Skip to main content
Erschienen in: Inflammation 3/2014

01.06.2014

Inflammatory Mediators as Biomarkers in Brain Disorders

verfasst von: Domenico Nuzzo, Pasquale Picone, Luca Caruana, Sonya Vasto, Annalisa Barera, Calogero Caruso, Marta Di Carlo

Erschienen in: Inflammation | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

Neurodegenerative diseases such as Alzheimer, Parkinson, amyotrophic lateral sclerosis, and Huntington are incurable and debilitating conditions that result in progressive death of the neurons. The definite diagnosis of a neurodegenerative disorder is disadvantaged by the difficulty in obtaining biopsies and thereby to validate the clinical diagnosis with pathological results. Biomarkers are valuable indicators for detecting different phases of a disease such as prevention, early onset, treatment, progression, and monitoring the effect of pharmacological responses to a therapeutic intervention. Inflammation occurs in neurodegenerative diseases, and identification and validation of molecules involved in this process could be a strategy for finding new biomarkers. The ideal inflammatory biomarker needs to be easily measurable, must be reproducible, not subject to wide variation in the population, and unaffected by external factors. Our review summarizes the most important inflammation biomarkers currently available, whose specificity could be utilized for identifying and monitoring distinctive phases of different neurodegenerative diseases.
Literatur
1.
Zurück zum Zitat Glass, C.K., K. Saijo, B. Winner, M.C. Marchetto, and F.H. Gage. 2010. Mechanisms underlying inflammation in neurodegeneration. Cell 140(6): 918–934.PubMedCentralPubMedCrossRef Glass, C.K., K. Saijo, B. Winner, M.C. Marchetto, and F.H. Gage. 2010. Mechanisms underlying inflammation in neurodegeneration. Cell 140(6): 918–934.PubMedCentralPubMedCrossRef
3.
Zurück zum Zitat Zhang, Y.Y., Y.C. Fan, M. Wang, D. Wang, and X.H. Li. 2013. Atorvastatin attenuates the production of IL-1β, IL-6, and TNF-α in the hippocampus of an amyloid β1-42-induced rat model of Alzheimer’s disease. Clinical Interventions in Aging 8: 103–110.PubMedCentralPubMed Zhang, Y.Y., Y.C. Fan, M. Wang, D. Wang, and X.H. Li. 2013. Atorvastatin attenuates the production of IL-1β, IL-6, and TNF-α in the hippocampus of an amyloid β1-42-induced rat model of Alzheimer’s disease. Clinical Interventions in Aging 8: 103–110.PubMedCentralPubMed
4.
Zurück zum Zitat Nolan, Y.M., Sullivan, A.M., Toulouse, A. (2013) Parkinson’s disease in the nuclear age of neuroinflammation. Trends in Molecular Medicine, 19, 187–196. Nolan, Y.M., Sullivan, A.M., Toulouse, A. (2013) Parkinson’s disease in the nuclear age of neuroinflammation. Trends in Molecular Medicine, 19, 187–196.
5.
Zurück zum Zitat Hsiao, H.Y., Chen, Y.C., Chen, H.M., Tu, P.H., Chern, Y. (2013) A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington’s disease. Human Molecular Genetics, 22, 1826–1842. Hsiao, H.Y., Chen, Y.C., Chen, H.M., Tu, P.H., Chern, Y. (2013) A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington’s disease. Human Molecular Genetics, 22, 1826–1842.
6.
Zurück zum Zitat Wyss-Coray, T. 2006. Inflammation in Alzheimer disease: driving force bystander or beneficial response? Nature Medicine 12: 1005–1015.PubMed Wyss-Coray, T. 2006. Inflammation in Alzheimer disease: driving force bystander or beneficial response? Nature Medicine 12: 1005–1015.PubMed
7.
Zurück zum Zitat Singh, S., A.S. Kushwah, R. Singh, M. Farswan, and R. Kaur. 2012. Current therapeutic strategy in Alzheimer’s disease. European Review for Medical and Pharmacological Sciences 16(12): 1651–1664.PubMed Singh, S., A.S. Kushwah, R. Singh, M. Farswan, and R. Kaur. 2012. Current therapeutic strategy in Alzheimer’s disease. European Review for Medical and Pharmacological Sciences 16(12): 1651–1664.PubMed
8.
Zurück zum Zitat Aluise, C.D., R.A. Sowell, and D.A. Butterfield. 2008. Peptides and proteins in plasma and cerebro spinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer’s disease. Biochimica et Biophysica Acta 1782(10): 549–558.PubMedCentralPubMedCrossRef Aluise, C.D., R.A. Sowell, and D.A. Butterfield. 2008. Peptides and proteins in plasma and cerebro spinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer’s disease. Biochimica et Biophysica Acta 1782(10): 549–558.PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Hebert, L.E., Weuve, J., Scherr, P.A., Evans, D.A. (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 80, 1778–1783. Hebert, L.E., Weuve, J., Scherr, P.A., Evans, D.A. (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 80, 1778–1783.
11.
Zurück zum Zitat Guerreiro, R.J., D.R. Gustafson, and J. Hardy. 2012. The genetic architecture of Alzheimer’s disease: beyond APP, PSENs and APOE. Neurobiology of Aging 33(3): 437–456.PubMedCentralPubMedCrossRef Guerreiro, R.J., D.R. Gustafson, and J. Hardy. 2012. The genetic architecture of Alzheimer’s disease: beyond APP, PSENs and APOE. Neurobiology of Aging 33(3): 437–456.PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat McKhann, G.M., D.S. Knopman, H. Chertkow, B.T. Hyman, C.R. Jack Jr., C.H. Kawas, W.E. Klunk, W.J. Koroshetz, J.J. Manly, R. Mayeux, R.C. Mohs, J.C. Morris, M.N. Rossor, P. Scheltens, M.C. Carrillo, B. Thies, S. Weintraub, and C.H. Phelps. 2011. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers & Dementia 7(3): 263–269.CrossRef McKhann, G.M., D.S. Knopman, H. Chertkow, B.T. Hyman, C.R. Jack Jr., C.H. Kawas, W.E. Klunk, W.J. Koroshetz, J.J. Manly, R. Mayeux, R.C. Mohs, J.C. Morris, M.N. Rossor, P. Scheltens, M.C. Carrillo, B. Thies, S. Weintraub, and C.H. Phelps. 2011. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers & Dementia 7(3): 263–269.CrossRef
13.
Zurück zum Zitat Wyss-Coray, T., and J. Rogers. 2012. Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harbor Perspectives in Medicine 2(1): a006346.PubMedCentralPubMedCrossRef Wyss-Coray, T., and J. Rogers. 2012. Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harbor Perspectives in Medicine 2(1): a006346.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Balistreri, C.R., G. Colonna-Romano, D. Lio, G. Candore, and C. Caruso. 2009. TLR4 polymorphisms and ageing: implications for the pathophysiology of age-related diseases. Journal of Clinical Immunology 29(4): 406–415.PubMedCrossRef Balistreri, C.R., G. Colonna-Romano, D. Lio, G. Candore, and C. Caruso. 2009. TLR4 polymorphisms and ageing: implications for the pathophysiology of age-related diseases. Journal of Clinical Immunology 29(4): 406–415.PubMedCrossRef
15.
Zurück zum Zitat Mrak, R.E., and W.S.T. Griffin. 2005. Potential inflammatory biomarkers in Alzheimer’s disease. Journal of Alzheimer’s Disease 8(4): 369–375.PubMed Mrak, R.E., and W.S.T. Griffin. 2005. Potential inflammatory biomarkers in Alzheimer’s disease. Journal of Alzheimer’s Disease 8(4): 369–375.PubMed
16.
Zurück zum Zitat Harigaya, Y., M. Shoji, T. Nakamura, E. Matsubara, K. Hosoda, and S. Hirai. 1995. Alpha 1-antichymotrypsin level in cerebrospinal fluid is closely associated with late onset Alzheimer’s disease. Internal Medicine 34(6): 481–484.PubMedCrossRef Harigaya, Y., M. Shoji, T. Nakamura, E. Matsubara, K. Hosoda, and S. Hirai. 1995. Alpha 1-antichymotrypsin level in cerebrospinal fluid is closely associated with late onset Alzheimer’s disease. Internal Medicine 34(6): 481–484.PubMedCrossRef
17.
Zurück zum Zitat Pirttila, T., P.D. Mehta, H. Frey, and H.M. Wisniewski. 1994. α1Antichymotrypsin and IL-1β are not increased in CSF or serum in Alzheimer’s disease. Neurobiology of Aging 15(3): 313–317.PubMedCrossRef Pirttila, T., P.D. Mehta, H. Frey, and H.M. Wisniewski. 1994. α1Antichymotrypsin and IL-1β are not increased in CSF or serum in Alzheimer’s disease. Neurobiology of Aging 15(3): 313–317.PubMedCrossRef
18.
Zurück zum Zitat Peskind, E.R., W.S. Griffin, K.T. Akama, M.A. Raskind, and L.J. Van Eldik. 2001. Cerebrospinal fluid s100B is elevated in the earlier stages of Alzheimer’s disease. Neurochemistry International 39: 409–413.PubMedCrossRef Peskind, E.R., W.S. Griffin, K.T. Akama, M.A. Raskind, and L.J. Van Eldik. 2001. Cerebrospinal fluid s100B is elevated in the earlier stages of Alzheimer’s disease. Neurochemistry International 39: 409–413.PubMedCrossRef
19.
Zurück zum Zitat Petzold, A., R. Jenkins, H.C. Watt, A.J. Green, E.J. Thompson, G. Keir, N.C. Fox, and M.N. Rossor. 2003. Cerebrospinal fluid s100B correlates with brain atrophy in Alzheimer’s disease. Neuroscience Letters 336: 167–170.PubMedCrossRef Petzold, A., R. Jenkins, H.C. Watt, A.J. Green, E.J. Thompson, G. Keir, N.C. Fox, and M.N. Rossor. 2003. Cerebrospinal fluid s100B correlates with brain atrophy in Alzheimer’s disease. Neuroscience Letters 336: 167–170.PubMedCrossRef
20.
Zurück zum Zitat Xia, M., S. Qin, M. McNamara, C. Mackay, and B.T. Hyman. 1997. Interleukin-8 receptor B immunoreactivity in brain and neuritic plaques of Alzheimer’s disease. American Journal of Pathology 150(4): 1267–1274.PubMedCentralPubMed Xia, M., S. Qin, M. McNamara, C. Mackay, and B.T. Hyman. 1997. Interleukin-8 receptor B immunoreactivity in brain and neuritic plaques of Alzheimer’s disease. American Journal of Pathology 150(4): 1267–1274.PubMedCentralPubMed
21.
Zurück zum Zitat Zhang, J., I. Sokal, E.R. Peskind, J.F. Quinn, J. Jankovic, C. Kenney, K.A. Chung, S.P. Millard, J.G. Nutt, and T.J. Montine. 2008. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. American Journal of Clinical Pathology 129(4): 526–529.PubMedCentralPubMedCrossRef Zhang, J., I. Sokal, E.R. Peskind, J.F. Quinn, J. Jankovic, C. Kenney, K.A. Chung, S.P. Millard, J.G. Nutt, and T.J. Montine. 2008. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. American Journal of Clinical Pathology 129(4): 526–529.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Zuliani, G., G. Guerra, M. Ranzini, L. Rossi, M.R. Munari, A. Zurlo, A. Blè, S. Volpato, A.R. Atti, and R. Fellin. 2007. High interleukin-6 plasma levels are associated with functional impairment in older patients with vascular dementia. International Journal of Geriatric Psychiatry 22(4): 305–331.PubMedCrossRef Zuliani, G., G. Guerra, M. Ranzini, L. Rossi, M.R. Munari, A. Zurlo, A. Blè, S. Volpato, A.R. Atti, and R. Fellin. 2007. High interleukin-6 plasma levels are associated with functional impairment in older patients with vascular dementia. International Journal of Geriatric Psychiatry 22(4): 305–331.PubMedCrossRef
23.
Zurück zum Zitat Luterman, J.D., V. Haroutunian, S. Yemul, et al. 2000. Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Archives of Neurology 57(8): 1153–1160.PubMedCrossRef Luterman, J.D., V. Haroutunian, S. Yemul, et al. 2000. Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Archives of Neurology 57(8): 1153–1160.PubMedCrossRef
24.
Zurück zum Zitat Zhang, J., D. Goodlett, J. Quinn, et al. 2005. Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer’s disease. Journal of Alzheimers Disease 7: 125–133. Zhang, J., D. Goodlett, J. Quinn, et al. 2005. Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer’s disease. Journal of Alzheimers Disease 7: 125–133.
25.
Zurück zum Zitat Hu, Y., A. Hosseini, J. Kauwe, et al. 2007. Identification and validation of novel CSF biomarkers for early stages of Alzheimer’s disease. Proteomics Clinical Applications 1: 1373–1384.PubMedCrossRef Hu, Y., A. Hosseini, J. Kauwe, et al. 2007. Identification and validation of novel CSF biomarkers for early stages of Alzheimer’s disease. Proteomics Clinical Applications 1: 1373–1384.PubMedCrossRef
26.
Zurück zum Zitat Castano, E., A. Roher, C. Esh, T. Kokjohn, and T. Beach. 2006. Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer’s disease and non-demented elderly subjects. Neurological Research 28: 155–163.PubMedCrossRef Castano, E., A. Roher, C. Esh, T. Kokjohn, and T. Beach. 2006. Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer’s disease and non-demented elderly subjects. Neurological Research 28: 155–163.PubMedCrossRef
27.
Zurück zum Zitat Lewczuk, P., and J. Wiltfang. 2008. Neurochemical dementia diagnostics: state of the art and research perspectives. Proteomics 8: 1292–1301.PubMedCrossRef Lewczuk, P., and J. Wiltfang. 2008. Neurochemical dementia diagnostics: state of the art and research perspectives. Proteomics 8: 1292–1301.PubMedCrossRef
28.
Zurück zum Zitat Ray, S., M. Britschgi, C. Herbert, Y. Takeda-Uchimura, A. Boxer, K. Blennow, L.F. Friedman, D.R. Galasko, M. Jutel, A. Karydas, et al. 2007. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nature Medicine 13: 1359–1362.PubMedCrossRef Ray, S., M. Britschgi, C. Herbert, Y. Takeda-Uchimura, A. Boxer, K. Blennow, L.F. Friedman, D.R. Galasko, M. Jutel, A. Karydas, et al. 2007. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nature Medicine 13: 1359–1362.PubMedCrossRef
29.
Zurück zum Zitat Doecke, J.D., S.M. Laws, N.G. Faux, W. Wilson, S.C. Burnham, C.P. Lam, A. Mondal, J. Bedo, A.I. Bush, B. Brown, K. De Ruyck, K.A. Ellis, C. Fowler, V.B. Gupta, R. Head, S.L. Macaulay, K. Pertile, C.C. Rowe, A. Rembach, M. Rodrigues, R. Rumble, C. Szoeke, K. Taddei, T. Taddei, B. Trounson, D. Ames, C.L. Masters, and R.N. Martins. 2012. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Archives of Neurology 69(10): 1318–1325.PubMedCrossRef Doecke, J.D., S.M. Laws, N.G. Faux, W. Wilson, S.C. Burnham, C.P. Lam, A. Mondal, J. Bedo, A.I. Bush, B. Brown, K. De Ruyck, K.A. Ellis, C. Fowler, V.B. Gupta, R. Head, S.L. Macaulay, K. Pertile, C.C. Rowe, A. Rembach, M. Rodrigues, R. Rumble, C. Szoeke, K. Taddei, T. Taddei, B. Trounson, D. Ames, C.L. Masters, and R.N. Martins. 2012. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Archives of Neurology 69(10): 1318–1325.PubMedCrossRef
30.
Zurück zum Zitat Soares, D.H., et al. 2012. Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Archives of Neurology 69: 1310–1317.PubMedCentralPubMedCrossRef Soares, D.H., et al. 2012. Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Archives of Neurology 69: 1310–1317.PubMedCentralPubMedCrossRef
31.
Zurück zum Zitat Henkel, A.W., K. Muller, P. Lewczuk, T. Muller, K. Marcus, J. Kornhuber, and J. Wiltfang. 2012. Multidimensional plasma protein separation technique for identification of potential Alzheimer’s disease plasma biomarkers: a pilot study. Journal of Neural Transmission 119: 779–788.PubMedCrossRef Henkel, A.W., K. Muller, P. Lewczuk, T. Muller, K. Marcus, J. Kornhuber, and J. Wiltfang. 2012. Multidimensional plasma protein separation technique for identification of potential Alzheimer’s disease plasma biomarkers: a pilot study. Journal of Neural Transmission 119: 779–788.PubMedCrossRef
32.
Zurück zum Zitat Crosiers, D., J. Theuns, P. Cras, and C. Van Broeckhoven. 2011. Parkinson disease: insights in clinical, genetic and pathological features of monogenic disease subtypes. Journal of Chemical Neuroanatomy 42(2): 131–141.PubMedCrossRef Crosiers, D., J. Theuns, P. Cras, and C. Van Broeckhoven. 2011. Parkinson disease: insights in clinical, genetic and pathological features of monogenic disease subtypes. Journal of Chemical Neuroanatomy 42(2): 131–141.PubMedCrossRef
33.
Zurück zum Zitat Reichmann, H. 2011. View point: etiology in Parkinson’s disease. Dual hit or spreading intoxication. Journal of the Neurological Sciences 310(1–2): 9–11.PubMedCrossRef Reichmann, H. 2011. View point: etiology in Parkinson’s disease. Dual hit or spreading intoxication. Journal of the Neurological Sciences 310(1–2): 9–11.PubMedCrossRef
34.
Zurück zum Zitat Lesage, S., and A. Brice. 2012. Role of Mendelian genes in “sporadic” Parkinson’s disease. Parkinsonism & Related Disorders 18(supplement 1): S66–S70.CrossRef Lesage, S., and A. Brice. 2012. Role of Mendelian genes in “sporadic” Parkinson’s disease. Parkinsonism & Related Disorders 18(supplement 1): S66–S70.CrossRef
35.
Zurück zum Zitat Taccioli, C., Maselli, V., Tegn’er, J., et al. (2011) ParkDB: a Parkinson’s disease gene expression database. Database, vol. 2011, article bar007. Taccioli, C., Maselli, V., Tegn’er, J., et al. (2011) ParkDB: a Parkinson’s disease gene expression database. Database, vol. 2011, article bar007.
36.
Zurück zum Zitat Crosiers, D., J. Theuns, P. Cras, and C. Van Broeckhoven. 2011. Parkinson disease: insights in clinical, genetic and pathological features of monogenic disease subtypes. Journal of Chemical Neuroanatomy 42(2): 131–141.PubMedCrossRef Crosiers, D., J. Theuns, P. Cras, and C. Van Broeckhoven. 2011. Parkinson disease: insights in clinical, genetic and pathological features of monogenic disease subtypes. Journal of Chemical Neuroanatomy 42(2): 131–141.PubMedCrossRef
37.
Zurück zum Zitat Dunning, C.J., J.F. Reyes, J.A. Steiner, and P. Brundin. 2012. Can Parkinson’s disease pathology be propagated from one neuron to another? Progress in Neurobiology 97(2): 205–219.PubMedCrossRef Dunning, C.J., J.F. Reyes, J.A. Steiner, and P. Brundin. 2012. Can Parkinson’s disease pathology be propagated from one neuron to another? Progress in Neurobiology 97(2): 205–219.PubMedCrossRef
38.
Zurück zum Zitat Shulman, J.M., P.L. De Jager, and M.B. Feany. 2011. Parkinson’s disease: genetics and pathogenesis. Annual Review of Pathology 6: 193–222.PubMedCrossRef Shulman, J.M., P.L. De Jager, and M.B. Feany. 2011. Parkinson’s disease: genetics and pathogenesis. Annual Review of Pathology 6: 193–222.PubMedCrossRef
39.
Zurück zum Zitat Obeso, J.A., M.C. Rodriguez-Oroz, C.G. Goetz, et al. 2010. Missing pieces in the Parkinson’s disease puzzle. Nature Medicine 16(6): 653–661.PubMedCrossRef Obeso, J.A., M.C. Rodriguez-Oroz, C.G. Goetz, et al. 2010. Missing pieces in the Parkinson’s disease puzzle. Nature Medicine 16(6): 653–661.PubMedCrossRef
40.
Zurück zum Zitat Hirsch, E.C., and S. Hunot. 2009. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurology 8: 382–397.PubMedCrossRef Hirsch, E.C., and S. Hunot. 2009. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurology 8: 382–397.PubMedCrossRef
41.
Zurück zum Zitat Zhang, W., T. Wang, Z. Pei, D.S. Miller, X. Wu, M.L. Block, B. Wilson, W. Zhang, Y. Zhou, J.S. Hong, et al. 2005. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB Journal 19: 533–542.PubMedCrossRef Zhang, W., T. Wang, Z. Pei, D.S. Miller, X. Wu, M.L. Block, B. Wilson, W. Zhang, Y. Zhou, J.S. Hong, et al. 2005. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB Journal 19: 533–542.PubMedCrossRef
42.
Zurück zum Zitat Reynolds, A.D., I. Kadiu, S.K. Garg, J.G. Glanzer, T. Nordgren, P. Ciborowski, R. Banerjee, and H.E. Gendelman. 2008. Nitrated alpha-synuclein and microglial neuroregulatory activities. Journal of Neuroimmune Pharmacology 3: 59–74.PubMedCentralPubMedCrossRef Reynolds, A.D., I. Kadiu, S.K. Garg, J.G. Glanzer, T. Nordgren, P. Ciborowski, R. Banerjee, and H.E. Gendelman. 2008. Nitrated alpha-synuclein and microglial neuroregulatory activities. Journal of Neuroimmune Pharmacology 3: 59–74.PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Chen, H., E.J. O’Reilly, M.A. Schwarzschild, and A. Ascherio. 2008. Peripheral inflammatory biomarkers and risk of Parkinson’s disease. American Journal of Epidemiology 167: 90–95.PubMedCrossRef Chen, H., E.J. O’Reilly, M.A. Schwarzschild, and A. Ascherio. 2008. Peripheral inflammatory biomarkers and risk of Parkinson’s disease. American Journal of Epidemiology 167: 90–95.PubMedCrossRef
44.
Zurück zum Zitat Wong, K.T., J.S. Grove, A. Grandinetti, J.D. Curb, M. Yee, P. Blanchette, et al. 2009. Association of fibrinogen with Parkinson disease in elderly Japanese-American men: a prospective study. Neuroepidemiology 34: 50–54.PubMedCentralPubMedCrossRef Wong, K.T., J.S. Grove, A. Grandinetti, J.D. Curb, M. Yee, P. Blanchette, et al. 2009. Association of fibrinogen with Parkinson disease in elderly Japanese-American men: a prospective study. Neuroepidemiology 34: 50–54.PubMedCentralPubMedCrossRef
45.
Zurück zum Zitat Margis, R., and C.R. Rieder. 2011. Identification of blood microRNAs associated to Parkinson’s disease. Journal of Biotechnology 152: 96–101.PubMedCrossRef Margis, R., and C.R. Rieder. 2011. Identification of blood microRNAs associated to Parkinson’s disease. Journal of Biotechnology 152: 96–101.PubMedCrossRef
46.
Zurück zum Zitat LeWitt, P. 2012. Recent advances in CSF biomarkers for Parkinson’s disease. Parkinsonism & Related Disorders 18(Suppl 1): 49–51.CrossRef LeWitt, P. 2012. Recent advances in CSF biomarkers for Parkinson’s disease. Parkinsonism & Related Disorders 18(Suppl 1): 49–51.CrossRef
47.
Zurück zum Zitat LeWitt, P., L. Schultz, P. Auinger, and M. Lu. 2011. CSF xanthine, homovanillic acid, and their ratio as biomarkers of Parkinson’s disease. Brain Research 140: 88–97.CrossRef LeWitt, P., L. Schultz, P. Auinger, and M. Lu. 2011. CSF xanthine, homovanillic acid, and their ratio as biomarkers of Parkinson’s disease. Brain Research 140: 88–97.CrossRef
48.
Zurück zum Zitat Orrell, R.W., J.J. Habgood, A. Malaspina, et al. 1999. Clinical characteristics of SOD1 gene mutations in UK families with ALS. Journal of Neurological Science 169: 56–60.CrossRef Orrell, R.W., J.J. Habgood, A. Malaspina, et al. 1999. Clinical characteristics of SOD1 gene mutations in UK families with ALS. Journal of Neurological Science 169: 56–60.CrossRef
49.
Zurück zum Zitat Blair, I.P., K.L. Williams, S.T. Warraich, et al. 2010. FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis. Journal of Neurology, Neurosurgery, and Psychiatry 81(6): 639–645.PubMedCrossRef Blair, I.P., K.L. Williams, S.T. Warraich, et al. 2010. FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis. Journal of Neurology, Neurosurgery, and Psychiatry 81(6): 639–645.PubMedCrossRef
50.
Zurück zum Zitat Kabashi, E., P.N. Valdmanis, P. Dion, et al. 2008. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genetics 40: 572–574.PubMedCrossRef Kabashi, E., P.N. Valdmanis, P. Dion, et al. 2008. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genetics 40: 572–574.PubMedCrossRef
51.
Zurück zum Zitat World Federation of Neurology Research Group on Neuromuscular Diseases Subcommittee on Motor Neuron Disease. Airlie House guidelines. 1995. Therapeutic trials in amyotrophic lateral sclerosis. Airlie House, “Therapeutic Trials in ALS,” Workshop Contributors. Journal of Neurological Science 129: 1–10.CrossRef World Federation of Neurology Research Group on Neuromuscular Diseases Subcommittee on Motor Neuron Disease. Airlie House guidelines. 1995. Therapeutic trials in amyotrophic lateral sclerosis. Airlie House, “Therapeutic Trials in ALS,” Workshop Contributors. Journal of Neurological Science 129: 1–10.CrossRef
52.
Zurück zum Zitat Traynor, B.J., M.B. Codd, B. Corr, C. Forde, E. Frost, and O.M. Hardiman. 2000. Clinical features of amyotrophic lateral sclerosis according to the El Escorial and Airlie House diagnostic criteria: a population-based study. Archives of Neurology 57: 1171–1176.PubMedCrossRef Traynor, B.J., M.B. Codd, B. Corr, C. Forde, E. Frost, and O.M. Hardiman. 2000. Clinical features of amyotrophic lateral sclerosis according to the El Escorial and Airlie House diagnostic criteria: a population-based study. Archives of Neurology 57: 1171–1176.PubMedCrossRef
53.
Zurück zum Zitat Liu, Y., W. Hao, A. Dawson, S. Liu, and K. Fassbender. 2009. Expression of amyotrophic lateral sclerosis-linked SOD1 mutant increases the neurotoxic potential of microglia via TLR2. Journal of Biological Chemistry 284: 3691–3699.PubMedCrossRef Liu, Y., W. Hao, A. Dawson, S. Liu, and K. Fassbender. 2009. Expression of amyotrophic lateral sclerosis-linked SOD1 mutant increases the neurotoxic potential of microglia via TLR2. Journal of Biological Chemistry 284: 3691–3699.PubMedCrossRef
54.
Zurück zum Zitat Yiangou, Y., P. Facer, P. Durrenberger, I.P. Chessell, A. Naylor, C. Bountra, R.R. Banati, and P.Y. Anand. 2006. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurology 6: 12.PubMedCentralPubMedCrossRef Yiangou, Y., P. Facer, P. Durrenberger, I.P. Chessell, A. Naylor, C. Bountra, R.R. Banati, and P.Y. Anand. 2006. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurology 6: 12.PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Amit, I., M. Garber, N. Chevrier, A.P. Leite, Y. Donner, T. Eisenhaure, M. Guttman, J.K. Grenier, W. Li, O. Zuk, L.A. Schubert, B. Birditt, T. Shay, A. Goren, X. Zhang, Z. Smith, R. Deering, R.C. McDonald, M. Cabili, B.E. Bernstein, J.L. Rinn, A. Meissner, D.E. Root, N. Hacohen, and A. Regev. 2009. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326: 257–263.PubMedCentralPubMedCrossRef Amit, I., M. Garber, N. Chevrier, A.P. Leite, Y. Donner, T. Eisenhaure, M. Guttman, J.K. Grenier, W. Li, O. Zuk, L.A. Schubert, B. Birditt, T. Shay, A. Goren, X. Zhang, Z. Smith, R. Deering, R.C. McDonald, M. Cabili, B.E. Bernstein, J.L. Rinn, A. Meissner, D.E. Root, N. Hacohen, and A. Regev. 2009. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326: 257–263.PubMedCentralPubMedCrossRef
56.
Zurück zum Zitat Uranishi, H., T. Tetsuka, M. Yamashita, K. Asamitsu, M. Shimizu, M. Itoh, and T. Okamoto. 2001. Involvement of the pro-oncoprotein TLS (translocated in liposarcoma) in nuclear factor-kappa B p65-mediated transcription as a coactivator. Journal of Biological Chemistry 276: 13395–13401.PubMedCrossRef Uranishi, H., T. Tetsuka, M. Yamashita, K. Asamitsu, M. Shimizu, M. Itoh, and T. Okamoto. 2001. Involvement of the pro-oncoprotein TLS (translocated in liposarcoma) in nuclear factor-kappa B p65-mediated transcription as a coactivator. Journal of Biological Chemistry 276: 13395–13401.PubMedCrossRef
57.
Zurück zum Zitat McGeer, P.L., and E.G. McGeer. 2008. Glial reactions in Parkinson’s disease. Movement Disorders 23: 474–483.PubMedCrossRef McGeer, P.L., and E.G. McGeer. 2008. Glial reactions in Parkinson’s disease. Movement Disorders 23: 474–483.PubMedCrossRef
58.
Zurück zum Zitat Zhang, R., R. Gascon, R.G. Miller, et al. 2005. Evidence for systemic immune system alterations in sporadic amyotrophic lateral sclerosis (sALS). Journal of Neuroimmunology 159: 215–224.PubMedCrossRef Zhang, R., R. Gascon, R.G. Miller, et al. 2005. Evidence for systemic immune system alterations in sporadic amyotrophic lateral sclerosis (sALS). Journal of Neuroimmunology 159: 215–224.PubMedCrossRef
59.
Zurück zum Zitat Mantovani, S., S. Garbelli, A. Pasini, et al. 2009. Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process. Journal of Neuroimmunology 210: 73–79.PubMedCrossRef Mantovani, S., S. Garbelli, A. Pasini, et al. 2009. Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process. Journal of Neuroimmunology 210: 73–79.PubMedCrossRef
60.
Zurück zum Zitat Keizman, D., O. Rogowski, S. Berliner, et al. 2009. Low-grade systemic inflammation in patients with amyotrophic lateral sclerosis. Acta Neurologica Scandinavica 119: 383–389.PubMedCrossRef Keizman, D., O. Rogowski, S. Berliner, et al. 2009. Low-grade systemic inflammation in patients with amyotrophic lateral sclerosis. Acta Neurologica Scandinavica 119: 383–389.PubMedCrossRef
61.
Zurück zum Zitat Turner, M.R., M.C. Kiernan, P.N. Leigh, and K. Talbot. 2009. Biomarkers in amyotrophic lateral sclerosis. Lancet Neurology 8: 94–109.PubMedCrossRef Turner, M.R., M.C. Kiernan, P.N. Leigh, and K. Talbot. 2009. Biomarkers in amyotrophic lateral sclerosis. Lancet Neurology 8: 94–109.PubMedCrossRef
62.
Zurück zum Zitat Nardo, G., S. Pozzi, M. Pignataro, E. Lauranzano, G. Spano, S. Garbelli, S. Mantovani, K. Marinou, L. Papetti, M. Monteforte, V. Torri, L. Paris, G. Bazzoni, C. Lunetta, M. Corbo, G. Mora, C. Bendotti, and V. Bonetto. 2011. Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells. PLoS One 6(10): e25545.PubMedCentralPubMedCrossRef Nardo, G., S. Pozzi, M. Pignataro, E. Lauranzano, G. Spano, S. Garbelli, S. Mantovani, K. Marinou, L. Papetti, M. Monteforte, V. Torri, L. Paris, G. Bazzoni, C. Lunetta, M. Corbo, G. Mora, C. Bendotti, and V. Bonetto. 2011. Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells. PLoS One 6(10): e25545.PubMedCentralPubMedCrossRef
64.
Zurück zum Zitat Mitchell, R.M., W.M. Freeman, W.T. Randazzo, H.E. Stephens, J.L. Beard, Z. Simmons, et al. 2009. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology 72: 14–19.PubMedCrossRef Mitchell, R.M., W.M. Freeman, W.T. Randazzo, H.E. Stephens, J.L. Beard, Z. Simmons, et al. 2009. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology 72: 14–19.PubMedCrossRef
65.
Zurück zum Zitat Beuche, W., M. Yushchenko, M. Mader, M. Maliszewska, K. Felgenhauer, and F. Weber. 2000. Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. Neuroreport 11: 3419–3422.PubMedCrossRef Beuche, W., M. Yushchenko, M. Mader, M. Maliszewska, K. Felgenhauer, and F. Weber. 2000. Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. Neuroreport 11: 3419–3422.PubMedCrossRef
67.
Zurück zum Zitat Moller, T. 2010. Neuroinflammation in Huntington’s disease. Journal of Neural Transmission 117(8): 1001–1008.PubMedCrossRef Moller, T. 2010. Neuroinflammation in Huntington’s disease. Journal of Neural Transmission 117(8): 1001–1008.PubMedCrossRef
68.
Zurück zum Zitat Li, S.H., and X.J. Li. 2004. Huntingtin–protein interactions and the pathogenesis of Huntington disease. Trends in Genetics 20: 146–154.PubMedCrossRef Li, S.H., and X.J. Li. 2004. Huntingtin–protein interactions and the pathogenesis of Huntington disease. Trends in Genetics 20: 146–154.PubMedCrossRef
69.
Zurück zum Zitat Orr, H.T., and H.Y. Zoghbi. 2007. Trinucleotide repeat disorders. Annual Review of Neuroscience 30: 575–621.PubMedCrossRef Orr, H.T., and H.Y. Zoghbi. 2007. Trinucleotide repeat disorders. Annual Review of Neuroscience 30: 575–621.PubMedCrossRef
70.
Zurück zum Zitat Imarisio, S., et al. 2008. Huntington disease: from pathology and genetics to potential therapies. Biochemistry Journal 412: 141–209.CrossRef Imarisio, S., et al. 2008. Huntington disease: from pathology and genetics to potential therapies. Biochemistry Journal 412: 141–209.CrossRef
71.
Zurück zum Zitat Roze, E., et al. 2008. Pathophysiology of Huntington’s disease: from huntingtin functions to potential treatments. Current Opinion in Neurology 21: 495–503. Roze, E., et al. 2008. Pathophysiology of Huntington’s disease: from huntingtin functions to potential treatments. Current Opinion in Neurology 21: 495–503.
72.
Zurück zum Zitat Björkqvist, M., E.J. Wild, J. Thiele, A. Silvestroni, R. Andre, N. Lahiri, et al. 2008. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. Journal of Experimental Medicine 205: 1869–1877.PubMedCentralPubMedCrossRef Björkqvist, M., E.J. Wild, J. Thiele, A. Silvestroni, R. Andre, N. Lahiri, et al. 2008. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. Journal of Experimental Medicine 205: 1869–1877.PubMedCentralPubMedCrossRef
73.
Zurück zum Zitat Khoshnan, A., J. Ko, E.E. Watkin, L.A. Paige, P.H. Reinhart, and P.H. Patterson. 2004. Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. Journal of Neuroscience 24: 7999–8008.PubMedCrossRef Khoshnan, A., J. Ko, E.E. Watkin, L.A. Paige, P.H. Reinhart, and P.H. Patterson. 2004. Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. Journal of Neuroscience 24: 7999–8008.PubMedCrossRef
74.
Zurück zum Zitat Cho, I.H., J. Hong, E.C. Suh, J.H. Kim, H. Lee, J.E. Lee, et al. 2008. Role of microglial IKK beta in kainic acid-induced hippocampal neuronal cell death. Brain 131: 3019–3303.PubMedCentralPubMedCrossRef Cho, I.H., J. Hong, E.C. Suh, J.H. Kim, H. Lee, J.E. Lee, et al. 2008. Role of microglial IKK beta in kainic acid-induced hippocampal neuronal cell death. Brain 131: 3019–3303.PubMedCentralPubMedCrossRef
75.
Zurück zum Zitat Kurlan, R., E. Caine, A. Rubin, et al. 1988. Cerebrospinal fluid correlates of depression in Huntington’s disease. Archives of Neurology 45: 881–883.PubMedCrossRef Kurlan, R., E. Caine, A. Rubin, et al. 1988. Cerebrospinal fluid correlates of depression in Huntington’s disease. Archives of Neurology 45: 881–883.PubMedCrossRef
76.
Zurück zum Zitat Schwarcz, R., C.A. Tamminga, R. Kurlan, et al. 1988. Cerebrospinal fluid levels of quinolinic acid in Huntington’s disease and schizophrenia. Annals of Neurology 24: 580–582.PubMedCrossRef Schwarcz, R., C.A. Tamminga, R. Kurlan, et al. 1988. Cerebrospinal fluid levels of quinolinic acid in Huntington’s disease and schizophrenia. Annals of Neurology 24: 580–582.PubMedCrossRef
77.
Zurück zum Zitat Montine, T.J., M.F. Beal, D. Robertson, et al. 1999. Cerebrospinal fluid F2-isoprostanes are elevated in Huntington’s disease. Neurology 52: 1104–1105.PubMedCrossRef Montine, T.J., M.F. Beal, D. Robertson, et al. 1999. Cerebrospinal fluid F2-isoprostanes are elevated in Huntington’s disease. Neurology 52: 1104–1105.PubMedCrossRef
78.
Zurück zum Zitat Jeitner, T.M., M.B. Bogdanov, W.R. Matson, et al\. 2001. N(epsilon)-(gamma-L-glutamyl)-L-lysine (GGEL) is increased in cerebrospinal fluid of patients with Huntington’s disease. Journal of Neurochemistry 79: 1109–1112.PubMedCrossRef Jeitner, T.M., M.B. Bogdanov, W.R. Matson, et al\. 2001. N(epsilon)-(gamma-L-glutamyl)-L-lysine (GGEL) is increased in cerebrospinal fluid of patients with Huntington’s disease. Journal of Neurochemistry 79: 1109–1112.PubMedCrossRef
Metadaten
Titel
Inflammatory Mediators as Biomarkers in Brain Disorders
verfasst von
Domenico Nuzzo
Pasquale Picone
Luca Caruana
Sonya Vasto
Annalisa Barera
Calogero Caruso
Marta Di Carlo
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2014
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-013-9780-2

Weitere Artikel der Ausgabe 3/2014

Inflammation 3/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.