Skip to main content
Erschienen in: Inflammation 4/2017

08.04.2017 | ORIGINAL ARTICLE

Inflammatory and Oxidative Stress Markers in Experimental Allergic Asthma

verfasst von: Renata Tiscoski Nesi, Emanuel Kennedy-Feitosa, Manuella Lanzetti, Mariana Barcellos Ávila, Clarissa Bichara Magalhães, Walter Araújo Zin, Débora Souza Faffe, Luís Cristóvão Porto, Samuel Santos Valença

Erschienen in: Inflammation | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Ovalbumin-induced allergic lung inflammation (ALI) is a condition believed to be mediated by cytokines, extracellular matrix remodeling, and redox imbalance. In this study, we evaluated pulmonary function together with inflammatory markers as interleukin-4 (IL-4), myeloperoxidase (MPO), eosinophil cells, and redox markers in the lungs of BALB/c mice after ovalbumin (OVA) sensitization and challenge. Our results showed an increase in bronchial hyperresponsiveness stimulated by methacholine (Mch), inflammatory cell influx, especially eosinophils together with an increase of high mobility group box 1 (HMGB1) and altered lipid peroxidation (LP) and antioxidant defenses in the OVA group compared to the control group (p ≤ 0.5). Thus, we demonstrated that OVA-induced ALI altered redox status concomitantly with impaired lung function, which was associated with HMGB1 expression and proteolytic remodeling. Taken together all results found here, we may suggest HMGB1 is an important therapeutic target for asthma, once orchestrates the redox signaling, inflammation, and remodeling that contribute to the disease development.
Literatur
1.
Zurück zum Zitat Wurst, K.E., et al. 2016. Understanding asthma-chronic obstructive pulmonary disease overlap syndrome. Respiratory Medicine 110: 1–11.PubMedCrossRef Wurst, K.E., et al. 2016. Understanding asthma-chronic obstructive pulmonary disease overlap syndrome. Respiratory Medicine 110: 1–11.PubMedCrossRef
2.
Zurück zum Zitat Nielsen, M., C.B. Barnes, and C.S. Ulrik. 2015. Clinical characteristics of the asthma-COPD overlap syndrome—a systematic review. International Journal of Chronic Obstructive Pulmonary Disease 10: 1443–1454.PubMedPubMedCentral Nielsen, M., C.B. Barnes, and C.S. Ulrik. 2015. Clinical characteristics of the asthma-COPD overlap syndrome—a systematic review. International Journal of Chronic Obstructive Pulmonary Disease 10: 1443–1454.PubMedPubMedCentral
3.
Zurück zum Zitat Mims, J.W. 2015. Asthma: definitions and pathophysiology. Int Forum Allergy Rhinol 5 (Suppl 1): S2–S6.PubMedCrossRef Mims, J.W. 2015. Asthma: definitions and pathophysiology. Int Forum Allergy Rhinol 5 (Suppl 1): S2–S6.PubMedCrossRef
4.
Zurück zum Zitat Janson, C. 2010. The importance of airway remodelling in the natural course of asthma. The Clinical Respiratory Journal 4 (Suppl 1): 28–34.PubMedCrossRef Janson, C. 2010. The importance of airway remodelling in the natural course of asthma. The Clinical Respiratory Journal 4 (Suppl 1): 28–34.PubMedCrossRef
5.
Zurück zum Zitat Masoli, M., et al. 2004. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 59 (5): 469–478.PubMedCrossRef Masoli, M., et al. 2004. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 59 (5): 469–478.PubMedCrossRef
6.
Zurück zum Zitat Al-Harbi, N.O., et al. 2015. Oxidative airway inflammation leads to systemic and vascular oxidative stress in a murine model of allergic asthma. International Immunopharmacology 26 (1): 237–245.PubMedCrossRef Al-Harbi, N.O., et al. 2015. Oxidative airway inflammation leads to systemic and vascular oxidative stress in a murine model of allergic asthma. International Immunopharmacology 26 (1): 237–245.PubMedCrossRef
7.
Zurück zum Zitat Fatani, S.H. 2014. Biomarkers of oxidative stress in acute and chronic bronchial asthma. The Journal of Asthma 51 (6): 578–584.PubMedCrossRef Fatani, S.H. 2014. Biomarkers of oxidative stress in acute and chronic bronchial asthma. The Journal of Asthma 51 (6): 578–584.PubMedCrossRef
9.
Zurück zum Zitat Comhair, S.A., and S.C. Erzurum. 2010. Redox control of asthma: molecular mechanisms and therapeutic opportunities. Antioxidants & Redox Signaling 12 (1): 93–124.CrossRef Comhair, S.A., and S.C. Erzurum. 2010. Redox control of asthma: molecular mechanisms and therapeutic opportunities. Antioxidants & Redox Signaling 12 (1): 93–124.CrossRef
10.
Zurück zum Zitat Abreu, S.C., et al. 2013. Bone marrow mononuclear cell therapy in experimental allergic asthma: intratracheal versus intravenous administration. Respiratory Physiology & Neurobiology 185 (3): 615–624.CrossRef Abreu, S.C., et al. 2013. Bone marrow mononuclear cell therapy in experimental allergic asthma: intratracheal versus intravenous administration. Respiratory Physiology & Neurobiology 185 (3): 615–624.CrossRef
11.
Zurück zum Zitat Antunes, M.A., et al. 2009. Different strains of mice present distinct lung tissue mechanics and extracellular matrix composition in a model of chronic allergic asthma. Respiratory Physiology & Neurobiology 165 (2–3): 202–207.CrossRef Antunes, M.A., et al. 2009. Different strains of mice present distinct lung tissue mechanics and extracellular matrix composition in a model of chronic allergic asthma. Respiratory Physiology & Neurobiology 165 (2–3): 202–207.CrossRef
12.
Zurück zum Zitat Antunes, M.A., et al. 2010. Sex-specific lung remodeling and inflammation changes in experimental allergic asthma. J Appl Physiol (1985) 109 (3): 855–863.CrossRef Antunes, M.A., et al. 2010. Sex-specific lung remodeling and inflammation changes in experimental allergic asthma. J Appl Physiol (1985) 109 (3): 855–863.CrossRef
13.
Zurück zum Zitat Silva, P.L., et al. 2008. Impact of lung remodelling on respiratory mechanics in a model of severe allergic inflammation. Respiratory Physiology & Neurobiology 160 (3): 239–248.CrossRef Silva, P.L., et al. 2008. Impact of lung remodelling on respiratory mechanics in a model of severe allergic inflammation. Respiratory Physiology & Neurobiology 160 (3): 239–248.CrossRef
14.
Zurück zum Zitat Xisto, D.G., et al. 2005. Lung parenchyma remodeling in a murine model of chronic allergic inflammation. American Journal of Respiratory and Critical Care Medicine 171 (8): 829–837.PubMedCrossRef Xisto, D.G., et al. 2005. Lung parenchyma remodeling in a murine model of chronic allergic inflammation. American Journal of Respiratory and Critical Care Medicine 171 (8): 829–837.PubMedCrossRef
15.
Zurück zum Zitat Lee, C.C., et al. 2013. Inhibition of high-mobility group box 1 in lung reduced airway inflammation and remodeling in a mouse model of chronic asthma. Biochemical Pharmacology 86 (7): 940–949.PubMedCrossRef Lee, C.C., et al. 2013. Inhibition of high-mobility group box 1 in lung reduced airway inflammation and remodeling in a mouse model of chronic asthma. Biochemical Pharmacology 86 (7): 940–949.PubMedCrossRef
16.
Zurück zum Zitat Shim, E.J., et al. 2012. The role of high-mobility group box-1 (HMGB1) in the pathogenesis of asthma. Clinical and Experimental Allergy 42 (6): 958–965.PubMedCrossRef Shim, E.J., et al. 2012. The role of high-mobility group box-1 (HMGB1) in the pathogenesis of asthma. Clinical and Experimental Allergy 42 (6): 958–965.PubMedCrossRef
17.
Zurück zum Zitat Zhou, Y., et al. 2012. HMGB1 and RAGE levels in induced sputum correlate with asthma severity and neutrophil percentage. Human Immunology 73 (11): 1171–1174.PubMedCrossRef Zhou, Y., et al. 2012. HMGB1 and RAGE levels in induced sputum correlate with asthma severity and neutrophil percentage. Human Immunology 73 (11): 1171–1174.PubMedCrossRef
18.
Zurück zum Zitat Lima, C., et al. 2002. Eosinophilic inflammation and airway hyper-responsiveness are profoundly inhibited by a helminth (Ascaris suum) extract in a murine model of asthma. Clinical and Experimental Allergy 32 (11): 1659–1666.PubMedCrossRef Lima, C., et al. 2002. Eosinophilic inflammation and airway hyper-responsiveness are profoundly inhibited by a helminth (Ascaris suum) extract in a murine model of asthma. Clinical and Experimental Allergy 32 (11): 1659–1666.PubMedCrossRef
19.
Zurück zum Zitat Suzuki, K., et al. 1983. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Analytical Biochemistry 132 (2): 345–352.PubMedCrossRef Suzuki, K., et al. 1983. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Analytical Biochemistry 132 (2): 345–352.PubMedCrossRef
20.
Zurück zum Zitat Bannister, J.V., and L. Calabrese. 1987. Assays for superoxide dismutase. Methods of Biochemical Analysis 32: 279–312.PubMedCrossRef Bannister, J.V., and L. Calabrese. 1987. Assays for superoxide dismutase. Methods of Biochemical Analysis 32: 279–312.PubMedCrossRef
22.
Zurück zum Zitat Flohe, L., and W.A. Gunzler. 1984. Assays of glutathione peroxidase. Methods in Enzymology 105: 114–121.PubMedCrossRef Flohe, L., and W.A. Gunzler. 1984. Assays of glutathione peroxidase. Methods in Enzymology 105: 114–121.PubMedCrossRef
23.
Zurück zum Zitat Draper, H.H., and M. Hadley. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods in Enzymology 186: 421–431.PubMedCrossRef Draper, H.H., and M. Hadley. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods in Enzymology 186: 421–431.PubMedCrossRef
24.
Zurück zum Zitat Green, L.C., et al. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry 126 (1): 131–138.PubMedCrossRef Green, L.C., et al. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry 126 (1): 131–138.PubMedCrossRef
25.
Zurück zum Zitat Niu, R., et al. 2000. Quantitative analysis of matrix metalloproteinases-2 and -9, and their tissue inhibitors-1 and -2 in human placenta throughout gestation. Life Sciences 66 (12): 1127–1137.PubMedCrossRef Niu, R., et al. 2000. Quantitative analysis of matrix metalloproteinases-2 and -9, and their tissue inhibitors-1 and -2 in human placenta throughout gestation. Life Sciences 66 (12): 1127–1137.PubMedCrossRef
26.
Zurück zum Zitat Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9 (7): 671–675.PubMedCrossRef Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9 (7): 671–675.PubMedCrossRef
27.
Zurück zum Zitat Bates, J.H., et al. 1988. Interrupter resistance elucidated by alveolar pressure measurement in open-chest normal dogs. J Appl Physiol (1985) 65 (1): 408–414. Bates, J.H., et al. 1988. Interrupter resistance elucidated by alveolar pressure measurement in open-chest normal dogs. J Appl Physiol (1985) 65 (1): 408–414.
29.
Zurück zum Zitat Monteseirin, J. 2009. Neutrophils and asthma. Journal of Investigational Allergology & Clinical Immunology 19 (5): 340–354. Monteseirin, J. 2009. Neutrophils and asthma. Journal of Investigational Allergology & Clinical Immunology 19 (5): 340–354.
30.
Zurück zum Zitat Monteseirin, J., et al. 2001. IgE-dependent release of myeloperoxidase by neutrophils from allergic patients. Clinical and Experimental Allergy 31 (6): 889–892.PubMedCrossRef Monteseirin, J., et al. 2001. IgE-dependent release of myeloperoxidase by neutrophils from allergic patients. Clinical and Experimental Allergy 31 (6): 889–892.PubMedCrossRef
31.
Zurück zum Zitat Jatakanon, A., et al. 1999. Neutrophilic inflammation in severe persistent asthma. American Journal of Respiratory and Critical Care Medicine 160 (5 Pt 1): 1532–1539.PubMedCrossRef Jatakanon, A., et al. 1999. Neutrophilic inflammation in severe persistent asthma. American Journal of Respiratory and Critical Care Medicine 160 (5 Pt 1): 1532–1539.PubMedCrossRef
32.
Zurück zum Zitat Lugogo, N.L., et al. 2012. Alveolar macrophages from overweight/obese subjects with asthma demonstrate a proinflammatory phenotype. American Journal of Respiratory and Critical Care Medicine 186 (5): 404–411.PubMedPubMedCentralCrossRef Lugogo, N.L., et al. 2012. Alveolar macrophages from overweight/obese subjects with asthma demonstrate a proinflammatory phenotype. American Journal of Respiratory and Critical Care Medicine 186 (5): 404–411.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Molet, S., et al. 2005. Increase in macrophage elastase (MMP-12) in lungs from patients with chronic obstructive pulmonary disease. Inflammation Research 54 (1): 31–36.PubMedCrossRef Molet, S., et al. 2005. Increase in macrophage elastase (MMP-12) in lungs from patients with chronic obstructive pulmonary disease. Inflammation Research 54 (1): 31–36.PubMedCrossRef
34.
Zurück zum Zitat Donnelly, L.E., and P.J. Barnes. 2012. Defective phagocytosis in airways disease. Chest 141 (4): 1055–1062.PubMedCrossRef Donnelly, L.E., and P.J. Barnes. 2012. Defective phagocytosis in airways disease. Chest 141 (4): 1055–1062.PubMedCrossRef
35.
Zurück zum Zitat Marone, G., et al. 1997. Molecular and cellular biology of mast cells and basophils. International Archives of Allergy and Immunology 114 (3): 207–217.PubMedCrossRef Marone, G., et al. 1997. Molecular and cellular biology of mast cells and basophils. International Archives of Allergy and Immunology 114 (3): 207–217.PubMedCrossRef
36.
Zurück zum Zitat Williams, C.M., and S.J. Galli. 2000. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. The Journal of Experimental Medicine 192 (3): 455–462.PubMedPubMedCentralCrossRef Williams, C.M., and S.J. Galli. 2000. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. The Journal of Experimental Medicine 192 (3): 455–462.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Haraguchi, M., S. Shimura, and K. Shirato. 1999. Morphometric analysis of bronchial cartilage in chronic obstructive pulmonary disease and bronchial asthma. American Journal of Respiratory and Critical Care Medicine 159 (3): 1005–1013.PubMedCrossRef Haraguchi, M., S. Shimura, and K. Shirato. 1999. Morphometric analysis of bronchial cartilage in chronic obstructive pulmonary disease and bronchial asthma. American Journal of Respiratory and Critical Care Medicine 159 (3): 1005–1013.PubMedCrossRef
38.
Zurück zum Zitat Mayr, S.I., et al. 2002. IgE-dependent mast cell activation potentiates airway responses in murine asthma models. Journal of Immunology 169 (4): 2061–2068.CrossRef Mayr, S.I., et al. 2002. IgE-dependent mast cell activation potentiates airway responses in murine asthma models. Journal of Immunology 169 (4): 2061–2068.CrossRef
39.
Zurück zum Zitat KleinJan, A. 2016. Airway inflammation in asthma: key players beyond the Th2 pathway. Current Opinion in Pulmonary Medicine 22 (1): 46–52.PubMedCrossRef KleinJan, A. 2016. Airway inflammation in asthma: key players beyond the Th2 pathway. Current Opinion in Pulmonary Medicine 22 (1): 46–52.PubMedCrossRef
40.
Zurück zum Zitat Macedo-Soares, M.F., et al. 2004. Lung eosinophilic inflammation and airway hyperreactivity are enhanced by murine anaphylactic, but not nonanaphylactic, IgG1 antibodies. The Journal of Allergy and Clinical Immunology 114 (1): 97–104.PubMedCrossRef Macedo-Soares, M.F., et al. 2004. Lung eosinophilic inflammation and airway hyperreactivity are enhanced by murine anaphylactic, but not nonanaphylactic, IgG1 antibodies. The Journal of Allergy and Clinical Immunology 114 (1): 97–104.PubMedCrossRef
41.
Zurück zum Zitat Olsen, P.C., et al. 2011. Lidocaine-derivative JMF2-1 prevents ovalbumin-induced airway inflammation by regulating the function and survival of T cells. Clinical and Experimental Allergy 41 (2): 250–259.PubMedCrossRef Olsen, P.C., et al. 2011. Lidocaine-derivative JMF2-1 prevents ovalbumin-induced airway inflammation by regulating the function and survival of T cells. Clinical and Experimental Allergy 41 (2): 250–259.PubMedCrossRef
42.
Zurück zum Zitat Silva, P.M., et al. 2001. Modulation of eotaxin formation and eosinophil migration by selective inhibitors of phosphodiesterase type 4 isoenzyme. British Journal of Pharmacology 134 (2): 283–294.PubMedPubMedCentralCrossRef Silva, P.M., et al. 2001. Modulation of eotaxin formation and eosinophil migration by selective inhibitors of phosphodiesterase type 4 isoenzyme. British Journal of Pharmacology 134 (2): 283–294.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Neves, J.S., et al. 2008. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proceedings of the National Academy of Sciences of the United States of America 105 (47): 18478–18483.PubMedPubMedCentralCrossRef Neves, J.S., et al. 2008. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proceedings of the National Academy of Sciences of the United States of America 105 (47): 18478–18483.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Neves, J.S., and P.F. Weller. 2009. Functional extracellular eosinophil granules: novel implications in eosinophil immunobiology. Current Opinion in Immunology 21 (6): 694–699.PubMedPubMedCentralCrossRef Neves, J.S., and P.F. Weller. 2009. Functional extracellular eosinophil granules: novel implications in eosinophil immunobiology. Current Opinion in Immunology 21 (6): 694–699.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Perez, S.A., et al. 1993. Eosinophil granulocyte proliferation induced by an intermediate factor generated in the pleural cavity of rats injected with platelet-activating factor-acether. International Archives of Allergy and Immunology 102 (4): 368–374.PubMedCrossRef Perez, S.A., et al. 1993. Eosinophil granulocyte proliferation induced by an intermediate factor generated in the pleural cavity of rats injected with platelet-activating factor-acether. International Archives of Allergy and Immunology 102 (4): 368–374.PubMedCrossRef
46.
Zurück zum Zitat Andersson, U., and H. Erlandsson-Harris. 2004. HMGB1 is a potent trigger of arthritis. Journal of Internal Medicine 255 (3): 344–350.PubMedCrossRef Andersson, U., and H. Erlandsson-Harris. 2004. HMGB1 is a potent trigger of arthritis. Journal of Internal Medicine 255 (3): 344–350.PubMedCrossRef
47.
Zurück zum Zitat Inoue, K., et al. 2007. HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques. Cardiovascular Pathology 16 (3): 136–143.PubMedCrossRef Inoue, K., et al. 2007. HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques. Cardiovascular Pathology 16 (3): 136–143.PubMedCrossRef
48.
Zurück zum Zitat Andersson, U., and K.J. Tracey. 2003. HMGB1 in sepsis. Scandinavian Journal of Infectious Diseases 35 (9): 577–584.PubMedCrossRef Andersson, U., and K.J. Tracey. 2003. HMGB1 in sepsis. Scandinavian Journal of Infectious Diseases 35 (9): 577–584.PubMedCrossRef
49.
50.
Zurück zum Zitat Hou, C., et al. 2015. HMGB1 contributes to allergen-induced airway remodeling in a murine model of chronic asthma by modulating airway inflammation and activating lung fibroblasts. Cellular & Molecular Immunology 12 (4): 409–423.CrossRef Hou, C., et al. 2015. HMGB1 contributes to allergen-induced airway remodeling in a murine model of chronic asthma by modulating airway inflammation and activating lung fibroblasts. Cellular & Molecular Immunology 12 (4): 409–423.CrossRef
51.
Zurück zum Zitat Ma, L., et al. 2015. High mobility group box 1: a novel mediator of Th2-type response-induced airway inflammation of acute allergic asthma. J Thorac Dis 7 (10): 1732–1741.PubMedPubMedCentral Ma, L., et al. 2015. High mobility group box 1: a novel mediator of Th2-type response-induced airway inflammation of acute allergic asthma. J Thorac Dis 7 (10): 1732–1741.PubMedPubMedCentral
52.
Zurück zum Zitat Henricks, P.A., and F.P. Nijkamp. 2001. Reactive oxygen species as mediators in asthma. Pulmonary Pharmacology & Therapeutics 14 (6): 409–420.CrossRef Henricks, P.A., and F.P. Nijkamp. 2001. Reactive oxygen species as mediators in asthma. Pulmonary Pharmacology & Therapeutics 14 (6): 409–420.CrossRef
53.
Zurück zum Zitat Zuo, L., et al. 2013. Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma. Molecular Immunology 56 (1–2): 57–63.PubMedCrossRef Zuo, L., et al. 2013. Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma. Molecular Immunology 56 (1–2): 57–63.PubMedCrossRef
54.
Zurück zum Zitat Ma, Y., et al. 2016. Morin attenuates ovalbumin-induced airway inflammation by modulating oxidative stress-responsive MAPK signaling. Oxidative Medicine and Cellular Longevity 2016: 5843672.PubMed Ma, Y., et al. 2016. Morin attenuates ovalbumin-induced airway inflammation by modulating oxidative stress-responsive MAPK signaling. Oxidative Medicine and Cellular Longevity 2016: 5843672.PubMed
55.
Zurück zum Zitat Nadeem, A., et al. 2003. Increased oxidative stress and altered levels of antioxidants in asthma. The Journal of Allergy and Clinical Immunology 111 (1): 72–78.PubMedCrossRef Nadeem, A., et al. 2003. Increased oxidative stress and altered levels of antioxidants in asthma. The Journal of Allergy and Clinical Immunology 111 (1): 72–78.PubMedCrossRef
56.
Zurück zum Zitat Rahman, I., et al. 1996. Systemic oxidative stress in asthma, COPD, and smokers. American Journal of Respiratory and Critical Care Medicine 154 (4 Pt 1): 1055–1060.PubMedCrossRef Rahman, I., et al. 1996. Systemic oxidative stress in asthma, COPD, and smokers. American Journal of Respiratory and Critical Care Medicine 154 (4 Pt 1): 1055–1060.PubMedCrossRef
57.
Zurück zum Zitat Smith, L.J., et al. 1997. Reduced superoxide dismutase in lung cells of patients with asthma. Free Radical Biology & Medicine 22 (7): 1301–1307.CrossRef Smith, L.J., et al. 1997. Reduced superoxide dismutase in lung cells of patients with asthma. Free Radical Biology & Medicine 22 (7): 1301–1307.CrossRef
58.
Zurück zum Zitat Comhair, S.A., et al. 2005. Superoxide dismutase inactivation in pathophysiology of asthmatic airway remodeling and reactivity. The American Journal of Pathology 166 (3): 663–674.PubMedPubMedCentralCrossRef Comhair, S.A., et al. 2005. Superoxide dismutase inactivation in pathophysiology of asthmatic airway remodeling and reactivity. The American Journal of Pathology 166 (3): 663–674.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Ahmad, A., M. Shameem, and Q. Husain. 2012. Relation of oxidant-antioxidant imbalance with disease progression in patients with asthma. Ann Thorac Med 7 (4): 226–232.PubMedPubMedCentralCrossRef Ahmad, A., M. Shameem, and Q. Husain. 2012. Relation of oxidant-antioxidant imbalance with disease progression in patients with asthma. Ann Thorac Med 7 (4): 226–232.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Jacobson, G.A., K.C. Yee, and C.H. Ng. 2007. Elevated plasma glutathione peroxidase concentration in acute severe asthma: comparison with plasma glutathione peroxidase activity, selenium and malondialdehyde. Scandinavian Journal of Clinical and Laboratory Investigation 67 (4): 423–430.PubMedCrossRef Jacobson, G.A., K.C. Yee, and C.H. Ng. 2007. Elevated plasma glutathione peroxidase concentration in acute severe asthma: comparison with plasma glutathione peroxidase activity, selenium and malondialdehyde. Scandinavian Journal of Clinical and Laboratory Investigation 67 (4): 423–430.PubMedCrossRef
61.
Zurück zum Zitat Ganas, K., et al. 2001. Total nitrite/nitrate in expired breath condensate of patients with asthma. Respiratory Medicine 95 (8): 649–654.PubMedCrossRef Ganas, K., et al. 2001. Total nitrite/nitrate in expired breath condensate of patients with asthma. Respiratory Medicine 95 (8): 649–654.PubMedCrossRef
62.
Zurück zum Zitat Nadif, R., et al. 2014. Exhaled nitric oxide, nitrite/nitrate levels, allergy, rhinitis and asthma in the EGEA study. The European Respiratory Journal 44 (2): 351–360.PubMedCrossRef Nadif, R., et al. 2014. Exhaled nitric oxide, nitrite/nitrate levels, allergy, rhinitis and asthma in the EGEA study. The European Respiratory Journal 44 (2): 351–360.PubMedCrossRef
63.
Zurück zum Zitat Rihak, V., et al. 2010. Nitrite in exhaled breath condensate as a marker of nitrossative stress in the airways of patients with asthma, COPD, and idiopathic pulmonary fibrosis. Journal of Clinical Laboratory Analysis 24 (5): 317–322.PubMedCrossRef Rihak, V., et al. 2010. Nitrite in exhaled breath condensate as a marker of nitrossative stress in the airways of patients with asthma, COPD, and idiopathic pulmonary fibrosis. Journal of Clinical Laboratory Analysis 24 (5): 317–322.PubMedCrossRef
64.
Zurück zum Zitat Payne, D.N., et al. 2001. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. American Journal of Respiratory and Critical Care Medicine 164 (8 Pt 1): 1376–1381.PubMedCrossRef Payne, D.N., et al. 2001. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. American Journal of Respiratory and Critical Care Medicine 164 (8 Pt 1): 1376–1381.PubMedCrossRef
65.
Zurück zum Zitat Malinovschi, A., et al. 2016. Simultaneously increased fraction of exhaled nitric oxide levels and blood eosinophil counts relate to increased asthma morbidity. The Journal of Allergy and Clinical Immunology 138 (5): 1301–1308.PubMedCrossRef Malinovschi, A., et al. 2016. Simultaneously increased fraction of exhaled nitric oxide levels and blood eosinophil counts relate to increased asthma morbidity. The Journal of Allergy and Clinical Immunology 138 (5): 1301–1308.PubMedCrossRef
66.
Zurück zum Zitat Watanabe, T., et al. 2011. Increased levels of HMGB-1 and endogenous secretory RAGE in induced sputum from asthmatic patients. Respiratory Medicine 105 (4): 519–525.PubMedCrossRef Watanabe, T., et al. 2011. Increased levels of HMGB-1 and endogenous secretory RAGE in induced sputum from asthmatic patients. Respiratory Medicine 105 (4): 519–525.PubMedCrossRef
67.
Zurück zum Zitat Jeffery, P.K. 2001. Remodeling in asthma and chronic obstructive lung disease. American Journal of Respiratory and Critical Care Medicine 164 (10 Pt 2): S28–S38.PubMedCrossRef Jeffery, P.K. 2001. Remodeling in asthma and chronic obstructive lung disease. American Journal of Respiratory and Critical Care Medicine 164 (10 Pt 2): S28–S38.PubMedCrossRef
68.
Zurück zum Zitat Kumagai, K., et al. 1999. Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma. Journal of Immunology 162 (7): 4212–4219. Kumagai, K., et al. 1999. Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma. Journal of Immunology 162 (7): 4212–4219.
69.
Zurück zum Zitat Matsuse, T., et al. 1991. Capsaicin inhibits airway hyperresponsiveness but not lipoxygenase activity or eosinophilia after repeated aerosolized antigen in guinea pigs. The American Review of Respiratory Disease 144 (2): 368–372.PubMedCrossRef Matsuse, T., et al. 1991. Capsaicin inhibits airway hyperresponsiveness but not lipoxygenase activity or eosinophilia after repeated aerosolized antigen in guinea pigs. The American Review of Respiratory Disease 144 (2): 368–372.PubMedCrossRef
70.
Zurück zum Zitat Prikk, K., et al. 2002. Airway obstruction correlates with collagenase-2 (MMP-8) expression and activation in bronchial asthma. Laboratory Investigation 82 (11): 1535–1545.PubMedCrossRef Prikk, K., et al. 2002. Airway obstruction correlates with collagenase-2 (MMP-8) expression and activation in bronchial asthma. Laboratory Investigation 82 (11): 1535–1545.PubMedCrossRef
71.
Zurück zum Zitat Cook-Mills, J.M. 2006. Hydrogen peroxide activation of endothelial cell-associated MMPs during VCAM-1-dependent leukocyte migration. Cellular and Molecular Biology (Noisy-le-Grand, France) 52 (4): 8–16. Cook-Mills, J.M. 2006. Hydrogen peroxide activation of endothelial cell-associated MMPs during VCAM-1-dependent leukocyte migration. Cellular and Molecular Biology (Noisy-le-Grand, France) 52 (4): 8–16.
72.
Zurück zum Zitat Trifilieff, A., et al. 2002. Pharmacological profile of PKF242-484 and PKF241-466, novel dual inhibitors of TNF-alpha converting enzyme and matrix metalloproteinases, in models of airway inflammation. British Journal of Pharmacology 135 (7): 1655–1664.PubMedPubMedCentralCrossRef Trifilieff, A., et al. 2002. Pharmacological profile of PKF242-484 and PKF241-466, novel dual inhibitors of TNF-alpha converting enzyme and matrix metalloproteinases, in models of airway inflammation. British Journal of Pharmacology 135 (7): 1655–1664.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Gordon, J.R., et al. 2005. CD8 alpha+, but not CD8 alpha-, dendritic cells tolerize Th2 responses via contact-dependent and -independent mechanisms, and reverse airway hyperresponsiveness, Th2, and eosinophil responses in a mouse model of asthma. Journal of Immunology 175 (3): 1516–1522.CrossRef Gordon, J.R., et al. 2005. CD8 alpha+, but not CD8 alpha-, dendritic cells tolerize Th2 responses via contact-dependent and -independent mechanisms, and reverse airway hyperresponsiveness, Th2, and eosinophil responses in a mouse model of asthma. Journal of Immunology 175 (3): 1516–1522.CrossRef
74.
Zurück zum Zitat Ferguson, A.C., M. Whitelaw, and H. Brown. 1992. Correlation of bronchial eosinophil and mast cell activation with bronchial hyperresponsiveness in children with asthma. The Journal of Allergy and Clinical Immunology 90 (4 Pt 1): 609–613.PubMedCrossRef Ferguson, A.C., M. Whitelaw, and H. Brown. 1992. Correlation of bronchial eosinophil and mast cell activation with bronchial hyperresponsiveness in children with asthma. The Journal of Allergy and Clinical Immunology 90 (4 Pt 1): 609–613.PubMedCrossRef
75.
Zurück zum Zitat Ok, I.S., et al. 2009. Pinellia ternata, Citrus reticulata, and their combinational prescription inhibit eosinophil infiltration and airway hyperresponsiveness by suppressing CCR3+ and Th2 cytokines production in the ovalbumin-induced asthma model. Mediators of Inflammation 2009: 413270.PubMedPubMedCentralCrossRef Ok, I.S., et al. 2009. Pinellia ternata, Citrus reticulata, and their combinational prescription inhibit eosinophil infiltration and airway hyperresponsiveness by suppressing CCR3+ and Th2 cytokines production in the ovalbumin-induced asthma model. Mediators of Inflammation 2009: 413270.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Iwashita, H., et al. 2006. Role of eosinophil chemotactic factor by T lymphocytes on airway hyperresponsiveness in a murine model of allergic asthma. American Journal of Respiratory Cell and Molecular Biology 35 (1): 103–109.PubMedCrossRef Iwashita, H., et al. 2006. Role of eosinophil chemotactic factor by T lymphocytes on airway hyperresponsiveness in a murine model of allergic asthma. American Journal of Respiratory Cell and Molecular Biology 35 (1): 103–109.PubMedCrossRef
77.
Zurück zum Zitat Martin, L.B., et al. 1996. Eosinophils in allergy: role in disease, degranulation, and cytokines. International Archives of Allergy and Immunology 109 (3): 207–215.PubMedCrossRef Martin, L.B., et al. 1996. Eosinophils in allergy: role in disease, degranulation, and cytokines. International Archives of Allergy and Immunology 109 (3): 207–215.PubMedCrossRef
Metadaten
Titel
Inflammatory and Oxidative Stress Markers in Experimental Allergic Asthma
verfasst von
Renata Tiscoski Nesi
Emanuel Kennedy-Feitosa
Manuella Lanzetti
Mariana Barcellos Ávila
Clarissa Bichara Magalhães
Walter Araújo Zin
Débora Souza Faffe
Luís Cristóvão Porto
Samuel Santos Valença
Publikationsdatum
08.04.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0560-2

Weitere Artikel der Ausgabe 4/2017

Inflammation 4/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.