Skip to main content
Erschienen in: Heart Failure Reviews 5/2019

23.04.2019 | Anemia

Influence of mitochondrial and systemic iron levels in heart failure pathology

verfasst von: Mihai Lupu, Diana-Valentina Tudor, Gabriela Adriana Filip

Erschienen in: Heart Failure Reviews | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Iron deficiency or overload poses an increasingly complex issue in cardiovascular disease, especially heart failure. The potential benefits and side effects of iron supplementation are still a matter of concern, even though current guidelines suggest therapeutic management of iron deficiency. In this review, we sought to examine the iron metabolism and to identify the rationale behind iron supplementation and iron chelation. Cardiovascular disease is increasingly linked with iron dysmetabolism, with an increased proportion of heart failure patients being affected by decreased plasma iron levels and in turn, by the decreased quality of life. Multiple studies have concluded on a benefit of iron administration, even if just for symptomatic relief. However, new studies field evidence for negative effects of dysregulated non-bound iron and its reactive oxygen species production, with concern to heart diseases. The molecular targets of iron usage, such as the mitochondria, are prone to deleterious effects of the polyvalent metal, added by the scarcely described processes of iron elimination. Iron supplementation and iron chelation show promise of therapeutic benefit in heart failure, with the extent and mechanisms of both prospects not being entirely understood. It may be that a state of decreased systemic and increased mitochondrial iron levels proves to be a useful frame for future advancements in understanding the interconnection of heart failure and iron metabolism.
Literatur
1.
Zurück zum Zitat Camprubi E, Jordan SF, Vasiliadou R, Lane N (2017) Iron catalysis at the origin of life. IUBMB Life 69(6):373–381PubMedCrossRef Camprubi E, Jordan SF, Vasiliadou R, Lane N (2017) Iron catalysis at the origin of life. IUBMB Life 69(6):373–381PubMedCrossRef
2.
Zurück zum Zitat Hohenberger J, Ray K, Meyer K (2012) The biology and chemistry of high-valent iron-oxo and iron-nitrido complexes. Nat Commun 3:720PubMedCrossRef Hohenberger J, Ray K, Meyer K (2012) The biology and chemistry of high-valent iron-oxo and iron-nitrido complexes. Nat Commun 3:720PubMedCrossRef
4.
Zurück zum Zitat Weiss G (2002) Iron and immunity: a double-edged sword. Eur J Clin Investig 32(SUPPL. 1):70–78CrossRef Weiss G (2002) Iron and immunity: a double-edged sword. Eur J Clin Investig 32(SUPPL. 1):70–78CrossRef
6.
Zurück zum Zitat Anderson CP, Shen M, Eisenstein RS, Leibold EA (2012) Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta, Mol Cell Res 1823:1468–1483 Anderson CP, Shen M, Eisenstein RS, Leibold EA (2012) Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta, Mol Cell Res 1823:1468–1483
7.
Zurück zum Zitat Anderson SA, Nizzi CP, Chang YI, Deck KM, Schmidt PJ, Galy B, Damnernsawad A, Broman AT, Kendziorski C, Hentze MW, Fleming MD, Zhang J, Eisenstein RS (2013) The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab [Internet] 17(2):282–290. https://doi.org/10.1016/j.cmet.2013.01.007 CrossRef Anderson SA, Nizzi CP, Chang YI, Deck KM, Schmidt PJ, Galy B, Damnernsawad A, Broman AT, Kendziorski C, Hentze MW, Fleming MD, Zhang J, Eisenstein RS (2013) The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab [Internet] 17(2):282–290. https://​doi.​org/​10.​1016/​j.​cmet.​2013.​01.​007 CrossRef
8.
Zurück zum Zitat Lakhal-Littleton S, Wolna M, Chung YJ, Christian HC, Heather LC, Brescia M et al (2016) An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. Elife. 5:1–25CrossRef Lakhal-Littleton S, Wolna M, Chung YJ, Christian HC, Heather LC, Brescia M et al (2016) An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. Elife. 5:1–25CrossRef
10.
Zurück zum Zitat Kasztura M, Dziegała M, Kobak K, Bania J, Mazur G, Banasiak W et al (2017) Both iron excess and iron depletion impair viability of rat H9C2 cardiomyocytes and L6G8C5 myocytes. Kardiol Pol 75(3):267–275PubMed Kasztura M, Dziegała M, Kobak K, Bania J, Mazur G, Banasiak W et al (2017) Both iron excess and iron depletion impair viability of rat H9C2 cardiomyocytes and L6G8C5 myocytes. Kardiol Pol 75(3):267–275PubMed
11.
Zurück zum Zitat McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E et al (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science (80- ) 291(5509):1755–1759CrossRef McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E et al (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science (80- ) 291(5509):1755–1759CrossRef
14.
Zurück zum Zitat Hooda J, Shah A, Zhang L (2014) Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients. 6(3):1080–1102PubMedPubMedCentralCrossRef Hooda J, Shah A, Zhang L (2014) Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients. 6(3):1080–1102PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Staron R, Lipinski P, Lenartowicz M, Bednarz A, Gajowiak A, Smuda E et al (2017) Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: duodenal expression profile of genes involved in heme iron absorption. PLoS One 12(7):1–22CrossRef Staron R, Lipinski P, Lenartowicz M, Bednarz A, Gajowiak A, Smuda E et al (2017) Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: duodenal expression profile of genes involved in heme iron absorption. PLoS One 12(7):1–22CrossRef
17.
Zurück zum Zitat Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21(2):195–199PubMedCrossRef Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21(2):195–199PubMedCrossRef
18.
Zurück zum Zitat Ponka P, Lok CN (1999) The transferrin receptor: role in health and disease. Int J Biochem Cell Biol 31:1111–1137 Ponka P, Lok CN (1999) The transferrin receptor: role in health and disease. Int J Biochem Cell Biol 31:1111–1137
19.
Zurück zum Zitat Hoffbrand AV, Catovsky D, Tuddenham EGD, Green AR. Postgraduate haematology: sixth edition. 2010 Hoffbrand AV, Catovsky D, Tuddenham EGD, Green AR. Postgraduate haematology: sixth edition. 2010
20.
Zurück zum Zitat Girelli D, Bozzini C, Roetto A, Alberti F, Daraio F, Colombari R, Olivieri O, Corrocher R, Camaschella C (2002) Clinical and pathologic findings in hemochromatosis type 3 due to a novel mutation in transferrin receptor 2 gene. Gastroenterology. 122(5):1295–1302PubMedCrossRef Girelli D, Bozzini C, Roetto A, Alberti F, Daraio F, Colombari R, Olivieri O, Corrocher R, Camaschella C (2002) Clinical and pathologic findings in hemochromatosis type 3 due to a novel mutation in transferrin receptor 2 gene. Gastroenterology. 122(5):1295–1302PubMedCrossRef
21.
Zurück zum Zitat Miles AL, Burr SP, Grice GL, Nathan JA (2017) The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1α prolyl hydroxylation by regulating cellular Iron levels. Elife. 6:e22693PubMedPubMedCentralCrossRef Miles AL, Burr SP, Grice GL, Nathan JA (2017) The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1α prolyl hydroxylation by regulating cellular Iron levels. Elife. 6:e22693PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Jenkitkasemwong S, Wang CY, MacKenzie B, Knutson MD (2012) Physiologic implications of metal-ion transport by ZIP14 and ZIP8. BioMetals. 25(4):643–655PubMedPubMedCentralCrossRef Jenkitkasemwong S, Wang CY, MacKenzie B, Knutson MD (2012) Physiologic implications of metal-ion transport by ZIP14 and ZIP8. BioMetals. 25(4):643–655PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Jenkitkasemwong S, Wang CY, Coffey R, Zhang W, Chan A, Biel T, Kim JS, Hojyo S, Fukada T, Knutson MD (2015) SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis. Cell Metab 22(1):138–150PubMedPubMedCentralCrossRef Jenkitkasemwong S, Wang CY, Coffey R, Zhang W, Chan A, Biel T, Kim JS, Hojyo S, Fukada T, Knutson MD (2015) SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis. Cell Metab 22(1):138–150PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Wang CY, Jenkitkasemwong S, Duarte S, Sparkman BK, Shawki A, Mackenzie B, Knutson MD (2012) ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J Biol Chem 287(41):34032–34043PubMedPubMedCentralCrossRef Wang CY, Jenkitkasemwong S, Duarte S, Sparkman BK, Shawki A, Mackenzie B, Knutson MD (2012) ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J Biol Chem 287(41):34032–34043PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Philpott CC, Ryu MS, Frey A, Patel S (2017) Cytosolic iron chaperones: proteins delivering iron cofactors in the cytosol of mammalian cells. J Biol Chem 292(31):12764–12771PubMedPubMedCentralCrossRef Philpott CC, Ryu MS, Frey A, Patel S (2017) Cytosolic iron chaperones: proteins delivering iron cofactors in the cytosol of mammalian cells. J Biol Chem 292(31):12764–12771PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Chaudhury A, Chander P, Howe PH (2010) Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1’s multifunctional regulatory roles. Rna 16:1449–1462 Chaudhury A, Chander P, Howe PH (2010) Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1’s multifunctional regulatory roles. Rna 16:1449–1462
30.
Zurück zum Zitat Theil EC. Ferritin iron minerals are chelator targets, antioxidants, and coated, dietary iron. In: Annals of the New York Academy of Sciences. 2010. p. 197–204 Theil EC. Ferritin iron minerals are chelator targets, antioxidants, and coated, dietary iron. In: Annals of the New York Academy of Sciences. 2010. p. 197–204
31.
Zurück zum Zitat Zhu W, Li X, Xie W, Luo F, Kaur D, Andersen JK, Jankovic J, le W (2010) Genetic iron chelation protects against proteasome inhibition-induced dopamine neuron degeneration. Neurobiol Dis 37(2):307–313PubMedCrossRef Zhu W, Li X, Xie W, Luo F, Kaur D, Andersen JK, Jankovic J, le W (2010) Genetic iron chelation protects against proteasome inhibition-induced dopamine neuron degeneration. Neurobiol Dis 37(2):307–313PubMedCrossRef
32.
Zurück zum Zitat Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ, Richter N, Stümpfig M, Srinivasan V, Stehling O, Mühlenhoff U (2015) The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur J Cell Biol 94(7–9):280–291PubMedCrossRef Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ, Richter N, Stümpfig M, Srinivasan V, Stehling O, Mühlenhoff U (2015) The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur J Cell Biol 94(7–9):280–291PubMedCrossRef
35.
Zurück zum Zitat Krause A, Neitz S, Mägert HJ, Schulz A, Forssmann WG, Schulz-Knappe P, Adermann K (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480(2–3):147–150PubMedCrossRef Krause A, Neitz S, Mägert HJ, Schulz A, Forssmann WG, Schulz-Knappe P, Adermann K (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480(2–3):147–150PubMedCrossRef
39.
Zurück zum Zitat Lymboussaki A, Pignatti E, Montosi G, Garuti C, Haile DJ, Pietrangelo A (2003) The role of the iron responsive element in the control of ferroportin1/IREG1/MTP1 gene expression. J Hepatol 39(5):710–715PubMedCrossRef Lymboussaki A, Pignatti E, Montosi G, Garuti C, Haile DJ, Pietrangelo A (2003) The role of the iron responsive element in the control of ferroportin1/IREG1/MTP1 gene expression. J Hepatol 39(5):710–715PubMedCrossRef
40.
Zurück zum Zitat Auguet T, Aragonès G, Berlanga A, Martínez S, Sabench F, Binetti J, Aguilar C, Porras JA, Molina A, del Castillo D, Richart C (2017) Hepcidin in morbidly obese women with nonalcoholic fatty liver disease. PLoS One 12(10):e0187065PubMedPubMedCentralCrossRef Auguet T, Aragonès G, Berlanga A, Martínez S, Sabench F, Binetti J, Aguilar C, Porras JA, Molina A, del Castillo D, Richart C (2017) Hepcidin in morbidly obese women with nonalcoholic fatty liver disease. PLoS One 12(10):e0187065PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of mammalian iron metabolism. Cell. 142(1):24–38PubMedCrossRef Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of mammalian iron metabolism. Cell. 142(1):24–38PubMedCrossRef
43.
Zurück zum Zitat Papanikolaou G, Pantopoulos K (2017) Systemic iron homeostasis and erythropoiesis. IUBMB Life 69(6):399–413PubMedCrossRef Papanikolaou G, Pantopoulos K (2017) Systemic iron homeostasis and erythropoiesis. IUBMB Life 69(6):399–413PubMedCrossRef
44.
Zurück zum Zitat Yamamoto K, Kuragano T, Kimura T, Nanami M, Hasuike Y, Nakanishi T (2018) Interplay of adipocyte and hepatocyte: leptin upregulates hepcidin. Biochem Biophys Res Commun 495(1):1548–1554PubMedCrossRef Yamamoto K, Kuragano T, Kimura T, Nanami M, Hasuike Y, Nakanishi T (2018) Interplay of adipocyte and hepatocyte: leptin upregulates hepcidin. Biochem Biophys Res Commun 495(1):1548–1554PubMedCrossRef
45.
Zurück zum Zitat Zabeau L, Peelman F, Tavernier J (2015) Leptin: from structural insights to the design of antagonists. Life Sci 140:49–56PubMedCrossRef Zabeau L, Peelman F, Tavernier J (2015) Leptin: from structural insights to the design of antagonists. Life Sci 140:49–56PubMedCrossRef
47.
Zurück zum Zitat Cavallaro F, Duca L, Pisani LF, Rigolini R, Spina L, Tontini GE et al (2017) Anti-TNF-mediated modulation of prohepcidin improves iron availability in inflammatory bowel disease, in an IL-6-mediated fashion. Can J Gastroenterol Hepatol 2017 Cavallaro F, Duca L, Pisani LF, Rigolini R, Spina L, Tontini GE et al (2017) Anti-TNF-mediated modulation of prohepcidin improves iron availability in inflammatory bowel disease, in an IL-6-mediated fashion. Can J Gastroenterol Hepatol 2017
50.
Zurück zum Zitat Liu Q, Davidoff O, Niss K, Haase VH (2012) Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J Clin Invest 122(12):4635–4644PubMedPubMedCentralCrossRef Liu Q, Davidoff O, Niss K, Haase VH (2012) Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J Clin Invest 122(12):4635–4644PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Sheftel AD, Lill R (2009) The power plant of the cell is also a smithy: the emerging role of mitochondria in cellular iron homeostasis. Ann Med 41:82–99 Sheftel AD, Lill R (2009) The power plant of the cell is also a smithy: the emerging role of mitochondria in cellular iron homeostasis. Ann Med 41:82–99
53.
Zurück zum Zitat Haddad S, Wang Y, Galy B, Korf-Klingebiel M, Hirsch V, Baru AM et al (2017) Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. Eur Heart J 38(5):362–372PubMed Haddad S, Wang Y, Galy B, Korf-Klingebiel M, Hirsch V, Baru AM et al (2017) Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. Eur Heart J 38(5):362–372PubMed
54.
Zurück zum Zitat Galy B, Ferring-Appel D, Sauer SW, Kaden S, Lyoumi S, Puy H, Kölker S, Gröne HJ, Hentze MW (2010) Iron regulatory proteins secure mitochondrial iron sufficiency and function. Cell Metab 12(2):194–201PubMedCrossRef Galy B, Ferring-Appel D, Sauer SW, Kaden S, Lyoumi S, Puy H, Kölker S, Gröne HJ, Hentze MW (2010) Iron regulatory proteins secure mitochondrial iron sufficiency and function. Cell Metab 12(2):194–201PubMedCrossRef
55.
Zurück zum Zitat Zhao G, Arosio P, Chasteen ND (2006) Iron(II) and hydrogen peroxide detoxification by human H-chain ferritin. An EPR spin-trapping study. Biochemistry. 45(10):3429–3436PubMedCrossRef Zhao G, Arosio P, Chasteen ND (2006) Iron(II) and hydrogen peroxide detoxification by human H-chain ferritin. An EPR spin-trapping study. Biochemistry. 45(10):3429–3436PubMedCrossRef
57.
Zurück zum Zitat Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Jayawardena S, de Smaele E, Cong R, Beaumont C, Torti FM, Torti SV, Franzoso G (2004) Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species. Cell. 119(4):529–542PubMedCrossRef Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Jayawardena S, de Smaele E, Cong R, Beaumont C, Torti FM, Torti SV, Franzoso G (2004) Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species. Cell. 119(4):529–542PubMedCrossRef
60.
Zurück zum Zitat Oudit GY, Sun H, Trivieri MG, Koch SE, Dawood F, Ackerley C, Yazdanpanah M, Wilson GJ, Schwartz A, Liu PP, Backx PH (2003) L-type Ca2+channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med 9(9):1187–1194PubMedCrossRef Oudit GY, Sun H, Trivieri MG, Koch SE, Dawood F, Ackerley C, Yazdanpanah M, Wilson GJ, Schwartz A, Liu PP, Backx PH (2003) L-type Ca2+channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med 9(9):1187–1194PubMedCrossRef
62.
Zurück zum Zitat Kumfu S, Chattipakorn S, Chinda K, Fucharoen S, Chattipakorn N (2012) T-type calcium channel blockade improves survival and cardiovascular function in thalassemic mice. Eur J Haematol 88(6):535–548PubMedCrossRef Kumfu S, Chattipakorn S, Chinda K, Fucharoen S, Chattipakorn N (2012) T-type calcium channel blockade improves survival and cardiovascular function in thalassemic mice. Eur J Haematol 88(6):535–548PubMedCrossRef
63.
Zurück zum Zitat Nam H, Wang CY, Zhang L, Zhang W, Hojyo S, Fukada T, Knutson MD (2013) ZIP14 and DMT1 in the liver, pancreas, and heart are differentially regulated by iron deficiency and overload: implications for tissue iron uptake in iron-related disorders. Haematologica. 98(7):1049–1057PubMedPubMedCentralCrossRef Nam H, Wang CY, Zhang L, Zhang W, Hojyo S, Fukada T, Knutson MD (2013) ZIP14 and DMT1 in the liver, pancreas, and heart are differentially regulated by iron deficiency and overload: implications for tissue iron uptake in iron-related disorders. Haematologica. 98(7):1049–1057PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Omiya S, Hikoso S, Imanishi Y, Saito A, Yamaguchi O, Takeda T, Mizote I, Oka T, Taneike M, Nakano Y, Matsumura Y, Nishida K, Sawa Y, Hori M, Otsu K (2009) Downregulation of ferritin heavy chain increases labile iron pool, oxidative stress and cell death in cardiomyocytes. J Mol Cell Cardiol [Internet] 46(1):59–66. https://doi.org/10.1016/j.yjmcc.2008.09.714 CrossRef Omiya S, Hikoso S, Imanishi Y, Saito A, Yamaguchi O, Takeda T, Mizote I, Oka T, Taneike M, Nakano Y, Matsumura Y, Nishida K, Sawa Y, Hori M, Otsu K (2009) Downregulation of ferritin heavy chain increases labile iron pool, oxidative stress and cell death in cardiomyocytes. J Mol Cell Cardiol [Internet] 46(1):59–66. https://​doi.​org/​10.​1016/​j.​yjmcc.​2008.​09.​714 CrossRef
65.
Zurück zum Zitat Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH (2006) Mitoferrin is essential for erythroid iron assimilation. Nature. 440(7080):96–100PubMedCrossRef Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH (2006) Mitoferrin is essential for erythroid iron assimilation. Nature. 440(7080):96–100PubMedCrossRef
66.
Zurück zum Zitat Nie G, Sheftel AD, Kim SF, Ponka P (2005) Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes cellular iron homeostasis. Blood. 105(5):2161–2167PubMedCrossRef Nie G, Sheftel AD, Kim SF, Ponka P (2005) Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes cellular iron homeostasis. Blood. 105(5):2161–2167PubMedCrossRef
68.
Zurück zum Zitat Filippatos G, Farmakis D, Colet JC, Dickstein K, Lüscher TF, Willenheimer R et al (2013) Intravenous ferric carboxymaltose in iron-deficient chronic heart failure patients with and without anaemia: a subanalysis of the FAIR-HF trial. Eur J Heart Fail 15:1267–1276 Filippatos G, Farmakis D, Colet JC, Dickstein K, Lüscher TF, Willenheimer R et al (2013) Intravenous ferric carboxymaltose in iron-deficient chronic heart failure patients with and without anaemia: a subanalysis of the FAIR-HF trial. Eur J Heart Fail 15:1267–1276
69.
Zurück zum Zitat Jankowska EA, Malyszko J, Ardehali H, Koc-Zorawska E, Banasiak W, Von Haehling S et al (2013) Iron status in patients with chronic heart failure. Eur Heart J 34(11):827–834PubMedCrossRef Jankowska EA, Malyszko J, Ardehali H, Koc-Zorawska E, Banasiak W, Von Haehling S et al (2013) Iron status in patients with chronic heart failure. Eur Heart J 34(11):827–834PubMedCrossRef
70.
Zurück zum Zitat Pagani A, Nai A, Corna G, Bosurgi L, Rovere-Querini P, Camaschella C, Silvestri L (2011) Low hepcidin accounts for the proinflammatory status associated with iron deficiency. Blood. 118(3):736–746PubMedCrossRef Pagani A, Nai A, Corna G, Bosurgi L, Rovere-Querini P, Camaschella C, Silvestri L (2011) Low hepcidin accounts for the proinflammatory status associated with iron deficiency. Blood. 118(3):736–746PubMedCrossRef
71.
Zurück zum Zitat Petrak J, Havlenova T, Krijt M, Behounek M, Franekova J, Cervenka L, Pluhacek T, Vyoral D, Melenovsky V (2019) Myocardial iron homeostasis and hepcidin expression in a rat model of heart failure at different levels of dietary iron intake. Biochim Biophys Acta, Gen Subj 1863(4):703–713CrossRef Petrak J, Havlenova T, Krijt M, Behounek M, Franekova J, Cervenka L, Pluhacek T, Vyoral D, Melenovsky V (2019) Myocardial iron homeostasis and hepcidin expression in a rat model of heart failure at different levels of dietary iron intake. Biochim Biophys Acta, Gen Subj 1863(4):703–713CrossRef
72.
Zurück zum Zitat Shirazi LF, Bissett J, Romeo F, Mehta JL (2017) Role of inflammation in heart failure. Curr Atheroscler Rep 19(6) Shirazi LF, Bissett J, Romeo F, Mehta JL (2017) Role of inflammation in heart failure. Curr Atheroscler Rep 19(6)
73.
Zurück zum Zitat Melenovsky V, Petrak J, Mracek T, Benes J, Borlaug BA, Nuskova H, Pluhacek T, Spatenka J, Kovalcikova J, Drahota Z, Kautzner J, Pirk J, Houstek J (2017) Myocardial iron content and mitochondrial function in human heart failure: a direct tissue analysis. Eur J Heart Fail [Internet] 19(4):522–530. Available from. https://doi.org/10.1002/ejhf.640 CrossRef Melenovsky V, Petrak J, Mracek T, Benes J, Borlaug BA, Nuskova H, Pluhacek T, Spatenka J, Kovalcikova J, Drahota Z, Kautzner J, Pirk J, Houstek J (2017) Myocardial iron content and mitochondrial function in human heart failure: a direct tissue analysis. Eur J Heart Fail [Internet] 19(4):522–530. Available from. https://​doi.​org/​10.​1002/​ejhf.​640 CrossRef
74.
Zurück zum Zitat Hoes MF, Grote Beverborg N, Kijlstra JD, Kuipers J, Swinkels DW, Giepmans BNG, Rodenburg RJ, van Veldhuisen DJ, de Boer RA, van der Meer P (2018) Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur J Heart Fail 20(5):910–919PubMedCrossRef Hoes MF, Grote Beverborg N, Kijlstra JD, Kuipers J, Swinkels DW, Giepmans BNG, Rodenburg RJ, van Veldhuisen DJ, de Boer RA, van der Meer P (2018) Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur J Heart Fail 20(5):910–919PubMedCrossRef
75.
Zurück zum Zitat Naito Y, Sawada H, Oboshi M, Okuno K, Yasumura S, Okuhara Y, Eguchi A, Nishimura K, Soyama Y, Asakura M, Ishihara M, Tsujino T, Masuyama T (2017) Altered expression of intestinal duodenal cytochrome b and divalent metal transporter 1 might be associated with cardio-renal anemia syndrome. Heart Vessel 32(11):1410–1414CrossRef Naito Y, Sawada H, Oboshi M, Okuno K, Yasumura S, Okuhara Y, Eguchi A, Nishimura K, Soyama Y, Asakura M, Ishihara M, Tsujino T, Masuyama T (2017) Altered expression of intestinal duodenal cytochrome b and divalent metal transporter 1 might be associated with cardio-renal anemia syndrome. Heart Vessel 32(11):1410–1414CrossRef
77.
Zurück zum Zitat Boddaert N, Sang KHLQ, Rötig A, Leroy-Willig A, Gallet S, Brunelle F et al (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood. 110(1):401–408PubMedCrossRef Boddaert N, Sang KHLQ, Rötig A, Leroy-Willig A, Gallet S, Brunelle F et al (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood. 110(1):401–408PubMedCrossRef
78.
Zurück zum Zitat Sawicki KT, Shang M, Wu R, Chang HC, Khechaduri A, Sato T, Kamide C, Liu T, Naga Prasad SV, Ardehali H (2015) Increased heme levels in the heart lead to exacerbated ischemic injury. J Am Heart Assoc 4(8):e002272PubMedPubMedCentralCrossRef Sawicki KT, Shang M, Wu R, Chang HC, Khechaduri A, Sato T, Kamide C, Liu T, Naga Prasad SV, Ardehali H (2015) Increased heme levels in the heart lead to exacerbated ischemic injury. J Am Heart Assoc 4(8):e002272PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Zou C, Liu X, Xie R, Bao Y, Jin Q, Jia X, Li L, Liu R (2017) Deferiprone attenuates inflammation and myocardial fibrosis in diabetic cardiomyopathy rats. Biochem Biophys Res Commun 486(4):930–936PubMedCrossRef Zou C, Liu X, Xie R, Bao Y, Jin Q, Jia X, Li L, Liu R (2017) Deferiprone attenuates inflammation and myocardial fibrosis in diabetic cardiomyopathy rats. Biochem Biophys Res Commun 486(4):930–936PubMedCrossRef
81.
Zurück zum Zitat Chang HC, Shapiro JS, Ardehali H (2016) Getting to the “heart” of cardiac disease by decreasing mitochondrial iron. Circ Res 119:1164–1166 Chang HC, Shapiro JS, Ardehali H (2016) Getting to the “heart” of cardiac disease by decreasing mitochondrial iron. Circ Res 119:1164–1166
84.
Zurück zum Zitat Kali A, Kumar A, Cokic I, Tang RLQ, Tsaftaris SA, Friedrich MG, Dharmakumar R (2013) Chronic manifestation of postreperfusion intramyocardial hemorrhage as regional iron deposition: a cardiovascular magnetic resonance study with ex vivo validation. Circ Cardiovasc Imaging 6(2):218–228PubMedCrossRef Kali A, Kumar A, Cokic I, Tang RLQ, Tsaftaris SA, Friedrich MG, Dharmakumar R (2013) Chronic manifestation of postreperfusion intramyocardial hemorrhage as regional iron deposition: a cardiovascular magnetic resonance study with ex vivo validation. Circ Cardiovasc Imaging 6(2):218–228PubMedCrossRef
85.
Zurück zum Zitat Carberry J, Carrick D, Haig C, Ahmed N, Mordi I, McEntegart M, et al. Persistent iron within the infarct core after ST-segment elevation myocardial infarction. Implications for left ventricular remodeling and health outcomes. JACC Cardiovasc Imaging. 2017; Carberry J, Carrick D, Haig C, Ahmed N, Mordi I, McEntegart M, et al. Persistent iron within the infarct core after ST-segment elevation myocardial infarction. Implications for left ventricular remodeling and health outcomes. JACC Cardiovasc Imaging. 2017;
86.
Zurück zum Zitat Simonis G, Mueller K, Schwarz P, Wiedemann S, Adler G, Strasser RH, Kulaksiz H (2010) The iron-regulatory peptide hepcidin is upregulated in the ischemic and in the remote myocardium after myocardial infarction. Peptides. 31(9):1786–1790PubMedCrossRef Simonis G, Mueller K, Schwarz P, Wiedemann S, Adler G, Strasser RH, Kulaksiz H (2010) The iron-regulatory peptide hepcidin is upregulated in the ischemic and in the remote myocardium after myocardial infarction. Peptides. 31(9):1786–1790PubMedCrossRef
90.
Zurück zum Zitat Jankowska EA, Tkaczyszyn M, Suchocki T, Drozd M, von Haehling S, Doehner W, Banasiak W, Filippatos G, Anker SD, Ponikowski P (2016) Effects of intravenous iron therapy in iron-deficient patients with systolic heart failure: a meta-analysis of randomized controlled trials. Eur J Heart Fail [Internet] 18(7):786–795. Available from. https://doi.org/10.1002/ejhf.473 CrossRef Jankowska EA, Tkaczyszyn M, Suchocki T, Drozd M, von Haehling S, Doehner W, Banasiak W, Filippatos G, Anker SD, Ponikowski P (2016) Effects of intravenous iron therapy in iron-deficient patients with systolic heart failure: a meta-analysis of randomized controlled trials. Eur J Heart Fail [Internet] 18(7):786–795. Available from. https://​doi.​org/​10.​1002/​ejhf.​473 CrossRef
91.
Zurück zum Zitat Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, Lüscher TF, Bart B, Banasiak W, Niegowska J, Kirwan BA, Mori C, von Eisenhart Rothe B, Pocock SJ, Poole-Wilson PA, Ponikowski P, FAIR-HF Trial Investigators (2009) Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med [Internet] 361(25):2436–2448. Available from. https://doi.org/10.1056/NEJMoa0908355 CrossRef Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, Lüscher TF, Bart B, Banasiak W, Niegowska J, Kirwan BA, Mori C, von Eisenhart Rothe B, Pocock SJ, Poole-Wilson PA, Ponikowski P, FAIR-HF Trial Investigators (2009) Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med [Internet] 361(25):2436–2448. Available from. https://​doi.​org/​10.​1056/​NEJMoa0908355 CrossRef
92.
Zurück zum Zitat Cappellini MD, Comin-Colet J, de Francisco A, Dignass A, Doehner W, Lam CSP et al (2017) Iron deficiency across chronic inflammatory conditions: international expert opinion on definition, diagnosis, and management. Am J Hematol 92(10):1068–1078PubMedPubMedCentralCrossRef Cappellini MD, Comin-Colet J, de Francisco A, Dignass A, Doehner W, Lam CSP et al (2017) Iron deficiency across chronic inflammatory conditions: international expert opinion on definition, diagnosis, and management. Am J Hematol 92(10):1068–1078PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Beverborg NG, Klip IJT, Meijers WC, Voors AA, Vegter EL, Van Der Wal HH et al (2018) Definition of iron deficiency based on the gold standard of bone marrow iron staining in heart failure patients. Circ Heart Fail 11(2) Beverborg NG, Klip IJT, Meijers WC, Voors AA, Vegter EL, Van Der Wal HH et al (2018) Definition of iron deficiency based on the gold standard of bone marrow iron staining in heart failure patients. Circ Heart Fail 11(2)
94.
Zurück zum Zitat Cleland JGF, Zhang J, Pellicori P, Dicken B, Dierckx R, Shoaib A, Wong K, Rigby A, Goode K, Clark AL (2016) Prevalence and outcomes of anemia and hematinic deficiencies in patients with chronic heart failure. JAMA Cardiol 1(5):539–547PubMedCrossRef Cleland JGF, Zhang J, Pellicori P, Dicken B, Dierckx R, Shoaib A, Wong K, Rigby A, Goode K, Clark AL (2016) Prevalence and outcomes of anemia and hematinic deficiencies in patients with chronic heart failure. JAMA Cardiol 1(5):539–547PubMedCrossRef
95.
Zurück zum Zitat Adams PC (2015) Epidemiology and diagnostic testing for hemochromatosis and iron overload. Int J Lab Hematol 37(S1):25–30PubMedCrossRef Adams PC (2015) Epidemiology and diagnostic testing for hemochromatosis and iron overload. Int J Lab Hematol 37(S1):25–30PubMedCrossRef
96.
Zurück zum Zitat Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D et al (2017) Recent advances in cardiovascular magnetic resonance. Circ Cardiovasc Imaging 10(6) Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D et al (2017) Recent advances in cardiovascular magnetic resonance. Circ Cardiovasc Imaging 10(6)
97.
Zurück zum Zitat Theresa MIC (2015) Iron therapy for the treatment of iron deficiency in chronic heart failure: intravenous or oral? Eur J Heart Fail 17(3):248–262CrossRef Theresa MIC (2015) Iron therapy for the treatment of iron deficiency in chronic heart failure: intravenous or oral? Eur J Heart Fail 17(3):248–262CrossRef
98.
Zurück zum Zitat Rognoni C, Venturini S, Meregaglia M, Marmifero M, Tarricone R (2016) Efficacy and safety of ferric carboxymaltose and other formulations in iron-deficient patients: a systematic review and network meta-analysis of randomised controlled trials. Clinical Drug Investigation 36:177–194PubMedCrossRef Rognoni C, Venturini S, Meregaglia M, Marmifero M, Tarricone R (2016) Efficacy and safety of ferric carboxymaltose and other formulations in iron-deficient patients: a systematic review and network meta-analysis of randomised controlled trials. Clinical Drug Investigation 36:177–194PubMedCrossRef
100.
Zurück zum Zitat Hughes CM, Woodside JV, McGartland C, Roberts MJ, Nicholls DP, McKeown PP (2012) Nutritional intake and oxidative stress in chronic heart failure. Nutr Metab Cardiovasc Dis 22(4):376–382PubMedCrossRef Hughes CM, Woodside JV, McGartland C, Roberts MJ, Nicholls DP, McKeown PP (2012) Nutritional intake and oxidative stress in chronic heart failure. Nutr Metab Cardiovasc Dis 22(4):376–382PubMedCrossRef
101.
Zurück zum Zitat Jankowska EA, Von Haehling S, Anker SD, MacDougall IC, Ponikowski P (2013) Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives. Eur Heart J 34(11):816–829PubMedCrossRef Jankowska EA, Von Haehling S, Anker SD, MacDougall IC, Ponikowski P (2013) Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives. Eur Heart J 34(11):816–829PubMedCrossRef
102.
Zurück zum Zitat Shah R, Agarwal AK (2013) Anemia associated with chronic heart failure: current concepts. Clin Interv Aging 8:111–122 Shah R, Agarwal AK (2013) Anemia associated with chronic heart failure: current concepts. Clin Interv Aging 8:111–122
103.
Zurück zum Zitat Opasich C, Cazzola M, Scelsi L, De Feo S, Bosimini E, Lagioia R et al (2005) Blunted erythropoietin production and defective iron supply for erythropoiesis as major causes of anaemia in patients with chronic heart failure. Eur Heart J 26(21):2232–2237PubMedCrossRef Opasich C, Cazzola M, Scelsi L, De Feo S, Bosimini E, Lagioia R et al (2005) Blunted erythropoietin production and defective iron supply for erythropoiesis as major causes of anaemia in patients with chronic heart failure. Eur Heart J 26(21):2232–2237PubMedCrossRef
105.
Zurück zum Zitat Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS et al (2016) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37(27):2129–2200mPubMedCrossRef Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS et al (2016) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37(27):2129–2200mPubMedCrossRef
106.
Zurück zum Zitat Stugiewicz M, Tkaczyszyn M, Kasztura M, Banasiak W, Ponikowski P, Jankowska EA (2016) The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. Eur J Heart Fail 18(7):762–773PubMedCrossRef Stugiewicz M, Tkaczyszyn M, Kasztura M, Banasiak W, Ponikowski P, Jankowska EA (2016) The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. Eur J Heart Fail 18(7):762–773PubMedCrossRef
107.
Zurück zum Zitat Melenovsky V, Hlavata K, Sedivy P, Dezortova M, Borlaug BA, Petrak J, Kautzner J, Hajek M (2018) Skeletal muscle abnormalities and iron deficiency in chronic heart failure. An exercise 31P magnetic resonance spectroscopy study of calf muscle. Circ Heart Fail 11(9):e004800PubMedCrossRef Melenovsky V, Hlavata K, Sedivy P, Dezortova M, Borlaug BA, Petrak J, Kautzner J, Hajek M (2018) Skeletal muscle abnormalities and iron deficiency in chronic heart failure. An exercise 31P magnetic resonance spectroscopy study of calf muscle. Circ Heart Fail 11(9):e004800PubMedCrossRef
108.
Zurück zum Zitat Charles-Edwards G, Amaral N, Sleigh A, Ayis S, Catibog N, Mcdonagh T et al (2019) Effect of iron isomaltoside on skeletal muscle energetics in patients with chronic heart failure and iron deficiency : the FERRIC-HF II randomized mechanistic trial. Circulation 44(0) Charles-Edwards G, Amaral N, Sleigh A, Ayis S, Catibog N, Mcdonagh T et al (2019) Effect of iron isomaltoside on skeletal muscle energetics in patients with chronic heart failure and iron deficiency : the FERRIC-HF II randomized mechanistic trial. Circulation 44(0)
110.
Zurück zum Zitat Brissot P (2016) Optimizing the diagnosis and the treatment of iron overload diseases. Expert Rev Gastroenterol Hepatol 10(3):359–370PubMedCrossRef Brissot P (2016) Optimizing the diagnosis and the treatment of iron overload diseases. Expert Rev Gastroenterol Hepatol 10(3):359–370PubMedCrossRef
111.
Zurück zum Zitat Baksi AJ, Pennell DJ.(2014) Randomised controlled trials of iron chelators for the treatment of cardiac siderosis in thalassaemia major. Front Pharmacol. 5(Sep) Baksi AJ, Pennell DJ.(2014) Randomised controlled trials of iron chelators for the treatment of cardiac siderosis in thalassaemia major. Front Pharmacol. 5(Sep)
112.
Zurück zum Zitat Sohn YS, Breuer W, Munnich A, Cabantchik ZI (2008) Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood. 111(3):1690–1699PubMedCrossRef Sohn YS, Breuer W, Munnich A, Cabantchik ZI (2008) Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood. 111(3):1690–1699PubMedCrossRef
113.
Zurück zum Zitat Vlachodimitropoulou E, Chen YL, Garbowski M, Koonyosying P, Psaila B, Sola-Visner M, Cooper N, Hider R, Porter J (2017) Eltrombopag: a powerful chelator of cellular or extracellular iron(III) alone or combined with a second chelator. Blood. 130(17):1923–1933PubMedCrossRef Vlachodimitropoulou E, Chen YL, Garbowski M, Koonyosying P, Psaila B, Sola-Visner M, Cooper N, Hider R, Porter J (2017) Eltrombopag: a powerful chelator of cellular or extracellular iron(III) alone or combined with a second chelator. Blood. 130(17):1923–1933PubMedCrossRef
114.
Zurück zum Zitat Xu X, Sutak R, Richardson DR (2007) Iron chelation by clinically relevant anthracyclines: alteration in expression of iron-regulated genes and atypical changes in intracellular iron distribution and trafficking. Mol Pharmacol 73:833–844PubMedCrossRef Xu X, Sutak R, Richardson DR (2007) Iron chelation by clinically relevant anthracyclines: alteration in expression of iron-regulated genes and atypical changes in intracellular iron distribution and trafficking. Mol Pharmacol 73:833–844PubMedCrossRef
115.
Zurück zum Zitat Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV et al (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 124(2):617–630PubMedPubMedCentralCrossRef Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV et al (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 124(2):617–630PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Kumfu S, Chattipakorn S, Fucharoen S, Chattipakorn N (2012) Mitochondrial calcium uniporter blocker prevents cardiac mitochondrial dysfunction induced by iron overload in thalassemic mice. BioMetals. 25(6):1167–1175PubMedCrossRef Kumfu S, Chattipakorn S, Fucharoen S, Chattipakorn N (2012) Mitochondrial calcium uniporter blocker prevents cardiac mitochondrial dysfunction induced by iron overload in thalassemic mice. BioMetals. 25(6):1167–1175PubMedCrossRef
118.
Zurück zum Zitat Ishizaka N, Saito K, Mori I, Matsuzaki G, Ohno M, Nagai R (2005) Iron chelation suppresses ferritin upregulation and attenuates vascular dysfunction in the aorta of angiotensin II-infused rats. Arterioscler Thromb Vasc Biol 25(11):2282–2288PubMedCrossRef Ishizaka N, Saito K, Mori I, Matsuzaki G, Ohno M, Nagai R (2005) Iron chelation suppresses ferritin upregulation and attenuates vascular dysfunction in the aorta of angiotensin II-infused rats. Arterioscler Thromb Vasc Biol 25(11):2282–2288PubMedCrossRef
119.
Zurück zum Zitat Zhang X, Lemastersn JJ (2013) Translocation of iron from lysosomes to mitochondria during ischemia predisposes to injury after reperfusion in rat hepatocytes. Free Radic Biol Med 63:243–253PubMedPubMedCentralCrossRef Zhang X, Lemastersn JJ (2013) Translocation of iron from lysosomes to mitochondria during ischemia predisposes to injury after reperfusion in rat hepatocytes. Free Radic Biol Med 63:243–253PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Alpendurada F, Smith GC, Carpenter JP, Nair S V., Tanner MA, Banya W, et al.(2012) Effects of combined deferiprone with deferoxamine on right ventricular function in thalassaemia major. J Cardiovasc Magn Reson. Alpendurada F, Smith GC, Carpenter JP, Nair S V., Tanner MA, Banya W, et al.(2012) Effects of combined deferiprone with deferoxamine on right ventricular function in thalassaemia major. J Cardiovasc Magn Reson.
121.
Zurück zum Zitat Lamas GA, Goertz C, Boineau R, Mark DB, Rozema T, Nahin RL, Lindblad L, Lewis EF, Drisko J, Lee KL, TACT Investigators (2013) Effect of disodium EDTA chelation regimen on cardiovascular events in patients with previous myocardial infarction: the TACT randomized trial. JAMA - J Am Med Assoc 309(12):1241–1250CrossRef Lamas GA, Goertz C, Boineau R, Mark DB, Rozema T, Nahin RL, Lindblad L, Lewis EF, Drisko J, Lee KL, TACT Investigators (2013) Effect of disodium EDTA chelation regimen on cardiovascular events in patients with previous myocardial infarction: the TACT randomized trial. JAMA - J Am Med Assoc 309(12):1241–1250CrossRef
122.
Zurück zum Zitat Pennell DJ, Porter JB, Piga A, Lai Y, El-Beshlawy A, Belhoul KM et al (2014) A 1-year randomized controlled trial of deferasirox vs deferoxamine for myocardial iron removal in β-thalassemia major (CORDELIA). Blood. 123:1447–1454PubMedPubMedCentralCrossRef Pennell DJ, Porter JB, Piga A, Lai Y, El-Beshlawy A, Belhoul KM et al (2014) A 1-year randomized controlled trial of deferasirox vs deferoxamine for myocardial iron removal in β-thalassemia major (CORDELIA). Blood. 123:1447–1454PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Pepe A, Lombardi M, Positano V, Cracolici E, Capra M, Malizia R, Prossomariti L, Marchi D, Midiri M, Maggio A (2006) Evaluation of the efficacy of oral deferiprone in β-thalassemia major by multislice multiecho T2. Eur J Haematol 76(3):183–192PubMedCrossRef Pepe A, Lombardi M, Positano V, Cracolici E, Capra M, Malizia R, Prossomariti L, Marchi D, Midiri M, Maggio A (2006) Evaluation of the efficacy of oral deferiprone in β-thalassemia major by multislice multiecho T2. Eur J Haematol 76(3):183–192PubMedCrossRef
125.
Zurück zum Zitat Ichikawa Y, Bayeva M, Ghanefar M, Potini V, Sun L, Mutharasan RK, Wu R, Khechaduri A, Jairaj Naik T, Ardehali H (2012) Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a decrease in mitochondrial iron export. Proc Natl Acad Sci [Internet] 109(11):4152–4157. Available from. https://doi.org/10.1073/pnas.1119338109 CrossRef Ichikawa Y, Bayeva M, Ghanefar M, Potini V, Sun L, Mutharasan RK, Wu R, Khechaduri A, Jairaj Naik T, Ardehali H (2012) Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a decrease in mitochondrial iron export. Proc Natl Acad Sci [Internet] 109(11):4152–4157. Available from. https://​doi.​org/​10.​1073/​pnas.​1119338109 CrossRef
126.
Zurück zum Zitat Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, Cleland JGF, Colucci WS, Butler J, Voors AA, Anker SD, Pitt B, Pieske B, Filippatos G, Greene SJ, Gheorghiade M (2017) Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 14(4):238–250CrossRefPubMed Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, Cleland JGF, Colucci WS, Butler J, Voors AA, Anker SD, Pitt B, Pieske B, Filippatos G, Greene SJ, Gheorghiade M (2017) Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 14(4):238–250CrossRefPubMed
128.
Zurück zum Zitat Gammella E, Recalcati S, Rybinska I, Buratti P, Cairo G (2015) Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. Oxidative Med Cell Longev 2015:1–10CrossRef Gammella E, Recalcati S, Rybinska I, Buratti P, Cairo G (2015) Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. Oxidative Med Cell Longev 2015:1–10CrossRef
Metadaten
Titel
Influence of mitochondrial and systemic iron levels in heart failure pathology
verfasst von
Mihai Lupu
Diana-Valentina Tudor
Gabriela Adriana Filip
Publikationsdatum
23.04.2019
Verlag
Springer US
Erschienen in
Heart Failure Reviews / Ausgabe 5/2019
Print ISSN: 1382-4147
Elektronische ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-019-09788-z

Weitere Artikel der Ausgabe 5/2019

Heart Failure Reviews 5/2019 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.