Skip to main content
Erschienen in: BMC Gastroenterology 1/2017

Open Access 01.12.2017 | Research article

Inflammatory Bowel Disease (IBD) pharmacotherapy and the risk of serious infection: a systematic review and network meta-analysis

verfasst von: Chelle L. Wheat, Cynthia W. Ko, Kindra Clark-Snustad, David Grembowski, Timothy A. Thornton, Beth Devine

Erschienen in: BMC Gastroenterology | Ausgabe 1/2017

Abstract

Background

The magnitude of risk of serious infections due to available medical therapies of inflammatory bowel disease (IBD) remains controversial. We conducted a systematic review and network meta-analysis of the existing IBD literature to estimate the risk of serious infection in adult IBD patients associated with available medical therapies.

Methods

Studies were identified by a literature search of PubMed, Cochrane Library, Medline, Web of Science, Scopus, EMBASE, and ProQuest Dissertations and Theses. Randomized controlled trials comparing IBD medical therapies with no restrictions on language, country of origin, or publication date were included. A network meta-analysis was used to pool direct between treatment comparisons with indirect trial evidence while preserving randomization.

Results

Thirty-nine articles fulfilled the inclusion criteria; one study was excluded from the analysis due to disconnectedness. We found no evidence of increased odds of serious infection in comparisons of the different treatment strategies against each other, including combination therapy with a biologic and immunomodulator compared to biologic monotherapy. Similar results were seen in the comparisons between the newer biologics (e.g. vedolizumab) and the anti-tumor necrosis factor agents.

Conclusions

No treatment strategy was found to confer a higher risk of serious infection than another, although wide confidence intervals indicate that a clinically significant difference cannot be excluded. These findings provide a better understanding of the risk of serious infection from IBD pharmacotherapy in the adult population.

Prospero registration

The protocol for this systematic review was registered on PROSPERO (CRD42014013497).

Background

Inflammatory bowel disease (IBD) typically requires lifelong medical care for adequate disease management. Medical therapies for IBD include anti-inflammatories such as mesalamine or sulfasalazine, antibiotics, corticosteroids, immunomodulators, and biologic medications, all of which may be used alone or in combination. Each treatment strategy carries the risk of adverse effects and may not adequately manage the patient’s disease.
Corticosteroids, immunomodulators, and biologic medications in particular can have significant adverse effects, possibly including a higher risk of infection. Reactivation of latent infections, such as tuberculosis, is of specific concern with biologic medications [1]. Previous estimates of the proportion of IBD patients with any infection (not limited to serious) following treatment with these medications range from 0.5-30.0%; however there is inconsistency in the reporting of infectious outcomes in the published literature, making the true incidence of infection difficult to determine [2]. In addition, there is conflicting evidence as to whether combinations of therapies modify the risk for serious infection [36]. Furthermore, serious infections in particular are relatively rare, and large cohorts of treated patients are required to determine the incidence for specific medications [2]. Lastly, many of these therapies have never been compared directly to each other in the existing literature.
Understanding the risk for infections associated with IBD pharmacotherapy is a crucial consideration for providers and patients. The aim of this study is to estimate the risk of serious infection from currently available medical therapies in adult IBD patients through a systematic review and network meta-analysis of randomized controlled trials (RCTs). Unique to this study, we compare the risks of serious infection for the different IBD therapies and combinations of therapies, even in situations where medications have not been directly compared in previous studies.

Methods

A detailed literature search was conducted to identify all published and unpublished RCTs of IBD pharmacotherapies in adult patients. Due to the heterogeneity in treatment and outcome reporting, observational studies (i.e. cohort, case-control) were excluded from this analysis. The classes of medications included in the search were corticosteroids (e.g. budesonide, prednisone); immunomodulators (e.g. azathioprine, 6-mercaptopurine, methotrexate); anti-inflammatories (e.g. mesalamine, sulfasalazine); antibiotics (e.g. rifaximin); and biologics (e.g. infliximab, adalimumab, certolizumab pegol, golimumab, ustekinumab, vedolizumab). We searched the PubMed, Cochrane Library, Medline, Web of Science, Scopus, EMBASE, and ProQuest Dissertations and Theses databases. Reference lists of published articles were hand searched for secondary sources, and experts in the field contacted for unpublished data. Furthermore, ClinicalTrials.gov, the WHO International Clinical Trial Registry, and scientific information packets of approved IBD pharmacotherapies were scrutinized for additional information sources. No restrictions on language, country of origin, or publication date were used. The duration of investigational treatment and follow-up were required to be at least six weeks each. The date of the final literature search was 17 March 2015. Figure 1 outlines the literature search (Additional file 1: Table S1). The protocol for this systematic review was registered on PROSPERO (CRD42014013497) and can be accessed at: http://​www.​crd.​york.​ac.​uk/​PROSPERO/​display_​record.​asp?​ID=​CRD42014013497

Inclusion and exclusion criteria

All RCTs that reported odds ratios (ORs) or provided information sufficient to accurately calculate ORs for serious infection in adult IBD patients were included. Serious infections were defined per the US Food and Drug Administration’s guidelines [7] as one that results in death, is life-threatening, results in hospitalization or prolongs hospitalization, causes disability or permanent damage, or is considered by the reporting investigator as an event that requires medical or surgical intervention to avoid one of these specified outcomes. Studies focusing on pediatric populations, those with incomplete reporting of serious adverse events, those without a comparison group (open-label trials), those of treatment duration and length of follow up less than 6 weeks each, and those not written in English and unable to be translated to English were excluded. If publications reported duplicate data on a population, only the publication with the longest follow-up period was included.

Data collection and quality assessment

Two independent reviewers (CW and KCS) examined each article for inclusion according to the eligibility criteria. Any disagreement was resolved through discussion and consensus. Thirty-nine articles fulfilled the inclusion criteria (Fig. 1) [5, 845].
We retrieved demographic (where possible) and outcome data for each included article using standardized forms. Individual studies were assigned a bias risk rating using the Cochrane Collaboration’s Risk of Bias Assessment Tool [46]. The strength of evidence was assessed utilizing The Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach specifically designed for network meta-analysis [47].

Statistical analysis

A network meta-analysis (NMA) technique, also known as mixed treatment comparison methods, was used to compare the risk of serious infection associated with different medications used to treat IBD. This methodological framework allowed us to construct a network of interconnected RCTs from which we could make indirect comparisons between treatments in two trials that have one treatment in common, even in situations where treatments have not been directly compared [4850]. For example, in trial 1 treatment A is compared to treatment B, and in trial 2 treatment B is compared to treatment C. A NMA allows us to make a valid evaluation of treatment A and treatment C although these two therapies were not directly compared in a single study. Through the use of a NMA, we were able to preserve the within trial randomized treatment comparisons, as well as add information from all of the available indirect comparisons between therapies [4850].
The logarithm of the odds ratio (OR) for each trial and its standard error (SE) were calculated in accordance with the intention to treat principle (ITT) and used in the NMA. Each arm of the individual trials was classified according to its primary treatment strategy, and no adjustments were made for variable medication dosage. A fixed value of 0.5 was added where no events were observed in one or both groups of an individual study in order to avoid computational errors. A multivariate random-effects logistic regression model using restricted maximum likelihood (REML) was used to combine estimates. Statistical analysis was performed using Stata SE version 14 (StataCorp, College Station, TX). We performed the NMA using the network suite of commands published by White [51]. Graphs were generated using the published Stata routines of Chaimani [52].
A crucial consideration in any NMA is the evaluation of inconsistency, or incoherence. Indirect evidence can be combined in large samples if the assumption is made that across treatment comparisons, there are no important differences in the types of studies contributing to the comparisons, or in other words that there is consistency [53]. We assessed inconsistency using a design-by-treatment interaction model, which allows for the global testing for the presence of inconsistency in NMAs with multi-arm studies [53]. In addition to inconsistency, the transitivity assumption is important to assess in a NMA. The transitivity assumption asserts that it is equally likely that any patient in the network could have been given any of the other treatments in the network [47]. As all treatment options were randomized the transitivity assumption is satisfied. Visual assessment of a comparison-adjusted funnel plot was used to assess for the presence of publication bias and other small study effects [52]. P-values of ≤ .05 were considered statistically significant.

Results

Table 1 displays a summary of the trials included in the NMA. One of the identified trials did not fit into the connected network because of its treatment comparators (infliximab + MTX + prednisone and infliximab + prednisone), which were not examined in any of the other included trials; thus this trial was excluded and thirty-eight trials were included in the final analysis. Figure 2 illustrates the network of RCTs by treatment strategy. Each node in the network represents a treatment strategy and the connections signify pairwise treatment comparisons from the trials included. The size of the node corresponds to the number of randomly assigned participants (sample size), with a larger node signifying a larger sample size. The width of connecting lines is proportional to the number of trials comparing each pair of therapies. If there is no line connecting two nodes, no studies directly compared the two treatments [54].
Table 1
Characteristics of included studies
Author
Journal
Publication Year
Region of Origin
Number of Sites
Study Durationa (wks)
Diagnosis
Treatment Groups
Number of Patients
Mean Age (yrs)
Female (%)
Ardizzone [8]
Dig Liver Dis
2003
Europe (Western)
1
24
CD
MTX (25 mg/week) + prednisone (40 mg/day)
27
37.0
51.9
AZA (2 mg/kg/day) + prednisone (40 mg/day)
27
31.0
44.0
Ardizzone [9]
Gut
2006
Europe (Western)
1
24
UC
AZA (2 mg/kg/day) + prednisone (40 mg/day)
36
43.0
44.0
5-ASA (3.2 g/day) + prednisone (40 mg/day)
36
45.0
47.0
Arora [10]
Hepatogastroenterol
1999
N America
1
52
CD
MTX (15 mg/week) + prednisone (variable)
15
37.3
20.0
Placebo + prednisone (variable)
18
35.6
55.6
Bar-Meir [11]
Gastroenterology
1998
Middle East
14
8
CD
Budesonide (9 mg/day)
100
32.7
47.0
Prednisone (40 mg/day)
101
32.8
49.5
Bar-Meir [12]
Dis Colon Rectum
2003
Worldwide
38
8
UC
Budesonide foam (2 mg/day)
120
42.0
62.0
Hydrocortisone foam (100 mg/day)
128
42.0
52.0
Colombel [13]
Gastroenterology
2007
Worldwide
92
56
CD
Adalimumab (40 mg/week or 40 mg/eow)
517
NR
61.9
Placebo
261
NR
62.1
Colombel [5]
N Engl J Med
2010
Worldwide
92
50
CD
Infliximab (5 mg/kg)
169
35.0
50.3
AZA (2.5 mg/kg/day)
170
35.0
47.1
Infliximab + AZA
169
34.0
47.9
Cortot [14]
Gut
2001
Worldwide
24
22
CD
Budesonide (6 mg/day) + prednisone (variable)
59
35.0
52.5
Placebo + prednisone (variable)
58
32.0
65.6
D’Haens [15]
Lancet
2008
Europe (Western)
18
104
CD
Infliximab (5 mg/kg) + AZA (2–2.5 mg/kg/day) (or MTX)
67
30.0
66.2
Prednisone (32 mg/day) or budesonide (9 mg/day)
66
28.7
57.8
Ewe [16]
Gastroenterology
1993
Europe (Western)
1
16
CD
AZA (2.5 mg/kg/day) + prednisone (60 mg/day)
21
27.3
NR
Placebo + prednisone (60 mg/day)
21
29.3
NR
Feagan [17]
N Engl J Med
1995
N America
8
16
CD
MTX (25 mg/week) + prednisone (20 mg/day)
94
34.0
46.0
Placebo + prednisone (20 mg/day)
47
36.0
45.0
Feagan [18]
N Engl J Med
2000
N America
7
40
CD
MTX (15 mg/week)
40
32.0
60.0
Placebo
36
34.0
39.0
Feagan [19]
Gastroenterology
2014
Canada
15
50
CD
Infliximab (5 mg/kg) + MTX (25 mg/week) + prednisone (variable)
63
40.4
46.6
       
Infliximab + placebo + prednisone (variable)
63
38.5
41.3
Hanauer [20]
Gastroenterology
2004
N America
5
104
CD
6MP (50 mg/day)
47
34.9
51.0
5-ASA (3 g/day)
44
34.1
57.0
Placebo
40
34.2
55.0
Hawthorne [21]
BMJ
1992
Europe (Western)
5
52
UC
AZA (variable)
40
50.0
62.5
Placebo
39
40.5
33.3
Lemann [22]
Gastroenterology
2006
Europe (Western)
22
52
CD
Infliximab (5 mg/kg) + AZA/6MP (2-3 mg/kg/day or 1–1.5 mg/kg/day) + prednisone (variable)
57
26.5
52.6
AZA/6MP + prednisone
56
27.5
57.1
Mantzaris [23]
Am J Gastroenterol
2004
Europe (Western)
1
104
UC
AZA (2.2 mg/kg/day) + 5-ASA (0.5 g TID)
36
33.0
50.0
AZA
34
35.0
52.9
Neurath [24]
Gut
1999
Europe (Western)
1
24
CD
AZA (2.5 mg/kg/day) + prednisone (50 mg/day)
35
NR
NR
MMF (15 mg/kg/day) + prednisone (50 mg/day)
35
NR
NR
Ochsenkun [25]
Gastroenterology
2003
Not reported
Not reported
13
UC
Infliximab (5 mg/kg)
6
NR
NR
Prednisone (1.5 mg/kg/day)
7
NR
NR
Odonnell [26]
Gut
1992
Europe (Western)
1
6
UC
5-ASA enemas (2 g/day)
24
49.0
28.3
Prednisone enemas (20 mg/day)
21
43.0
61.9
Oren [27]
Gastroenterology
1996
Middle East
12
36
UC
MTX (12.5 mg/day)
30
38.3
43.3
Placebo
37
38.9
51.4
Orth [28]
Am J Gastroenterol
2000
Europe (Western)
1
52
UC
MMF (20 mg/kg/day) + prednisone (50 mg/day)
12
42.4
50.0
AZA (2 mg/kg/day) + prednisone (50 mg/day)
12
40.4
25.0
Prantera [29]
Gastroenterology
2012
Worldwide
55
12
CD
Rifaximin (400 mg/800 mg/1200 mg BID)
308
33.3
56.8
Placebo
102
37.0
59.0
Present [30]
N Engl J Med
1999
Worldwide
12
34
CD
Infliximab (5 mg/kg or 10 mg/kg)
63
38.1
57.1
Placebo
31
35.4
46.0
Rutgeerts [31]
Gastroenterology
1995
Europe (Western)
1
12
CD
Metronidazole (20 mg/kg/day)
30
33.0
NR
Placebo
30
37.0
NR
Rutgeerts [32]
N Engl J Med
2005
Worldwide
62
46
UC
Infliximab (5 mg/kg or 10 mg/kg)
243
42.1
38.3
Placebo
121
41.4
40.5
55
22
UC
Infliximab (5 mg/kg or 10 mg/kg)
241
40.4
40.2
Placebo
123
39.3
42.3
Rutgeerts [33]
Gastroenterology
2005
Europe (Western)
2
54
CD
Ornidazole (1 g/day)
38
35.0
57.9
Placebo
40
30.5
50.0
Sandborn [34]
Gastroenterology
2003
N America
18
10
CD
Tacrolimus (0.2 mg/kg/day)
21
40.8
52.4
Placebo
25
38.1
66.0
Sandborn [35]
N Engl J Med
2005
Worldwide
142
12
CD
Natalizumab (300 mg)
724
38.0
57.0
Placebo
181
39.0
60.0
48
CD
Natalizumab (300 mg)
168
37.0
54.0
Placebo
171
37.0
65.0
Sandborn [36]
Gut
2007
Worldwide
53
56
CD
Adalimumab (variable)
37
36.0
56.8
Placebo
18
36.0
67.0
Sandborn [37]
N Engl J Med
2007
Worldwide
171
26
CD
Certolizumab pegol (400 mg)
331
37.0
53.0
Placebo
329
38.0
60.0
Sandborn [38]
Gastroenterology
2012
Worldwide
103
52
UC
Adalimumab (variable)
248
39.6
42.7
Placebo
246
41.3
38.2
Sandborn [39]
N Engl J Med
2012
Worldwide
153
36
CD
Ustekinumab (variable)
394
38.8
61.2
Placebo
132
39.5
51.5
Sandborn [40]
N Engl J Med
2013
Worldwide
285
52
CD
Vedolizumab (300 mg)
967
35.7
53.4
Placebo
148
38.6
53.4
Sandborn [41]
Gastroenterology
2014
Worldwide
251
52
UC
Golimumab (50 or 100 mg)
308
40.3
46.1
Placebo
156
40.2
51.9
Sands [42]
Inflamm Bowel Dis
2007
N America
17
32
CD
Natalizumab (300 mg) + infliximab (5 mg/kg)
52
39.9
54.0
Placebo + infliximab
27
38.9
37.0
Schreiber [43]
Gastroenterology
2005
Worldwide
58
20
CD
Certolizumab pegol (variable)
219
36.5
48.6
Placebo
73
35.8
67.1
Schreiber [44]
N Engl J Med
2007
Worldwide
147
20
CD
Certolizumab pegol (400 mg)
215
38.0
57.0
Placebo
210
38.0
48.0
Targan [45]
Gastroenterology
2007
Worldwide
114
8
CD
Natalizumab (300 mg)
259
38.1
59.0
Placebo
250
37.7
59.0
Author
Journal
Mean Disease Duration (months)
Surgery (%)
Smoking History (%)
Concomitant Immunomodulatorb Use (%)
Concomitant 5-aminosalicylate Use (%)
Concomitant Steroid Use (%)
Observed Number of Serious Infections
Percentage of Serious Infections (%)
Bias Rating
Ardizzone [8]
Dig Liver Dis
76.6
33.0
NR
0.0
0.0
0.0
0
0.0
Low
57.3
30.0
NR
0.0
0.0
0.0
0
0.0
Ardizzone [9]
Gut
64.4
NR
25.0
0.0
0.0
0.0
0
0.0
Low
67.5
NR
17.0
0.0
0.0
0.0
1
2.8
Arora [1]
Hepatogastroenterol
109.2
26.7
NR
0.0
NR
0.0
1
6.7
Low
140.4
55.6
NR
0.0
NR
0.0
0
0.0
Bar-Meir [11]
Gastroenterology
60.0
15.0
30.0
0.0
0.0
0.0
0
0.0
Low
60.0
23.8
31.0
0.0
0.0
0.0
0
0.0
Bar-Meir [12]
Dis Colon Rectum
42.0
NR
41.0
0.0
52.0
0.0
0
0.0
Low
45.6
NR
30.0
0.0
63.0
0.0
0
0.0
Colombel [13]
Gastroenterology
NR
NR
35.6
51.0
39.3
38.9
14
2.7
Low
NR
NR
35.6
50.6
39.5
38.7
9
3.4
Colombel [5]
N Engl J Med
26.4
NR
NR
0.0
51.5
47.4
8
4.7
Low
28.8
NR
NR
0.0
61.2
38.2
9
5.3
26.4
NR
NR
0.0
50.3
39.0
7
4.1
Cortot [14]
Gut
106.8
30.5
NR
15.3
49.2
0.0
0
0.0
Low
97.2
36.2
NR
8.6
48.3
0.0
0
0.0
D’Haens [15]
Lancet
2.0
NR
55.4
0.0
4.6
0.0
4
6.0
Low
2.5
NR
60.9
0.0
3.1
0.0
7
10.6
Ewe [16]
Gastroenterology
55.2
NR
NR
0.0
57.0
0.0
0
0.0
Low
46.8
NR
NR
0.0
37.0
0.0
0
0.0
Feagan [17]
N Engl J Med
93.0
47.0
49.0
0.0
0.0
0.0
0
0.0
Low
98.0
47.0
47.0
0.0
0.0
0.0
0
0.0
Feagan [18]
N Engl J Med
88.0
43.0
50.0
0.0
0.0
0.0
0
0.0
Low
84.0
36.0
42.0
0.0
0.0
0.0
1
2.8
Feagan [19]
Gastroenterology
130.9
57.1
63.5
0.0
0.0
0.0
0
0.0
Low
115.4
46.0
57.2
0.0
0.0
0.0
0
0.0
Hanauer [20]
Gastroenterology
113.0
100.0
NR
0.0
0.0
0.0
0
0.0
Low
120.0
100.0
NR
0.0
0.0
0.0
0
0.0
127.0
100.0
NR
0.0
0.0
0.0
0
0.0
Hawthorne [21]
BMJ
NR
NR
NR
0.0
80.0
NR
0
0.0
Low
NR
NR
NR
0.0
85.0
NR
0
0.0
Lemann [22]
Gastroenterology
48.0
NR
NR
0.0
0.0
0.0
0
0.0
Low
66.0
NR
NR
0.0
0.0
0.0
3
5.4
Mantzaris [23]
Am J Gastroenterol
60.0
NR
8.0
0.0
0.0
0.0
0
0.0
Low
48.0
NR
6.0
0.0
0.0
0.0
0
0.0
Neurath [24]
Gut
NR
NR
NR
0.0
NR
0.0
0
0.0
Low
NR
NR
NR
0.0
NR
0.0
0
0.0
Ochsenkun [25]
Gastroenterology
NR
NR
NR
NR
NR
NR
0
0.0
Uncertain
NR
NR
NR
NR
NR
NR
0
0.0
Odonnell [26]
Gut
NR
NR
NR
NR
75.0
NR
0
0.0
Low
NR
NR
NR
NR
71.4
NR
0
0.0
Oren [27]
Gastroenterology
95.2
NR
51.7
0.0
66.7
70.0
0
0.0
Low
70.2
NR
51.4
0.0
67.6
73.0
0
0.0
Orth [28]
Am J Gastroenterol
149.0
0.0
NR
0.0
66.7
0.0
2
16.7
Low
87.0
0.0
NR
0.0
66.7
0.0
1
8.3
Prantera [29]
Gastroenterology
40.0
28.6
21.8
25.2
67.4
48.8
1
0.3
Low
39.0
32.0
26.0
27.0
71.0
48.0
0
0.0
Present [30]
N Engl J Med
151.2
60.3
NR
46.0
52.4
34.9
3
4.8
Low
144.0
59.0
NR
29.0
61.0
35.0
0
0.0
Rutgeerts [31]
Gastroenterology
108.0
NR
NR
0.0
0.0
NR
0
0.0
Low
120.0
NR
NR
0.0
0.0
NR
0
0.0
Rutgeerts [32]
N Engl J Med
85.8
NR
46.1
51.4
69.1
58.8
11
4.5
Low
74.4
NR
50.4
43.8
70.2
65.3
5
4.1
79.2
NR
46.9
42.3
75.9
52.3
5
2.1
78.0
NR
48.8
43.9
72.4
48.8
1
0.8
Rutgeerts [33]
Gastroenterology
84.0
100.0
44.7
0.0
0.0
52.3
0
0.0
Low
36.0
100.0
47.5
0.0
0.0
35.0
0
0.0
Sandborn [34]
Gastroenterology
NR
62.0
33.0
62.0
43.0
24.0
0
0.0
Low
NR
44.0
16.0
14.0
40.0
16.0
0
0.0
Sandborn [35]
N Engl J Med
121.0
41.0
23.0
34.0
47.0
38.0
12
1.7
Low
110.0
40.0
24.0
28.0
44.0
40.0
4
2.2
119.0
33.0
16.0
37.0
9.0
38.0
6
3.6
116.0
40.0
26.0
35.0
54.0
46.0
5
2.9
Sandborn [36]
Gut
101.2
NR
86.5
24.3
70.3
45.9
0
0.0
Low
98.9
NR
67.0
18.0
44.0
56.0
0
0.0
Sandborn [37]
N Engl J Med
84.0
36.0
31.0
21.0
NR
22.0
7
2.1
Low
96.0
34.0
33.0
20.0
NR
23.0
3
0.9
Sandborn [38]
Gastroenterology
97.2
NR
NR
37.5
58.9
60.5
4
1.6
Low
102.0
NR
NR
32.5
63.0
56.9
5
2.0
Sandborn [39]
N Engl J Med
147.6
NR
NR
24.4
17.0
48.0
10
2.5
Low
148.8
NR
NR
22.7
18.2
55.3
8
6.1
Sandborn [40]
N Engl J Med
110.4
42.6
27.3
16.1
NR
34.7
45
4.7
Low
98.4
36.5
23.0
16.9
NR
30.4
9
6.1
Sandborn [41]
Gastroenterology
84.0
NR
NR
30.8
80.2
53.8
10
3.2
Low
82.8
NR
NR
33.3
80.1
56.4
3
1.9
Sands [42]
Inflamm Bowel Dis
150.3
NR
NR
50.0
46.0
27.0
0
0.0
Low
120.0
NR
NR
56.0
37.0
30.0
0
0.0
Schreiber [43]
Gastroenterology
99.6
36.1
NR
37.4
44.3
34.7
1
0.4
Low
95.4
37.0
NR
35.6
39.7
39.7
0
0.0
Schreiber [44]
N Engl J Med
108.0
30.0
30.0
27.0
NR
22.0
6
2.8
Low
84.0
35.0
36.0
25.0
NR
21.0
2
0.9
Targan [45]
Gastroenterology
121.4
NR
NR
37.0
49.0
42.0
1
0.4
Low
120.3
NR
NR
38.0
48.0
38.0
4
1.6
Abbreviations: CD Crohn’s Disease, UC ulcerative colitis, NR not reported, MTX methotrexate, AZA azathioprine, 6MP 6-mercaptopurine, MMF mycophenolate mofetil
ainclusive of active treatment period and follow-up
bincludes MTX, 6MP, AZA
&Step-up paradigm starting with prednisone then progressing to AZA
Table 2 provides the estimated odds of serious infection for all treatment strategies compared to placebo. Amongst all therapy contrasts, no statistically significantly increased odds of serious infection were discovered. However, the confidence intervals were extremely wide in many of the comparisons, and a clinically significant increase in infection risk could not be excluded. (Additional file 2: Table S2). Table 3 displays the estimates for selected therapeutic strategies compared to the anti-tumor necrosis factor (anti-TNF) biologics including infliximab, adalimumab, and certolizumab pegol. In the comparison of ustekinumab with certolizumab pegol there was found to be a lower odds of serious infection (OR 0.17, 95% CI 0.04–0.67). No statistically significant increased odds of serious infection were observed for any other treatment comparisons including those between the specific anti-TNFs agents (i.e. adalimumab vs. infliximab), as well as those between anti-TNF monotherapy and dual therapy with an immunomodulator (i.e. infliximab alone vs. infliximab + azathioprine/6MP) (Additional file 3: Table S3).
Table 2
Estimated odds of serious infection for treatment strategies compared to placebo
Treatment strategy
Comparator
Odds ratio
Standard error
95% Confidence interval
Infliximab
Placebo
1.36
0.45
0.57
3.27
Adalimumab
Placebo
0.77
0.36
0.38
1.56
Certolizumab pegol
Placebo
2.37
0.50
0.88
6.38
Natalizumab
Placebo
0.80
0.40
0.37
1.73
Ustekinumab
Placebo
0.40
0.49
0.16
1.05
Vedolizumab
Placebo
0.75
0.38
0.36
1.58
Golimumab
Placebo
1.71
0.67
0.46
6.31
Methotrexate
Placebo
0.52
1.28
0.04
6.34
Azathioprine/6MP
Placebo
1.43
0.61
0.43
4.76
Prednisone
Placebo
1.92
0.85
0.36
10.21
Budesonide
Placebo
1.99
1.65
0.08
50.97
Aminosalicylate
Placebo
1.37
1.40
0.09
21.47
Antibiotic
Placebo
1.01
1.07
0.12
8.34
Tacrolimus
Placebo
1.19
2.02
0.02
62.32
Methotrexate + prednisone
Placebo
2.94
1.45
0.17
50.23
Azathioprine/6MP + prednisone
Placebo
2.37
1.76
0.07
75.25
Aminosalicylate + prednisone
Placebo
7.32
2.41
0.06
832.34
Budesonide + prednisone
Placebo
1.89
2.18
0.03
135.88
MMF + prednisone
Placebo
4.14
2.07
0.07
241.50
Infliximab + azathioprine/6MP
Placebo
1.10
0.65
0.31
3.97
Azathioprine/6MP + aminosalicylate
Placebo
1.35
2.11
0.02
83.66
Natalizumab + inflximab
Placebo
0.71
2.06
0.01
40.65
Infliximab + azathioprine/6MP + prednisone
Placebo
0.32
2.33
0.00
30.40
Abbreviations: 6MP 6-mercaptopurine, MMF mycophenolate mofetil
Table 3
Estimated odds of serious infection for selecteda treatment strategies compared to anti-tumor necrosis factor biologics
Treatment strategy
Comparator
Odds ratio
Standard error
95% Confidence interval
Adalimumab
Infliximab
0.57
0.57
0.18
1.74
Certolizumab pegol
Infliximab
1.74
0.67
0.47
6.53
Natalizumab
Infliximab
0.58
0.60
0.18
1.88
Ustekinumab
Infliximab
0.30
0.66
0.08
1.08
Vedolizumab
Infliximab
0.55
0.58
0.18
1.74
Golimumab
Infliximab
1.26
0.80
0.26
6.05
Infliximab + azathioprine/6MP
Infliximab
0.81
0.50
0.30
2.17
Infliximab + azathioprine/6MP + prednisone
Infliximab
0.23
2.29
0.00
20.82
Certolizumab pegol
Adalimumab
3.08
0.62
0.91
10.37
Natalizumab
Adalimumab
1.03
0.54
0.36
2.94
Ustekinumab
Adalimumab
0.52
0.60
0.16
1.71
Vedolizumab
Adalimumab
0.98
0.52
0.35
2.71
Golimumab
Adalimumab
2.22
0.76
0.50
9.78
Natalizumab
Certolizumab pegol
0.34
0.64
0.10
1.18
Ustekinumab
Certolizumab pegol
0.17
0.70
0.04
0.67
Vedolizumab
Certolizumab pegol
0.32
0.63
0.09
1.09
Golimumab
Certolizumab pegol
0.72
0.84
0.14
3.71
Abbreviations: 6MP 6-mercaptopurine, MMF mycophenolate mofetil
aOther group comparisons can be found in Additional file 3: Table S3
Furthermore, no statistically significant increased odds of serious infection were found for any comparison in contrasting each therapy with the immunomodulators (azathioprine/6MP and methotrexate) or other commonly used therapies such as prednisone, budesonide, and tacrolimus (Table 4; Additional file 4: Table S4 and Additional file 5: Table S5). Similar findings were seen for the newer biologic pharmacotherapies including natalizumab, ustekinumab, and vedolizumab (Table 4; Additional file 6: Table S6). Lastly, no increased odds of serious of infection were found in comparisons of each included treatment strategy against other combinations of therapies such as methotrexate/prednisone or azathioprine/6MP + prednisone (Additional file 7: Table S7). However again, the confidence intervals were extremely wide in many of the comparisons, and a clinically significant increase in infection risk could not be excluded.
Table 4
Estimated odds of serious infection for selecteda treatment strategies of interest
Treatment strategy
Comparator
Odds ratio
Standard error
95% Confidence interval
Azathioprine/6MP
Methotrexate
2.75
1.42
0.17
44.07
Prednisone
Azathioprine/6MP
1.34
0.76
0.30
5.96
Infliximab + azathioprine/6MP
Azathioprine/6MP
0.77
0.50
0.29
2.06
Ustekinumab
Natalizumab
0.51
0.63
0.15
1.73
Vedolizumab
Natalizumab
0.95
0.55
0.32
2.76
Golimumab
Natalizumab
2.15
0.77
0.47
9.82
Vedolizumab
Ustekinumab
1.87
0.61
0.56
6.22
Golimumab
Ustekinumab
4.24
0.82
0.84
21.32
Golimumab
Vedolizumab
2.27
0.76
0.51
10.16
Abbreviations: 6MP 6-mercaptopurine
aOther group comparisons can be found in Additional files 1, 2, 3, 4, 5, 6, and 7
In the design-by-treatment interaction model, no evidence of inconsistency was found (chi^2 = 0.25, p = .99). Visual assessment of a comparison-adjusted funnel plot did not reveal any evidence of publication bias or other small study effects. Although the included studies were randomized, there were low rates of completed follow-up as well as selective cross over amongst therapy groups in many trials contributing to a high risk of bias. In addition, although the transitivity assumption was satisfied through randomization, there may remain differences in the study populations that modify the effect, thus, the overall quality of the body of evidence per the GRADE approach is low.

Discussion

In this network meta-analysis (NMA), we combined clinical trial data from thirty-eight published articles that included twenty-four different treatment strategies for IBD. These results summarize the risk of serious infection from available RCTs of commonly prescribed IBD pharmacotherapies. The study overcomes some of the limitations from previous studies by applying a universal definition for serious infection and examining large cohorts of treated patients from RCTs. Furthermore, the NMA technique allows for investigation of multiple therapies, including combinations of therapies, which have not been previously compared directly.
Our results show that no treatment strategy exhibits a higher odds of serious infection than another (including placebo), although in many cases the confidence intervals were wide, likely due to the small number of studies examining specific therapies available, and thus did not exclude a clinically significant increase in risk. Of particular interest, patients treated with dual immunosuppression with biologic medications and immunomodulators do not appear to be at higher risk of serious infection compared to those treated with biologic monotherapy, at least in the short-term. This lends additional support towards the safety of combination therapy as a viable treatment strategy, especially for those patients who are at high risk of antibody formation and subsequent loss of response from some biologic therapies. Our results are in contrast to those reported by Toruner et al. who showed an increased risk of opportunistic infections among patients treated with combination therapy in a retrospective case–control study [4]. This discrepancy is likely due to differences in study design and patient populations, as our meta-analysis is limited to patients enrolled in RCTs. First, the Toruner study could not assess disease severity; thus medication use could be a marker for disease severity rather than a true risk factor for infection. Second, patients who are eligible to be enrolled in an RCT are extensively screened for infection and other comorbidities prior to enrollment and followed more closely than in clinical practice. It is possible that this additional scrutiny both selected out patients who were more prone to infection and/or modified their risk for development of infection sometime during the trial period. Furthermore, the patients in the Toruner study were from one academic medical center and results may not be generalizable to other settings.
We found no evidence of a higher odds of serious infection from the newly available biologic therapies, such as vedolizumab and ustekinumab, compared to the anti-tumor necrosis factor (anti-TNF) biologic agents (or to one another). Given the growing number of patients who have lost response or who are intolerant to anti-TNFs, these findings are reassuring. Furthermore, we specifically looked at the comparison of those on triple immunosuppression (i.e. biologic + immunomodulator + steroid) versus those on combination therapy or biologic monotherapy, and similar results were found. Of note, we did observe a trend towards increased risk for serious infection with prednisone treatment, either as monotherapy or combined with other therapies. This trend was not statistically significant in any of the comparisons; however it is consistent with the existing evidence of the association of prolonged corticosteroid use and infection [4].
Previous estimates of the risk of serious infection related to IBD therapy vary widely, and the absolute risk is difficult to quantify. The SONIC trial assessed the relative risk of serious infection from azathioprine alone, infliximab alone, and azathioprine and infliximab together (combination therapy), and the authors found no statistically significant differences among the groups [5]. In addition, the absolute risk of serious infection was low in each group: azathioprine (5.6%), infliximab (4.9%), and combination therapy (3.9%) over a mean follow-up of 125.7 patient-years [5]. In contrast, a case control study at the Mayo Clinic found an increased risk of serious infection from combination therapy compared to infliximab monotherapy, as well as an increased odds of serious infection from infliximab, corticosteroids, and azathioprine/6MP alone compared to no medication [4]. Although these two well-known studies have conflicting results, the differences have been explained as likely due to the different patient populations [55]. Crohn’s disease (CD) is associated with more disease related infectious complications (e.g. abscesses) than ulcerative colitis (UC), but it is unclear if the risk of infectious complications differs between CD and UC. Our study, like many, did not examine CD and UC separately as we combined the two conditions in order to maximize the number of patients available for the analysis. In addition, the two conditions are often difficult to distinguish and there is significant overlap between the treatment paradigms.
In a recently published update to the ENCORE registry study, D’Haens et al. report an increased risk of serious infection among CD patients treated with infliximab compared to other IBD therapies [56]. Although the relative risk of serious infection was higher among those treated with infliximab or combination therapy, the absolute risk of infection remained low. The differences again are likely due to differing patient populations and our examination of CD and UC combined. Our results are comparable to the existing literature, in particular the SONIC trial, and suggest that the shorter-term risk of serious infection from IBD pharmacotherapy is low.
Our findings do have some limitations. First, we only included data from RCTs due to the added heterogeneity non-randomized studies would contribute to the analysis, as well as the desire to preserve the benefits of randomization in our analysis. This limits the external validity and representativeness of our findings, especially given the strict entry criteria for these trials. Patients with comorbidities or other characteristics excluded from these studies may be at higher risk of serious infections from IBD pharmacotherapy than those included in our study populations. Second, RCTs are not specifically designed or powered to investigate adverse events such as serious infections; thus we may underestimate the true association of these therapies with serious infection, a limitation that is not overcome by pooling evidence in a meta-analysis. Third, there was variable length of treatment and follow up among the included studies, which may underestimate the risk of serious infection. Many of the included trials had short follow-up duration and did not include details on the time to development of the infections, so longer-term risk of these therapies were not quantified. In a recently published article, the median time to the development of active tuberculosis after initiation of an anti-TNF was approximately three months, which lends support to the possibility that the true risk of serious infection could be underestimated in published RCTs; however the average duration of the RCTs included in this meta-analysis was 37 weeks, thus we expect that the included studies would have detected a large proportion of cases of tuberculosis [57]. However, this does not exclude the possibility that other serious infections with longer time to development were underreported. Fourth, the direct estimates for some therapeutic strategies are based on a single study due to the lack of available trial data. Fifth, RCTs investigating the newer biologics (e.g. vedolizumab, ustekinumab) have been published since the last literature search and are not included in this meta-analysis, which may influence our results. Lastly, traditional limitations of meta-analyses due to variations in the treatment regimens, in the study populations, and in the conduct of the individual trials may bias our estimates, the direction of which is indeterminable.
Despite these limitations, this study provides crucial information regarding one of the most clinically significant risks of interest associated with IBD pharmacotherapy. Our findings are robust in terms of the low estimate of inconsistency for our model and the completeness of the literature search of studies for inclusion. As additional data becomes available regarding IBD therapies, this information can be added to the network to increase our confidence in the estimates.

Conclusions

Our results add to the body of evidence regarding risks and benefits of IBD pharmacotherapy, and suggest that commonly used therapies are not associated with increased risk of serious infections in the first several months of treatment, although confidence intervals were wide for many comparisons; thus a clinically significant difference cannot be excluded. Further, long-term studies using larger cohorts will supplement these findings and increase the generalizability of these results.

Funding

None.

Availability of data and materials

The datasets during and/or analyzed during the current study available from the corresponding author on reasonable request.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

CLW-formulation and study design; data assemblage; data analysis and interpretation; manuscript writing and revision of final manuscript; approval of final manuscript. CWK-formulation and study design; data analysis and interpretation; manuscript writing and revision of final manuscript; approval of final manuscript. KCS-formulation and study design; data assemblage; data analysis and interpretation; approval of final manuscript. DG-formulation and study design; approval of final manuscript. TAT-formulation and study design; approval of final manuscript. BD-formulation and study design; data analysis and interpretation; approval of final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Bruzzese V, Lorenzetti R, Zullo A, Hassan C, Campo SM. Anti-TNF therapy and tuberculosis risk in rheumatic diseases, psoriasis, and IBD: A pooled-data analysis of randomized controlled trials. Annals of the Rheumatic Diseases 2013;72(3). Bruzzese V, Lorenzetti R, Zullo A, Hassan C, Campo SM. Anti-TNF therapy and tuberculosis risk in rheumatic diseases, psoriasis, and IBD: A pooled-data analysis of randomized controlled trials. Annals of the Rheumatic Diseases 2013;72(3).
2.
Zurück zum Zitat Aberra FN, Lichtenstein GR. Methods to avoid infections in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2005;11:685–95.CrossRefPubMed Aberra FN, Lichtenstein GR. Methods to avoid infections in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2005;11:685–95.CrossRefPubMed
3.
Zurück zum Zitat Colombel JF, Loftus EV, Tremaine WJ, et al. The safety profile of Infliximab in patients with Crohn’s disease: the mayo clinic experience in 500 patients. Gastroenterology. 2004;126:19–31.CrossRefPubMed Colombel JF, Loftus EV, Tremaine WJ, et al. The safety profile of Infliximab in patients with Crohn’s disease: the mayo clinic experience in 500 patients. Gastroenterology. 2004;126:19–31.CrossRefPubMed
4.
Zurück zum Zitat Toruner M, Loftus Jr EV, Harmsen WS, et al. Risk factors for opportunistic infections in patients with inflammatory bowel disease. Gastroenterology. 2008;134:929–36.CrossRefPubMed Toruner M, Loftus Jr EV, Harmsen WS, et al. Risk factors for opportunistic infections in patients with inflammatory bowel disease. Gastroenterology. 2008;134:929–36.CrossRefPubMed
5.
Zurück zum Zitat Colombel J, Sandborn W, Reinisch W, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362:1383–95.CrossRefPubMed Colombel J, Sandborn W, Reinisch W, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362:1383–95.CrossRefPubMed
6.
Zurück zum Zitat Lichtenstein G, Cohen R, Feagan B, et al. Safety of infliximab and other Crohn’s disease therapies-TREAT registry data with nearly 24,575 patient years of follow-up. Am J Gastroenterol. 2008;103:1116. Lichtenstein G, Cohen R, Feagan B, et al. Safety of infliximab and other Crohn’s disease therapies-TREAT registry data with nearly 24,575 patient years of follow-up. Am J Gastroenterol. 2008;103:1116.
8.
Zurück zum Zitat Ardizzone S, Bollani S, Manzionna G, Imbesi V, Colombo E, Bianchi PG. Comparison between methotrexate and azathioprine in the treatment of chronic active Crohn’s disease: a randomised, investigator-blind study. Dig Liver Dis. 2003;35:619–27.CrossRefPubMed Ardizzone S, Bollani S, Manzionna G, Imbesi V, Colombo E, Bianchi PG. Comparison between methotrexate and azathioprine in the treatment of chronic active Crohn’s disease: a randomised, investigator-blind study. Dig Liver Dis. 2003;35:619–27.CrossRefPubMed
9.
Zurück zum Zitat Ardizzone S, Maconi G, Russo A, Imbesi V, Colombo E, Bianchi PG. Randomised controlled trial of azathioprine and 5-aminosalicylic acid for treatment of steroid dependent ulcerative colitis. Gut. 2006;55:47–53.CrossRefPubMedPubMedCentral Ardizzone S, Maconi G, Russo A, Imbesi V, Colombo E, Bianchi PG. Randomised controlled trial of azathioprine and 5-aminosalicylic acid for treatment of steroid dependent ulcerative colitis. Gut. 2006;55:47–53.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Arora S, Katkov W, Cooley J, et al. Methotrexate in Crohn’s disease: results of a randomized, double-blind, placebo-controlled trial. Hepatogastroenterology. 1999;46:1724–9.PubMed Arora S, Katkov W, Cooley J, et al. Methotrexate in Crohn’s disease: results of a randomized, double-blind, placebo-controlled trial. Hepatogastroenterology. 1999;46:1724–9.PubMed
11.
Zurück zum Zitat Bar-Meir S, Chowers Y, Lavy A, et al. Budesonide versus prednisone in the treatment of active Crohn’s disease. The Israeli Budesonide Study Group. Gastroenterology. 1998;115:835–40.CrossRefPubMed Bar-Meir S, Chowers Y, Lavy A, et al. Budesonide versus prednisone in the treatment of active Crohn’s disease. The Israeli Budesonide Study Group. Gastroenterology. 1998;115:835–40.CrossRefPubMed
12.
Zurück zum Zitat Bar-Meir S, Fidder H, Faszczyk M, et al. Budesonide foam vs. hydrocortisone acetate foam in the treatment of active ulcerative proctosigmoiditis. Dis Colon Rectum. 2003;46:929–36.CrossRefPubMed Bar-Meir S, Fidder H, Faszczyk M, et al. Budesonide foam vs. hydrocortisone acetate foam in the treatment of active ulcerative proctosigmoiditis. Dis Colon Rectum. 2003;46:929–36.CrossRefPubMed
13.
Zurück zum Zitat Colombel J, Sandborn W, Rutgeerts P, et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial. Gastroenterology. 2007;132:52–65.CrossRefPubMed Colombel J, Sandborn W, Rutgeerts P, et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial. Gastroenterology. 2007;132:52–65.CrossRefPubMed
14.
Zurück zum Zitat Cortot A, Colombel J, Rutgeerts P, et al. Switch from systemic steroids to budesonide in steroid dependent patients with inactive Crohn’s Disease. Gut. 2001;48:186–90.CrossRefPubMedPubMedCentral Cortot A, Colombel J, Rutgeerts P, et al. Switch from systemic steroids to budesonide in steroid dependent patients with inactive Crohn’s Disease. Gut. 2001;48:186–90.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat D’Haens G, Baert F, van Assche G, et al. Early combined immunosuppression or conventional management in patients with newly diagnosed Crohn’s disease: an open randomised trial. Lancet. 2008;371:660–7.CrossRefPubMed D’Haens G, Baert F, van Assche G, et al. Early combined immunosuppression or conventional management in patients with newly diagnosed Crohn’s disease: an open randomised trial. Lancet. 2008;371:660–7.CrossRefPubMed
16.
Zurück zum Zitat Ewe K, Press A, Singe C, et al. Azathioprine combined with prednisolone or monotherapy with prednisolone in active Crohn’s disease. Gastroenterology. 1993;105:367–72.CrossRefPubMed Ewe K, Press A, Singe C, et al. Azathioprine combined with prednisolone or monotherapy with prednisolone in active Crohn’s disease. Gastroenterology. 1993;105:367–72.CrossRefPubMed
17.
Zurück zum Zitat Feagan B, Rochon J, Fedorak R, et al. Methotrexate for the treatment of Crohn’s disease. The North American Crohn’s Study Group Investigators. N Engl J Med. 1995;332:292–7.CrossRefPubMed Feagan B, Rochon J, Fedorak R, et al. Methotrexate for the treatment of Crohn’s disease. The North American Crohn’s Study Group Investigators. N Engl J Med. 1995;332:292–7.CrossRefPubMed
18.
Zurück zum Zitat Feagan B, Fedorak R, Irvine E, et al. A comparison of methotrexate with placebo for the maintenance of remission in Crohn’s disease. North American Crohn’s Study Group Investigators. N Engl J Med. 2000;342:1627–32.CrossRefPubMed Feagan B, Fedorak R, Irvine E, et al. A comparison of methotrexate with placebo for the maintenance of remission in Crohn’s disease. North American Crohn’s Study Group Investigators. N Engl J Med. 2000;342:1627–32.CrossRefPubMed
19.
Zurück zum Zitat Feagan B, McDonald J, Panaccione R, et al. Methotrexate in combination with infliximab is no more effective than infliximab alone in patients with Crohn’s disease. Gastroenterology. 2014;146:681–8.CrossRefPubMed Feagan B, McDonald J, Panaccione R, et al. Methotrexate in combination with infliximab is no more effective than infliximab alone in patients with Crohn’s disease. Gastroenterology. 2014;146:681–8.CrossRefPubMed
20.
Zurück zum Zitat Hanauer S, Korelitz B, Rutgeerts P, et al. Postoperative maintenance of Crohn’s disease remission with 6-mercaptopurine, mesalamine, or placebo: a 2-year trial. Gastroenterology. 2004;127:723–9.CrossRefPubMed Hanauer S, Korelitz B, Rutgeerts P, et al. Postoperative maintenance of Crohn’s disease remission with 6-mercaptopurine, mesalamine, or placebo: a 2-year trial. Gastroenterology. 2004;127:723–9.CrossRefPubMed
21.
22.
Zurück zum Zitat Lémann M, Mary J, Duclos B, et al. Infliximab plus azathioprine for steroid-dependent Crohn’s disease patients: a randomized placebo-controlled trial. Gastroenterology. 2006;130:1054–61.CrossRefPubMed Lémann M, Mary J, Duclos B, et al. Infliximab plus azathioprine for steroid-dependent Crohn’s disease patients: a randomized placebo-controlled trial. Gastroenterology. 2006;130:1054–61.CrossRefPubMed
23.
Zurück zum Zitat Mantzaris G, Sfakianakis M, Archavlis E, et al. A prospective randomized observer-blind 2-year trial of azathioprine monotherapy versus azathioprine and olsalazine for the maintenance of remission of steroid-dependent ulcerative colitis. Am J Gastroenterol. 2004;99:1122–8.CrossRefPubMed Mantzaris G, Sfakianakis M, Archavlis E, et al. A prospective randomized observer-blind 2-year trial of azathioprine monotherapy versus azathioprine and olsalazine for the maintenance of remission of steroid-dependent ulcerative colitis. Am J Gastroenterol. 2004;99:1122–8.CrossRefPubMed
24.
Zurück zum Zitat Neurath M, Wanitschke R, Peters M, Krummenauer F, Meyer Zum Büschenfelde K, Schlaak J. Randomised trial of mycophenolate mofetil versus azathioprine for treatment of chronic active Crohn’s disease. Gut. 1999;44:625–8.CrossRefPubMedPubMedCentral Neurath M, Wanitschke R, Peters M, Krummenauer F, Meyer Zum Büschenfelde K, Schlaak J. Randomised trial of mycophenolate mofetil versus azathioprine for treatment of chronic active Crohn’s disease. Gut. 1999;44:625–8.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Ochsenkun T, Sackman M, Goeke B. Infliximab for acute severe ulcerative colitis: a randomized pilot study in non steroid refractory patients. Gastroenterology. 2003;124:A62.CrossRef Ochsenkun T, Sackman M, Goeke B. Infliximab for acute severe ulcerative colitis: a randomized pilot study in non steroid refractory patients. Gastroenterology. 2003;124:A62.CrossRef
26.
Zurück zum Zitat Odonnell LJD, Arvind AS, Hoang P, et al. Double-blind, Controlled Trial of 4-Aminosalicylic Acid and Prednisolone Enemas in Distal Ulcerative-Colitis. Gut. 1992;33:947–9.CrossRef Odonnell LJD, Arvind AS, Hoang P, et al. Double-blind, Controlled Trial of 4-Aminosalicylic Acid and Prednisolone Enemas in Distal Ulcerative-Colitis. Gut. 1992;33:947–9.CrossRef
27.
Zurück zum Zitat Oren R, Arber N, Odes S, et al. Methotrexate in chronic active ulcerative colitis: a double-blind, randomized, Israeli multicenter trial. Gastroenterology. 1996;110:1416–21.CrossRefPubMed Oren R, Arber N, Odes S, et al. Methotrexate in chronic active ulcerative colitis: a double-blind, randomized, Israeli multicenter trial. Gastroenterology. 1996;110:1416–21.CrossRefPubMed
28.
Zurück zum Zitat Orth T, Peters M, Schlaak J, et al. Mycophenolate mofetil versus azathioprine in patients with chronic active ulcerative colitis: a 12 month pilot study. Am J Gastroenterol. 2000;95:1201–7.CrossRefPubMed Orth T, Peters M, Schlaak J, et al. Mycophenolate mofetil versus azathioprine in patients with chronic active ulcerative colitis: a 12 month pilot study. Am J Gastroenterol. 2000;95:1201–7.CrossRefPubMed
29.
Zurück zum Zitat Prantera C, Lochs H, Grimaldi M, Danese S, Scribano M, et al. Rifaximin-extended intestinal release induces remission in patients with moderately active Crohn’s disease. Gastroenterology. 2012;142:473–81.CrossRefPubMed Prantera C, Lochs H, Grimaldi M, Danese S, Scribano M, et al. Rifaximin-extended intestinal release induces remission in patients with moderately active Crohn’s disease. Gastroenterology. 2012;142:473–81.CrossRefPubMed
30.
Zurück zum Zitat Present D, Rutgeerts P, Targan S, et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med. 1999;340:1398–405.CrossRefPubMed Present D, Rutgeerts P, Targan S, et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med. 1999;340:1398–405.CrossRefPubMed
31.
Zurück zum Zitat Rutgeerts P, Hiele M, Geboes K, et al. Controlled trial of metronidazole treatment for prevention of Crohn’s recurrence after ileal resection. Gastroenterology. 1995;108:1617–21.CrossRefPubMed Rutgeerts P, Hiele M, Geboes K, et al. Controlled trial of metronidazole treatment for prevention of Crohn’s recurrence after ileal resection. Gastroenterology. 1995;108:1617–21.CrossRefPubMed
32.
Zurück zum Zitat Rutgeerts P, Sandborn WJ, Feagan BG, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353:2462–76.CrossRefPubMed Rutgeerts P, Sandborn WJ, Feagan BG, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353:2462–76.CrossRefPubMed
33.
Zurück zum Zitat Rutgeerts P, Van Assche G, Vermeire S, et al. Ornidazole for prophylaxis of postoperative Crohn’s disease recurrence: a randomized, double-blind, placebo-controlled trial. Gastroenterology. 2005;128:856–61.CrossRefPubMed Rutgeerts P, Van Assche G, Vermeire S, et al. Ornidazole for prophylaxis of postoperative Crohn’s disease recurrence: a randomized, double-blind, placebo-controlled trial. Gastroenterology. 2005;128:856–61.CrossRefPubMed
34.
Zurück zum Zitat Sandborn W, Present D, Isaacs K, et al. Tacrolimus for the treatment of fistulas in patients with Crohn’s disease: a randomized, placebo-controlled trial. Gastroenterology. 2003;125:380–8.CrossRefPubMed Sandborn W, Present D, Isaacs K, et al. Tacrolimus for the treatment of fistulas in patients with Crohn’s disease: a randomized, placebo-controlled trial. Gastroenterology. 2003;125:380–8.CrossRefPubMed
35.
Zurück zum Zitat Sandborn W, Colombel J, Enns R, et al. Natalizumab induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2005;353:1912–25.CrossRefPubMed Sandborn W, Colombel J, Enns R, et al. Natalizumab induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2005;353:1912–25.CrossRefPubMed
36.
Zurück zum Zitat Sandborn W, Hanauer S, Rutgeerts P, et al. Adalimumab for maintenance treatment of Crohn’s disease: results of the CLASSIC II trial. Gut. 2007;56:1232–9.CrossRefPubMedPubMedCentral Sandborn W, Hanauer S, Rutgeerts P, et al. Adalimumab for maintenance treatment of Crohn’s disease: results of the CLASSIC II trial. Gut. 2007;56:1232–9.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Sandborn W, Feagan B, Stoinov S, et al. Certolizumab pegol for the treatment of Crohn’s disease. N Engl J Med. 2007;357:228–38.CrossRefPubMed Sandborn W, Feagan B, Stoinov S, et al. Certolizumab pegol for the treatment of Crohn’s disease. N Engl J Med. 2007;357:228–38.CrossRefPubMed
38.
Zurück zum Zitat Sandborn W, van Assche G, Reinisch W, et al. Adalimumab induces and maintains clinical remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2012;142:257–65.CrossRefPubMed Sandborn W, van Assche G, Reinisch W, et al. Adalimumab induces and maintains clinical remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2012;142:257–65.CrossRefPubMed
39.
Zurück zum Zitat Sandborn W, Gasink C, Gao L, et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;367:1519–28.CrossRefPubMed Sandborn W, Gasink C, Gao L, et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;367:1519–28.CrossRefPubMed
40.
Zurück zum Zitat Sandborn W, Feagan B, Rutgeerts P, et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013;369:711–21.CrossRefPubMed Sandborn W, Feagan B, Rutgeerts P, et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013;369:711–21.CrossRefPubMed
41.
Zurück zum Zitat Sandborn WJ, Feagan BJ, Marano C, et al. Subcutaneous Golimumab Maintains Clinical Response in Patients with Moderate to Severe Ulcerative Colitis. Gastro 2013;In press. Sandborn WJ, Feagan BJ, Marano C, et al. Subcutaneous Golimumab Maintains Clinical Response in Patients with Moderate to Severe Ulcerative Colitis. Gastro 2013;In press.
42.
Zurück zum Zitat Sands B, Kozarek R, Spainhour J, et al. Safety and tolerability of concurrent natalizumab treatment for patients with Crohn’s disease not in remission while receiving infliximab. Inflamm Bowel Dis. 2007;13:2–11.CrossRefPubMed Sands B, Kozarek R, Spainhour J, et al. Safety and tolerability of concurrent natalizumab treatment for patients with Crohn’s disease not in remission while receiving infliximab. Inflamm Bowel Dis. 2007;13:2–11.CrossRefPubMed
43.
Zurück zum Zitat Schreiber S, Khaliq-Kareemi M, Lawrance I, et al. Maintenance therapy with certolizumab pegol for Crohn’s disease. N Engl J Med. 2007;357:239–50.CrossRefPubMed Schreiber S, Khaliq-Kareemi M, Lawrance I, et al. Maintenance therapy with certolizumab pegol for Crohn’s disease. N Engl J Med. 2007;357:239–50.CrossRefPubMed
44.
Zurück zum Zitat Schreiber S, Rutgeerts P, Fedorak R, et al. A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn’s disease. Gastroenterology. 2005;129:807–18.CrossRefPubMed Schreiber S, Rutgeerts P, Fedorak R, et al. A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn’s disease. Gastroenterology. 2005;129:807–18.CrossRefPubMed
45.
Zurück zum Zitat Targan S, Feagan B, Fedorak R, et al. Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE Trial. Gastroenterology. 2007;132:1672–83.CrossRefPubMed Targan S, Feagan B, Fedorak R, et al. Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE Trial. Gastroenterology. 2007;132:1672–83.CrossRefPubMed
46.
Zurück zum Zitat Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions. 2011. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions. 2011.
47.
Zurück zum Zitat Salanti G, Del Giovane C, Chaimani A, Caldwell D, Higgins J. Evaluating the quality of evidence from a network meta-analysis. PLoS One. 2014;9:e99682.CrossRefPubMedPubMedCentral Salanti G, Del Giovane C, Chaimani A, Caldwell D, Higgins J. Evaluating the quality of evidence from a network meta-analysis. PLoS One. 2014;9:e99682.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Lumley T. Network meta-analysis for indirect treatment comparisons. Stat Med. 2002;21:2313–24.CrossRefPubMed Lumley T. Network meta-analysis for indirect treatment comparisons. Stat Med. 2002;21:2313–24.CrossRefPubMed
49.
50.
Zurück zum Zitat Lu G, Ades A. Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med. 2004;23:3105–24.CrossRefPubMed Lu G, Ades A. Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med. 2004;23:3105–24.CrossRefPubMed
51.
Zurück zum Zitat White I. Network-Suite of Commands for Network Meta-Analysis. Cambridge: MRC Biostatistics Unit; 2015. White I. Network-Suite of Commands for Network Meta-Analysis. Cambridge: MRC Biostatistics Unit; 2015.
52.
53.
Zurück zum Zitat Higgins J, Jackson D, Barrett J, Lu G, Ades A, White I. Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods. 2012;3:98–110.CrossRefPubMedPubMedCentral Higgins J, Jackson D, Barrett J, Lu G, Ades A, White I. Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods. 2012;3:98–110.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Cipriani A, Higgins J, Geddes J, Salanti G. Conceptual and technical challenges in network meta-analysis. Ann Intern Med. 2013;159:130–7.CrossRefPubMed Cipriani A, Higgins J, Geddes J, Salanti G. Conceptual and technical challenges in network meta-analysis. Ann Intern Med. 2013;159:130–7.CrossRefPubMed
56.
Zurück zum Zitat D’Haens G, Reinisch W, Colombel JF, et al. Five-year Safety Data From ENCORE, a European Observational Safety Registry for Adults With Crohn’s Disease Treated With Infliximab [Remicade(R)] or Conventional Therapy. J Crohns Colitis. 2016. doi:10.1093/ecco-jcc/jjw221. [Epub ahead of print]. D’Haens G, Reinisch W, Colombel JF, et al. Five-year Safety Data From ENCORE, a European Observational Safety Registry for Adults With Crohn’s Disease Treated With Infliximab [Remicade(R)] or Conventional Therapy. J Crohns Colitis. 2016. doi:10.​1093/​ecco-jcc/​jjw221. [Epub ahead of print].
Metadaten
Titel
Inflammatory Bowel Disease (IBD) pharmacotherapy and the risk of serious infection: a systematic review and network meta-analysis
verfasst von
Chelle L. Wheat
Cynthia W. Ko
Kindra Clark-Snustad
David Grembowski
Timothy A. Thornton
Beth Devine
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
BMC Gastroenterology / Ausgabe 1/2017
Elektronische ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-017-0602-0

Weitere Artikel der Ausgabe 1/2017

BMC Gastroenterology 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.