Skip to main content
Erschienen in: Inflammation 4/2018

14.04.2018 | ORIGINAL ARTICLE

Inflammatory Response of Pulmonary Artery Smooth Muscle Cells Exposed to Oxidative and Biophysical Stress

verfasst von: Joanna Costa, Yan Zhu, Timothy Cox, Paul Fawcett, Thomas Shaffer, Deepthi Alapati

Erschienen in: Inflammation | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Pulmonary hypertension in the neonate requires treatment with oxygen and positive pressure ventilation, both known to induce lung injury. The direct response of pulmonary artery smooth muscle cells, the most abundant cells in the artery wall, to the stress of positive pressure and hyperoxia has not been previously studied. Pulmonary artery smooth muscle cells were cultured in temperature- and pressure-controlled air-tight chambers under conditions of positive pressure or hyperoxia for 24 h. Control cells were cultured in room air under atmospheric pressure. After the exposure period, culture medium was collected and samples were analyzed by ELISA, Human Cytokine 25-Plex Panel using a Luminex 200 analyzer and Western blot. Secretion of various inflammatory mediators, specifically IL-6, IL-8, IL-2R, MIP-1β, MCP-1, IP-10, IL-7, IL-1RA, and IFN-α, was higher in the positive pressure and hyperoxia groups compared with control. The level of cyclin D1 was decreased in the hyperoxia and positive pressure group compared with control. Levels of fibronectin and α-smooth muscle actin were not different among the groups. Pulmonary artery smooth muscle cells directly produce multiple inflammatory mediators in response to oxidative and biophysical stress in vitro, which may be part of a cascade that leads to the vascular and perivascular changes in pulmonary hypertension.
Literatur
1.
Zurück zum Zitat Angus, D.C., W.T. Linde-Zwirble, G. Clermont, M.F. Griffin, and R.H. Clark. 2001. Epidemiology of neonatal respiratory failure in the United States: projections from California and New York. American Journal of Respiratory and Critical Care Medicine 164: 1154–1160.CrossRefPubMed Angus, D.C., W.T. Linde-Zwirble, G. Clermont, M.F. Griffin, and R.H. Clark. 2001. Epidemiology of neonatal respiratory failure in the United States: projections from California and New York. American Journal of Respiratory and Critical Care Medicine 164: 1154–1160.CrossRefPubMed
2.
Zurück zum Zitat Subhedar, N.V., and N.J. Shaw. 2000. Changes in pulmonary arterial pressure in preterm infants with chronic lung disease. Archives of Disease in Childhood. Fetal and Neonatal Edition 82: F243–F247.CrossRefPubMedPubMedCentral Subhedar, N.V., and N.J. Shaw. 2000. Changes in pulmonary arterial pressure in preterm infants with chronic lung disease. Archives of Disease in Childhood. Fetal and Neonatal Edition 82: F243–F247.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Mecham, R.P., L.A. Whitehouse, D.S. Wrenn, W.C. Parks, G.L. Griffin, R.M. Senior, et al. 1987. Smooth muscle-mediated connective tissue remodeling in pulmonary hypertension. Science 237: 423–426.CrossRefPubMed Mecham, R.P., L.A. Whitehouse, D.S. Wrenn, W.C. Parks, G.L. Griffin, R.M. Senior, et al. 1987. Smooth muscle-mediated connective tissue remodeling in pulmonary hypertension. Science 237: 423–426.CrossRefPubMed
6.
Zurück zum Zitat Stenmark, K.R., K.A. Fagan, and M.G. Frid. 2006. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circulation Research 99: 675–691.CrossRefPubMed Stenmark, K.R., K.A. Fagan, and M.G. Frid. 2006. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circulation Research 99: 675–691.CrossRefPubMed
8.
Zurück zum Zitat Speer, C.P. 2001. New insights into the pathogenesis of pulmonary inflammation in preterm infants. Biology of the Neonate 79: 205–209.CrossRefPubMed Speer, C.P. 2001. New insights into the pathogenesis of pulmonary inflammation in preterm infants. Biology of the Neonate 79: 205–209.CrossRefPubMed
9.
Zurück zum Zitat Cool, C.D., D. Kennedy, N.F. Voelkel, and R.M. Tuder. 1997. Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection. Human Pathology 28: 434–442.CrossRefPubMed Cool, C.D., D. Kennedy, N.F. Voelkel, and R.M. Tuder. 1997. Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection. Human Pathology 28: 434–442.CrossRefPubMed
11.
Zurück zum Zitat Pinto, R.F., L. Higuchi Mde, and V.D. Aiello. 2004. Decreased numbers of T-lymphocytes and predominance of recently recruited macrophages in the walls of peripheral pulmonary arteries from 26 patients with pulmonary hypertension secondary to congenital cardiac shunts. Cardiovascular Pathology: the Official Journal of the Society for Cardiovascular Pathology 13: 268–275.CrossRef Pinto, R.F., L. Higuchi Mde, and V.D. Aiello. 2004. Decreased numbers of T-lymphocytes and predominance of recently recruited macrophages in the walls of peripheral pulmonary arteries from 26 patients with pulmonary hypertension secondary to congenital cardiac shunts. Cardiovascular Pathology: the Official Journal of the Society for Cardiovascular Pathology 13: 268–275.CrossRef
12.
Zurück zum Zitat Humbert, M., G. Monti, F. Brenot, O. Sitbon, A. Portier, L. Grangeot-Keros, P. Duroux, P. Galanaud, G. Simonneau, and D. Emilie. 1995. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine 151: 1628–1631.CrossRefPubMed Humbert, M., G. Monti, F. Brenot, O. Sitbon, A. Portier, L. Grangeot-Keros, P. Duroux, P. Galanaud, G. Simonneau, and D. Emilie. 1995. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine 151: 1628–1631.CrossRefPubMed
13.
Zurück zum Zitat Soon, E., A.M. Holmes, C.M. Treacy, N.J. Doughty, L. Southgate, R.D. Machado, R.C. Trembath, S. Jennings, L. Barker, P. Nicklin, C. Walker, D.C. Budd, J. Pepke-Zaba, and N.W. Morrell. 2010. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 122: 920–927. https://doi.org/10.1161/CIRCULATIONAHA.109.933762.CrossRefPubMed Soon, E., A.M. Holmes, C.M. Treacy, N.J. Doughty, L. Southgate, R.D. Machado, R.C. Trembath, S. Jennings, L. Barker, P. Nicklin, C. Walker, D.C. Budd, J. Pepke-Zaba, and N.W. Morrell. 2010. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 122: 920–927. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​109.​933762.CrossRefPubMed
14.
Zurück zum Zitat Sanchez, O., E. Marcos, F. Perros, E. Fadel, L. Tu, M. Humbert, P. Dartevelle, G. Simonneau, S. Adnot, and S. Eddahibi. 2007. Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine 176: 1041–1047.CrossRefPubMed Sanchez, O., E. Marcos, F. Perros, E. Fadel, L. Tu, M. Humbert, P. Dartevelle, G. Simonneau, S. Adnot, and S. Eddahibi. 2007. Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine 176: 1041–1047.CrossRefPubMed
15.
Zurück zum Zitat Kallapur, S.G., and A.H. Jobe. 2006. Contribution of inflammation to lung injury and development. Archives of Disease in Childhood. Fetal and Neonatal Edition 91: F132–F135.CrossRefPubMedPubMedCentral Kallapur, S.G., and A.H. Jobe. 2006. Contribution of inflammation to lung injury and development. Archives of Disease in Childhood. Fetal and Neonatal Edition 91: F132–F135.CrossRefPubMedPubMedCentral
17.
18.
20.
Zurück zum Zitat Humbert, M., N.W. Morrell, S.L. Archer, K.R. Stenmark, M.R. MacLean, I.M. Lang, B.W. Christman, E.K. Weir, O. Eickelberg, N.F. Voelkel, and M. Rabinovitch. 2004. Cellular and molecular pathobiology of pulmonary arterial hypertension. Journal of the American College of Cardiology 43: 13S–24S.CrossRefPubMed Humbert, M., N.W. Morrell, S.L. Archer, K.R. Stenmark, M.R. MacLean, I.M. Lang, B.W. Christman, E.K. Weir, O. Eickelberg, N.F. Voelkel, and M. Rabinovitch. 2004. Cellular and molecular pathobiology of pulmonary arterial hypertension. Journal of the American College of Cardiology 43: 13S–24S.CrossRefPubMed
24.
Zurück zum Zitat Eddahibi, S., C. Guignabert, A.M. Barlier-Mur, L. Dewachter, E. Fadel, P. Dartevelle, M. Humbert, G. Simonneau, N. Hanoun, F. Saurini, M. Hamon, and S. Adnot. 2006. Cross talk between endothelial and smooth muscle cells in pulmonary hypertension: critical role for serotonin-induced smooth muscle hyperplasia. Circulation 113: 1857–1864.CrossRefPubMed Eddahibi, S., C. Guignabert, A.M. Barlier-Mur, L. Dewachter, E. Fadel, P. Dartevelle, M. Humbert, G. Simonneau, N. Hanoun, F. Saurini, M. Hamon, and S. Adnot. 2006. Cross talk between endothelial and smooth muscle cells in pulmonary hypertension: critical role for serotonin-induced smooth muscle hyperplasia. Circulation 113: 1857–1864.CrossRefPubMed
29.
Zurück zum Zitat Rabinovitch, M., M.A. Konstam, W.J. Gamble, N. Papanicolaou, M.J. Aronovitz, S. Treves, and L. Reid. 1983. Changes in pulmonary blood flow affect vascular response to chronic hypoxia in rats. Circulation Research 52: 432–441.CrossRefPubMed Rabinovitch, M., M.A. Konstam, W.J. Gamble, N. Papanicolaou, M.J. Aronovitz, S. Treves, and L. Reid. 1983. Changes in pulmonary blood flow affect vascular response to chronic hypoxia in rats. Circulation Research 52: 432–441.CrossRefPubMed
30.
Zurück zum Zitat Quinn, T.P., M. Schlueter, S.J. Soifer, and J.A. Gutierrez. 2002. Cyclic mechanical stretch induces VEGF and FGF-2 expression in pulmonary vascular smooth muscle cells. American Journal of Physiology—Lung Cellular and Molecular Physiology 282: L897–L903.CrossRefPubMed Quinn, T.P., M. Schlueter, S.J. Soifer, and J.A. Gutierrez. 2002. Cyclic mechanical stretch induces VEGF and FGF-2 expression in pulmonary vascular smooth muscle cells. American Journal of Physiology—Lung Cellular and Molecular Physiology 282: L897–L903.CrossRefPubMed
31.
Zurück zum Zitat Gourh, P., F.C. Arnett, S. Assassi, F.K. Tan, M. Huang, L. Diekman, M.D. Mayes, J.D. Reveille, and S.K. Agarwal. 2009. Plasma cytokine profiles in systemic sclerosis: associations with autoantibody subsets and clinical manifestations. Arthritis Research & Therapy 11: R147. https://doi.org/10.1186/ar2821.CrossRef Gourh, P., F.C. Arnett, S. Assassi, F.K. Tan, M. Huang, L. Diekman, M.D. Mayes, J.D. Reveille, and S.K. Agarwal. 2009. Plasma cytokine profiles in systemic sclerosis: associations with autoantibody subsets and clinical manifestations. Arthritis Research & Therapy 11: R147. https://​doi.​org/​10.​1186/​ar2821.CrossRef
32.
Zurück zum Zitat Miyata, M., F. Sakuma, A. Yoshimura, H. Ishikawa, T. Nishimaki, and R. Kasukawa. 1995. Pulmonary hypertension in rats. 2. Role of interleukin-6. International Archives of Allergy and Immunology 108: 287–291.CrossRefPubMed Miyata, M., F. Sakuma, A. Yoshimura, H. Ishikawa, T. Nishimaki, and R. Kasukawa. 1995. Pulmonary hypertension in rats. 2. Role of interleukin-6. International Archives of Allergy and Immunology 108: 287–291.CrossRefPubMed
35.
Zurück zum Zitat Voelkel, N.F., R.M. Tuder, J. Bridges, and W.P. Arend. 1994. Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline. American Journal of Respiratory Cell and Molecular Biology 11: 664–675.CrossRefPubMed Voelkel, N.F., R.M. Tuder, J. Bridges, and W.P. Arend. 1994. Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline. American Journal of Respiratory Cell and Molecular Biology 11: 664–675.CrossRefPubMed
36.
Zurück zum Zitat Kirii, H., T. Niwa, Y. Yamada, H. Wada, K. Saito, Y. Iwakura, et al. 2003. Lack of interleukin-1ß decreases the severity of atherosclerosis in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology 23: 656–660.CrossRefPubMed Kirii, H., T. Niwa, Y. Yamada, H. Wada, K. Saito, Y. Iwakura, et al. 2003. Lack of interleukin-1ß decreases the severity of atherosclerosis in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology 23: 656–660.CrossRefPubMed
37.
Zurück zum Zitat Isoda, K., M. Shiigai, N. Ishigami, T. Matsuki, R. Horai, K. Nishikawa, M. Kusuhara, Y. Nishida, Y. Iwakura, and F. Ohsuzu. 2003. Deficiency of interleukin-1 receptor antagonist promotes neointimal formation after injury. Circulation 108: 516–518.CrossRefPubMed Isoda, K., M. Shiigai, N. Ishigami, T. Matsuki, R. Horai, K. Nishikawa, M. Kusuhara, Y. Nishida, Y. Iwakura, and F. Ohsuzu. 2003. Deficiency of interleukin-1 receptor antagonist promotes neointimal formation after injury. Circulation 108: 516–518.CrossRefPubMed
38.
39.
Zurück zum Zitat Larsen, C.M., M. Faulenbach, A. Vaag, A. Volund, J.A. Ehses, B. Seifert, et al. 2007. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. New England Journal of Medicine 356: 1517–1526.CrossRefPubMed Larsen, C.M., M. Faulenbach, A. Vaag, A. Volund, J.A. Ehses, B. Seifert, et al. 2007. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. New England Journal of Medicine 356: 1517–1526.CrossRefPubMed
40.
Zurück zum Zitat Lin, S.J., H.T. Yen, Y.H. Chen, H.H. Ku, F.Y. Lin, and Y.L. Chen. 2003. Expression of interleukin-1 beta and interleukin-1 receptor antagonist in oxLDL-treated human aortic smooth muscle cells and in the neointima of cholesterol-fed endothelia-denuded rabbits. Journal of Cellular Biochemistry 88: 836–847.CrossRefPubMed Lin, S.J., H.T. Yen, Y.H. Chen, H.H. Ku, F.Y. Lin, and Y.L. Chen. 2003. Expression of interleukin-1 beta and interleukin-1 receptor antagonist in oxLDL-treated human aortic smooth muscle cells and in the neointima of cholesterol-fed endothelia-denuded rabbits. Journal of Cellular Biochemistry 88: 836–847.CrossRefPubMed
43.
Metadaten
Titel
Inflammatory Response of Pulmonary Artery Smooth Muscle Cells Exposed to Oxidative and Biophysical Stress
verfasst von
Joanna Costa
Yan Zhu
Timothy Cox
Paul Fawcett
Thomas Shaffer
Deepthi Alapati
Publikationsdatum
14.04.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0772-0

Weitere Artikel der Ausgabe 4/2018

Inflammation 4/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.