Skip to main content
Erschienen in: Brain Structure and Function 1/2012

01.01.2012 | Original Article

Infusion-based manganese-enhanced MRI: a new imaging technique to visualize the mouse brain

verfasst von: Stephanie I. Mok, Jeeva P. Munasinghe, W. Scott Young

Erschienen in: Brain Structure and Function | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Abstract

Manganese-enhanced magnetic resonance imaging is a technique that employs the divalent ion of the paramagnetic metal manganese (Mn2+) as an effective contrast agent to visualize, in vivo, the mammalian brain. As total achievable contrast is directly proportional to the net amount of Mn2+ accumulated in the brain, there is a great interest in optimizing administration protocols to increase the effective delivery of Mn2+ to the brain while avoiding the toxic effects of Mn2+ overexposure. In this study, we investigated outcomes following continuous slow systemic infusion of manganese chloride (MnCl2) into the mouse via mini-osmotic pump administration. The effects of increasing fractionated rates of Mn2+ infusion on signal enhancement in regions of the brain were analyzed in a three-treatment study. We acquired whole-brain 3-D T1-weighted images and performed region of interest quantitative analysis to compare mean normalized signal in Mn2+ treatments spanning 3, 7, or 14 days of infusion (rates of 1, 0.5, and 0.25 μL/h, respectively). Evidence of Mn2+ transport at the conclusion of each infusion treatment was observed throughout the brains of normally behaving mice. Regions of particular Mn2+ accumulation include the olfactory bulbs, cortex, infralimbic cortex, habenula, thalamus, hippocampal formation, amygdala, hypothalamus, inferior colliculus, and cerebellum. Signals measured at the completion of each infusion treatment indicate comparable means for all examined fractionated rates of Mn2+ infusion. In this current study, we achieved a significantly higher dose of Mn2+ (180 mg/kg) than that employed in previous studies without any observable toxic effects on animal physiology or behavior.
Literatur
Zurück zum Zitat Ahn S, Phillips AG (2002) Modulation by central and basolateral amygdalar nuclei of dopaminergic correlates of feeding to satiety in the rat nucleus accumbens and medial prefrontal cortex. J Neurosci 22(24):10958–10965PubMed Ahn S, Phillips AG (2002) Modulation by central and basolateral amygdalar nuclei of dopaminergic correlates of feeding to satiety in the rat nucleus accumbens and medial prefrontal cortex. J Neurosci 22(24):10958–10965PubMed
Zurück zum Zitat Aoki I, Wu Y-JL, Silva AC, Lynch RM, Koretsky AP (2004) In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. Neuroimage 22(3):1046–1059PubMedCrossRef Aoki I, Wu Y-JL, Silva AC, Lynch RM, Koretsky AP (2004) In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. Neuroimage 22(3):1046–1059PubMedCrossRef
Zurück zum Zitat Aschner M, Aschner JL (1991) Manganese neurotoxicity: cellular effects and blood–brain barrier transport. Neurosci Biobehav Rev 15(3):333–340PubMedCrossRef Aschner M, Aschner JL (1991) Manganese neurotoxicity: cellular effects and blood–brain barrier transport. Neurosci Biobehav Rev 15(3):333–340PubMedCrossRef
Zurück zum Zitat Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99(9):2293–2352. doi:10.1021/cr980440x PubMedCrossRef Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99(9):2293–2352. doi:10.​1021/​cr980440x PubMedCrossRef
Zurück zum Zitat Eschenko O, Canals S, Simanova I, Beyerlein M, Murayama Y, Logothetis NK (2010) Mapping of functional brain activity in freely behaving rats during voluntary running using manganese-enhanced MRI: implication for longitudinal studies. Neuroimage 49(3):2544–2555. doi:10.1016/j.neuroimage.2009.10.079 PubMedCrossRef Eschenko O, Canals S, Simanova I, Beyerlein M, Murayama Y, Logothetis NK (2010) Mapping of functional brain activity in freely behaving rats during voluntary running using manganese-enhanced MRI: implication for longitudinal studies. Neuroimage 49(3):2544–2555. doi:10.​1016/​j.​neuroimage.​2009.​10.​079 PubMedCrossRef
Zurück zum Zitat Ferris CF, Stolberg T, Kulkarni P, Murugavel M, Blanchard R, Blanchard DC, Febo M, Brevard M, Simon NG (2008) Imaging the neural circuitry and chemical control of aggressive motivation. BMC Neurosci 9:111. doi:10.1186/1471-2202-9-111 PubMedCrossRef Ferris CF, Stolberg T, Kulkarni P, Murugavel M, Blanchard R, Blanchard DC, Febo M, Brevard M, Simon NG (2008) Imaging the neural circuitry and chemical control of aggressive motivation. BMC Neurosci 9:111. doi:10.​1186/​1471-2202-9-111 PubMedCrossRef
Zurück zum Zitat Grünecker B, Kaltwasser SF, Peterse Y, Sämann PG, Schmidt MV, Wotjak CT, Czisch M (2009) Fractionated manganese injections: effects on MRI contrast enhancement and physiological measures in C57BL/6 mice. NMR Biomed 23(8):913–921. doi:10.1002/nbm.1508 CrossRef Grünecker B, Kaltwasser SF, Peterse Y, Sämann PG, Schmidt MV, Wotjak CT, Czisch M (2009) Fractionated manganese injections: effects on MRI contrast enhancement and physiological measures in C57BL/6 mice. NMR Biomed 23(8):913–921. doi:10.​1002/​nbm.​1508 CrossRef
Zurück zum Zitat Krause W, Schwert D, Davies J, Richardson N (2002) Non-gadolinium-based mri contrast agents. Contrast agents I, vol 221. Topics in Current Chemistry. Springer Berlin, Heidelberg, pp 165–199. doi:10.1007/3-540-45733-x_6 Krause W, Schwert D, Davies J, Richardson N (2002) Non-gadolinium-based mri contrast agents. Contrast agents I, vol 221. Topics in Current Chemistry. Springer Berlin, Heidelberg, pp 165–199. doi:10.​1007/​3-540-45733-x_​6
Zurück zum Zitat Kuo Y-T, Herlihy AH, So P-W, Bell JD (2006) Manganese-enhanced magnetic resonance imaging (MEMRI) without compromise of the blood–brain barrier detects hypothalamic neuronal activity in vivo. NMR Biomed 19:1028–1034PubMedCrossRef Kuo Y-T, Herlihy AH, So P-W, Bell JD (2006) Manganese-enhanced magnetic resonance imaging (MEMRI) without compromise of the blood–brain barrier detects hypothalamic neuronal activity in vivo. NMR Biomed 19:1028–1034PubMedCrossRef
Zurück zum Zitat Lin Y-J, Koretsky AP (1997) Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magnet Resonance Med 38(3):378–388. doi:10.1002/mrm.1910380305 CrossRef Lin Y-J, Koretsky AP (1997) Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magnet Resonance Med 38(3):378–388. doi:10.​1002/​mrm.​1910380305 CrossRef
Zurück zum Zitat Malecki EA (2001) Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Res Bull 55(2):225–228PubMedCrossRef Malecki EA (2001) Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Res Bull 55(2):225–228PubMedCrossRef
Zurück zum Zitat Mega MS, Cummings JL, Salloway S, Malloy P (1997) The limbic system: an anatomic, phylogenetic, and clinical perspective. J Neuropsychiat Clin Neurosci 9(3):315–330 Mega MS, Cummings JL, Salloway S, Malloy P (1997) The limbic system: an anatomic, phylogenetic, and clinical perspective. J Neuropsychiat Clin Neurosci 9(3):315–330
Zurück zum Zitat Pautler RG, Mongeau R, Jacobs RE (2003) In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI). Magnet Resonance Med 50(1):33–39. doi:10.1002/mrm.10498 CrossRef Pautler RG, Mongeau R, Jacobs RE (2003) In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI). Magnet Resonance Med 50(1):33–39. doi:10.​1002/​mrm.​10498 CrossRef
Zurück zum Zitat Takeda A, Sawashita J, Okada S (1995) Biological half-lives of zinc and manganese in rat brain. Brain Res 695(1):53–58PubMedCrossRef Takeda A, Sawashita J, Okada S (1995) Biological half-lives of zinc and manganese in rat brain. Brain Res 695(1):53–58PubMedCrossRef
Zurück zum Zitat Yu X, Wadghiri YZ, Sanes DH, Turnbull DH (2005) In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nat Neurosci 8(7):961–968PubMed Yu X, Wadghiri YZ, Sanes DH, Turnbull DH (2005) In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nat Neurosci 8(7):961–968PubMed
Metadaten
Titel
Infusion-based manganese-enhanced MRI: a new imaging technique to visualize the mouse brain
verfasst von
Stephanie I. Mok
Jeeva P. Munasinghe
W. Scott Young
Publikationsdatum
01.01.2012
Verlag
Springer-Verlag
Erschienen in
Brain Structure and Function / Ausgabe 1/2012
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-011-0324-y

Weitere Artikel der Ausgabe 1/2012

Brain Structure and Function 1/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.