30(12):1244–1248CrossRefPubMedPubMedCentral
103.
Zurück zum Zitat Finkbeiner SR, Zeng XL, Utama B et al (2012) Stem cell-derived human intestinal organoids as an infection model for rotaviruses. MBio 3(4):e00159–e00160CrossRefPubMedPubMedCentral Finkbeiner SR, Zeng XL, Utama B et al (2012) Stem cell-derived human intestinal organoids as an infection model for rotaviruses. MBio 3(4):e00159–e00160CrossRefPubMedPubMedCentral
104.
Zurück zum Zitat Leslie JL, Huang S, Opp JS et al (2015) Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun 83(1):138–145CrossRefPubMed Leslie JL, Huang S, Opp JS et al (2015) Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun 83(1):138–145CrossRefPubMed
105.
Zurück zum Zitat Forbester JL, Goulding D, Vallier L et al (2015) Interaction of Salmonella enterica Serovar typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun 83(7):2926–2934CrossRefPubMedPubMedCentral Forbester JL, Goulding D, Vallier L et al (2015) Interaction of Salmonella enterica Serovar typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun 83(7):2926–2934CrossRefPubMedPubMedCentral
106.
Zurück zum Zitat Sulkowski JP, Cooper JN, Congeni A et al (2014) Single-stage versus multi-stage pull-through for Hirschsprung’s disease: practice trends and outcomes in infants. J Pediatr Surg 49(11):1619–1625CrossRefPubMedPubMedCentral Sulkowski JP, Cooper JN, Congeni A et al (2014) Single-stage versus multi-stage pull-through for Hirschsprung’s disease: practice trends and outcomes in infants. J Pediatr Surg 49(11):1619–1625CrossRefPubMedPubMedCentral
107.
Zurück zum Zitat McCracken KW, Howell JC, Wells JM et al (2011) Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc 6(12):1920–1928CrossRefPubMedPubMedCentral McCracken KW, Howell JC, Wells JM et al (2011) Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc 6(12):1920–1928CrossRefPubMedPubMedCentral
108.
Zurück zum Zitat Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470(7332):105–109CrossRefPubMed Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470(7332):105–109CrossRefPubMed
109.
110.
Zurück zum Zitat Finkbeiner SR, Freeman JJ, Wieck MM et al (2015) Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids. Biol Open 4(11):1462–1472CrossRefPubMedPubMedCentral Finkbeiner SR, Freeman JJ, Wieck MM et al (2015) Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids. Biol Open 4(11):1462–1472CrossRefPubMedPubMedCentral
111.
Zurück zum Zitat Workman MJ, Mahe MM, Trisno S et al (2017) Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med 23(1):49–59CrossRefPubMed Workman MJ, Mahe MM, Trisno S et al (2017) Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med 23(1):49–59CrossRefPubMed
112.
Zurück zum Zitat Schlieve CR, Fowler KL, Thornton M et al (2017) Neural crest cell implantation restores enteric nervous system function and alters the gastrointestinal transcriptome in human tissue-engineered small intestine. Stem Cell Rep 9(3):883–896CrossRef Schlieve CR, Fowler KL, Thornton M et al (2017) Neural crest cell implantation restores enteric nervous system function and alters the gastrointestinal transcriptome in human tissue-engineered small intestine. Stem Cell Rep 9(3):883–896CrossRef
113.
Zurück zum Zitat Karagiannis P, Takahashi K, Saito M et al (2019) Induced pluripotent stem cells and their use in human models of disease and development. Physiol Rev 99(1):79–114CrossRefPubMed Karagiannis P, Takahashi K, Saito M et al (2019) Induced pluripotent stem cells and their use in human models of disease and development. Physiol Rev 99(1):79–114CrossRefPubMed
114.
Zurück zum Zitat Miller JD, Ganat YM, Kishinevsky S et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13(6):691–705CrossRefPubMedPubMedCentral Miller JD, Ganat YM, Kishinevsky S et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13(6):691–705CrossRefPubMedPubMedCentral
115.
Zurück zum Zitat Cornacchia D, Studer L (2017) Back and forth in time: directing age in iPSC-derived lineages. Brain Res 1656:14–26CrossRefPubMed Cornacchia D, Studer L (2017) Back and forth in time: directing age in iPSC-derived lineages. Brain Res 1656:14–26CrossRefPubMed
Metadaten
Titel
Induced pluripotent stem cells for disease modeling, cell therapy and drug discovery in genetic autonomic disorders: a review
verfasst von
Kenyi Saito-Diaz
Nadja Zeltner
Publikationsdatum
10.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Autonomic Research / Ausgabe 4/2019
Print ISSN: 0959-9851
Elektronische ISSN: 1619-1560
DOI
https://doi.org/10.1007/s10286-018-00587-4

Weitere Artikel der Ausgabe 4/2019

Clinical Autonomic Research 4/2019 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie