Skip to main content
Erschienen in: Herzschrittmachertherapie + Elektrophysiologie 3/2012

01.09.2012 | Schwerpunkt

Inherited long QT syndrome

Clinical manifestation, genetic diagnostics, and therapy

verfasst von: Dr. med. Sven Zumhagen, M.D., Birgit Stallmeyer, Ph.D., Corinna Friedrich, Ph.D., Lars Eckardt, M.D., Guiscard Seebohm, Ph.D., Eric Schulze-Bahr, M.D.

Erschienen in: Herzschrittmachertherapie + Elektrophysiologie | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Abstract

Inherited long QT syndrome (LQTS) is characterized by a prolonged ventricular repolarization (QTc interval) and symptoms (syncope, sudden cardiac arrest) due to polymorphic ventricular arrhythmias. As of today, 13 different cardiac ion channel genes have been associated with congenital LQTS. The most common ones are due to KCNQ1 (LQT-1), KCNH2 (LQT-2), and SCN5A (LQT-3) gene mutations and account for up to 75 % of cases. Typical clinical findings are an increased QT interval on the surface electrocardiogram, specifically altered T wave morphologies, polymorphic ventricular arrhythmias, or an indicative family history. Recently, in the HRS/EHRA expert consensus statement, comprehensive genetic testing of major LQTS genes was recommended for index patients for whom there is a strong clinical suspicion of LQTS. Overall, antiadrenergic therapy, in particular β-receptor blockers, has been the mainstay of therapy and has significantly reduced cardiac events. For high-risk patients, an implantable cardioverter defibrillator (ICD) is recommended. Importantly, lifestyle modification and avoidance of arrhythmia triggers are additional important approaches.
Literatur
1.
Zurück zum Zitat Ackerman MJ, Priori SG, Willems S et al (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 13:1077–1109PubMedCrossRef Ackerman MJ, Priori SG, Willems S et al (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 13:1077–1109PubMedCrossRef
2.
Zurück zum Zitat Amin AS, Giudicessi JR, Tijsen AJ et al. (2012) Variants in the 3′ untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. Eur Heart J 33:714–723PubMedCrossRef Amin AS, Giudicessi JR, Tijsen AJ et al. (2012) Variants in the 3′ untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. Eur Heart J 33:714–723PubMedCrossRef
3.
Zurück zum Zitat Anderson CL, Delisle BP, Anson BD et al (2006) Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 113:365–373PubMedCrossRef Anderson CL, Delisle BP, Anson BD et al (2006) Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 113:365–373PubMedCrossRef
4.
Zurück zum Zitat Bartos DC, Duchatelet S, Burgess DE et al (2011) R231C mutation in KCNQ1 causes long QT syndrome type 1 and familial atrial fibrillation. Heart Rhythm 8:48–55PubMedCrossRef Bartos DC, Duchatelet S, Burgess DE et al (2011) R231C mutation in KCNQ1 causes long QT syndrome type 1 and familial atrial fibrillation. Heart Rhythm 8:48–55PubMedCrossRef
5.
Zurück zum Zitat Bellocq C, Van Ginneken AC, Bezzina CR et al (2004) Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109:2394–2397PubMedCrossRef Bellocq C, Van Ginneken AC, Bezzina CR et al (2004) Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109:2394–2397PubMedCrossRef
6.
Zurück zum Zitat Bhuiyan ZA, Momenah TS, Gong Q et al (2008) Recurrent intrauterine fetal loss due to near absence of HERG: clinical and functional characterization of a homozygous nonsense HERG Q1070X mutation. Heart Rhythm 5:553–561PubMedCrossRef Bhuiyan ZA, Momenah TS, Gong Q et al (2008) Recurrent intrauterine fetal loss due to near absence of HERG: clinical and functional characterization of a homozygous nonsense HERG Q1070X mutation. Heart Rhythm 5:553–561PubMedCrossRef
7.
Zurück zum Zitat Chen S, Zhang L, Bryant RM et al (2003) KCNQ1 mutations in patients with a family history of lethal cardiac arrhythmias and sudden death. Clin Genet 63:273–282PubMedCrossRef Chen S, Zhang L, Bryant RM et al (2003) KCNQ1 mutations in patients with a family history of lethal cardiac arrhythmias and sudden death. Clin Genet 63:273–282PubMedCrossRef
8.
Zurück zum Zitat Crotti L, Celano G, Dagradi F et al (2008) Congenital long QT syndrome. Orphanet J Rare Dis 3:18PubMedCrossRef Crotti L, Celano G, Dagradi F et al (2008) Congenital long QT syndrome. Orphanet J Rare Dis 3:18PubMedCrossRef
9.
Zurück zum Zitat Etheridge SP, Bowles NE, Arrington CB et al (2011) Somatic mosaicism contributes to phenotypic variation in Timothy syndrome. Am J Med Genet A 155A:2578–2583PubMed Etheridge SP, Bowles NE, Arrington CB et al (2011) Somatic mosaicism contributes to phenotypic variation in Timothy syndrome. Am J Med Genet A 155A:2578–2583PubMed
10.
Zurück zum Zitat Gemma LW, Ward GM, Dettmer MM et al (2011) beta-blockers protect against dispersion of repolarization during exercise in congenital long-QT syndrome type 1. J Cardiovasc Electrophysiol 22:1141–1146PubMedCrossRef Gemma LW, Ward GM, Dettmer MM et al (2011) beta-blockers protect against dispersion of repolarization during exercise in congenital long-QT syndrome type 1. J Cardiovasc Electrophysiol 22:1141–1146PubMedCrossRef
11.
Zurück zum Zitat Gillis J, Burashnikov E, Antzelevitch C et al (2011) Long QT, syndactyly, joint contractures, stroke and novel CACNA1C mutation: Expanding the spectrum of Timothy syndrome. Am J Med Genet A [Epub ahead of print] Gillis J, Burashnikov E, Antzelevitch C et al (2011) Long QT, syndactyly, joint contractures, stroke and novel CACNA1C mutation: Expanding the spectrum of Timothy syndrome. Am J Med Genet A [Epub ahead of print]
12.
Zurück zum Zitat Goldenberg I, Moss AJ, Zareba W (2006) QT interval: how to measure it and what is “normal”. J Cardiovasc Electrophysiol 17:333–336PubMedCrossRef Goldenberg I, Moss AJ, Zareba W (2006) QT interval: how to measure it and what is “normal”. J Cardiovasc Electrophysiol 17:333–336PubMedCrossRef
13.
Zurück zum Zitat Goldenberg I, Bradley J, Moss A et al (2010) Beta-blocker efficacy in high-risk patients with the congenital long-QT syndrome types 1 and 2: implications for patient management. J Cardiovasc Electrophysiol 21:893–901PubMed Goldenberg I, Bradley J, Moss A et al (2010) Beta-blocker efficacy in high-risk patients with the congenital long-QT syndrome types 1 and 2: implications for patient management. J Cardiovasc Electrophysiol 21:893–901PubMed
14.
Zurück zum Zitat Goldenberg I, Horr S, Moss AJ et al (2011) Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol 57:51–59PubMedCrossRef Goldenberg I, Horr S, Moss AJ et al (2011) Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol 57:51–59PubMedCrossRef
15.
Zurück zum Zitat Goldenberg I, Thottathil P, Lopes CM et al (2012) Trigger-specific ion-channel mechanisms, risk factors, and response to therapy in type 1 long QT syndrome. Heart Rhythm 9:49–56PubMedCrossRef Goldenberg I, Thottathil P, Lopes CM et al (2012) Trigger-specific ion-channel mechanisms, risk factors, and response to therapy in type 1 long QT syndrome. Heart Rhythm 9:49–56PubMedCrossRef
16.
Zurück zum Zitat Hobbs JB, Peterson DR, Moss AJ et al (2006) Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome. JAMA 296:1249–1254PubMedCrossRef Hobbs JB, Peterson DR, Moss AJ et al (2006) Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome. JAMA 296:1249–1254PubMedCrossRef
17.
Zurück zum Zitat Hofman N, Wilde AA, Kaab S et al (2007) Diagnostic criteria for congenital long QT syndrome in the era of molecular genetics: do we need a scoring system? Eur Heart J 28:575–580PubMedCrossRef Hofman N, Wilde AA, Kaab S et al (2007) Diagnostic criteria for congenital long QT syndrome in the era of molecular genetics: do we need a scoring system? Eur Heart J 28:575–580PubMedCrossRef
18.
Zurück zum Zitat Johnson WH, Jr, Yang P, Yang T et al (2003) Clinical, genetic, and biophysical characterization of a homozygous HERG mutation causing severe neonatal long QT syndrome. Pediatr Res 53:744–748PubMedCrossRef Johnson WH, Jr, Yang P, Yang T et al (2003) Clinical, genetic, and biophysical characterization of a homozygous HERG mutation causing severe neonatal long QT syndrome. Pediatr Res 53:744–748PubMedCrossRef
19.
Zurück zum Zitat Kaufman ES, Mcnitt S, Moss AJ et al (2008) Risk of death in the long QT syndrome when a sibling has died. Heart Rhythm 5:831–836PubMedCrossRef Kaufman ES, Mcnitt S, Moss AJ et al (2008) Risk of death in the long QT syndrome when a sibling has died. Heart Rhythm 5:831–836PubMedCrossRef
20.
Zurück zum Zitat Khan IA, Gowda RM (2004) Novel therapeutics for treatment of long-QT syndrome and torsade de pointes. Int J Cardiol 95:1–6PubMedCrossRef Khan IA, Gowda RM (2004) Novel therapeutics for treatment of long-QT syndrome and torsade de pointes. Int J Cardiol 95:1–6PubMedCrossRef
21.
Zurück zum Zitat Kim JA, Lopes CM, Moss AJ et al (2010) Trigger-specific risk factors and response to therapy in long QT syndrome type 2. Heart Rhythm 7:1797–1805PubMedCrossRef Kim JA, Lopes CM, Moss AJ et al (2010) Trigger-specific risk factors and response to therapy in long QT syndrome type 2. Heart Rhythm 7:1797–1805PubMedCrossRef
22.
Zurück zum Zitat Kurokawa J, Tamagawa M, Harada N et al (2008) Acute effects of oestrogen on the guinea pig and human IKr channels and drug-induced prolongation of cardiac repolarization. J Physiol 586:2961–2973PubMedCrossRef Kurokawa J, Tamagawa M, Harada N et al (2008) Acute effects of oestrogen on the guinea pig and human IKr channels and drug-induced prolongation of cardiac repolarization. J Physiol 586:2961–2973PubMedCrossRef
23.
Zurück zum Zitat Migdalovich D, Moss AJ, Lopes CM et al (2011) Mutation and gender-specific risk in type 2 long QT syndrome: implications for risk stratification for life-threatening cardiac events in patients with long QT syndrome. Heart Rhythm 8:1537–1543PubMedCrossRef Migdalovich D, Moss AJ, Lopes CM et al (2011) Mutation and gender-specific risk in type 2 long QT syndrome: implications for risk stratification for life-threatening cardiac events in patients with long QT syndrome. Heart Rhythm 8:1537–1543PubMedCrossRef
24.
Zurück zum Zitat Mihic A, Chauhan VS, Gao X et al (2011) Trafficking defect and proteasomal degradation contribute to the phenotype of a novel KCNH2 long QT syndrome mutation. PLoS One 6:e18273PubMedCrossRef Mihic A, Chauhan VS, Gao X et al (2011) Trafficking defect and proteasomal degradation contribute to the phenotype of a novel KCNH2 long QT syndrome mutation. PLoS One 6:e18273PubMedCrossRef
25.
Zurück zum Zitat Mohler PJ, Schott JJ, Gramolini AO et al (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421:634–639PubMedCrossRef Mohler PJ, Schott JJ, Gramolini AO et al (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421:634–639PubMedCrossRef
26.
Zurück zum Zitat Moss AJ, Zareba W, Benhorin J et al (1995) ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 92:2929–2934PubMedCrossRef Moss AJ, Zareba W, Benhorin J et al (1995) ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 92:2929–2934PubMedCrossRef
27.
Zurück zum Zitat Moss AJ, Zareba W, Hall WJ et al (2000) Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation 101:616–623PubMedCrossRef Moss AJ, Zareba W, Hall WJ et al (2000) Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation 101:616–623PubMedCrossRef
28.
Zurück zum Zitat Moss AJ, Zareba W, Schwarz KQ et al (2008) Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J Cardiovasc Electrophysiol 19:1289–1293PubMedCrossRef Moss AJ, Zareba W, Schwarz KQ et al (2008) Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J Cardiovasc Electrophysiol 19:1289–1293PubMedCrossRef
29.
Zurück zum Zitat Obeyesekere MN, Klein GJ, Modi S et al (2011) How to perform and interpret provocative testing for the diagnosis of Brugada syndrome, long-QT syndrome, and catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol 4:958–964PubMedCrossRef Obeyesekere MN, Klein GJ, Modi S et al (2011) How to perform and interpret provocative testing for the diagnosis of Brugada syndrome, long-QT syndrome, and catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol 4:958–964PubMedCrossRef
30.
Zurück zum Zitat Paulussen AD, Gilissen RA, Armstrong M et al (2004) Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J Mol Med (Berl) 82:182–188CrossRef Paulussen AD, Gilissen RA, Armstrong M et al (2004) Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J Mol Med (Berl) 82:182–188CrossRef
31.
Zurück zum Zitat Plaster NM, Tawil R, Tristani-Firouzi M et al (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105:511–519PubMedCrossRef Plaster NM, Tawil R, Tristani-Firouzi M et al (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105:511–519PubMedCrossRef
32.
Zurück zum Zitat Priori SG, Napolitano C, Schwartz PJ et al (2004) Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA 292:1341–1344PubMedCrossRef Priori SG, Napolitano C, Schwartz PJ et al (2004) Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA 292:1341–1344PubMedCrossRef
33.
Zurück zum Zitat Priori SG, Pandit SV, Rivolta I et al (2005) A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res 96:800–807PubMedCrossRef Priori SG, Pandit SV, Rivolta I et al (2005) A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res 96:800–807PubMedCrossRef
34.
Zurück zum Zitat Rautaharju PM, Zhou SH, Wong S et al (1992) Sex differences in the evolution of the electrocardiographic QT interval with age. Can J Cardiol 8:690–695PubMed Rautaharju PM, Zhou SH, Wong S et al (1992) Sex differences in the evolution of the electrocardiographic QT interval with age. Can J Cardiol 8:690–695PubMed
35.
Zurück zum Zitat Rautaharju PM, Surawicz B, Gettes LS et al (2009) AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part IV: the ST segment, T and U waves, and the QT interval: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol 53:982–991PubMedCrossRef Rautaharju PM, Surawicz B, Gettes LS et al (2009) AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part IV: the ST segment, T and U waves, and the QT interval: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol 53:982–991PubMedCrossRef
36.
Zurück zum Zitat Ruan Y, Denegri M, Liu N et al (2010) Trafficking defects and gating abnormalities of a novel SCN5A mutation question gene-specific therapy in long QT syndrome type 3. Circ Res 106:1374–1383PubMedCrossRef Ruan Y, Denegri M, Liu N et al (2010) Trafficking defects and gating abnormalities of a novel SCN5A mutation question gene-specific therapy in long QT syndrome type 3. Circ Res 106:1374–1383PubMedCrossRef
37.
Zurück zum Zitat Schwartz PJ (1985) Idiopathic long QT syndrome: progress and questions. Am Heart J 109:399–411PubMedCrossRef Schwartz PJ (1985) Idiopathic long QT syndrome: progress and questions. Am Heart J 109:399–411PubMedCrossRef
38.
39.
Zurück zum Zitat Schwartz PJ (2006) The congenital long QT syndromes from genotype to phenotype: clinical implications. J Intern Med 259:39–47PubMedCrossRef Schwartz PJ (2006) The congenital long QT syndromes from genotype to phenotype: clinical implications. J Intern Med 259:39–47PubMedCrossRef
40.
Zurück zum Zitat Schwartz PJ, Stramba-Badiale M (2010) Repolarization abnormalities in the newborn. J Cardiovasc Pharmacol 55:539–543PubMedCrossRef Schwartz PJ, Stramba-Badiale M (2010) Repolarization abnormalities in the newborn. J Cardiovasc Pharmacol 55:539–543PubMedCrossRef
41.
Zurück zum Zitat Schwartz PJ, Spazzolini C, Crotti L et al (2006) The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation 113:783–790PubMedCrossRef Schwartz PJ, Spazzolini C, Crotti L et al (2006) The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation 113:783–790PubMedCrossRef
42.
Zurück zum Zitat Schwartz PJ, Stramba-Badiale M, Crotti L et al (2009) Prevalence of the congenital long-QT syndrome. Circulation 120:1761–1767PubMedCrossRef Schwartz PJ, Stramba-Badiale M, Crotti L et al (2009) Prevalence of the congenital long-QT syndrome. Circulation 120:1761–1767PubMedCrossRef
43.
Zurück zum Zitat Schwartz PJ, Spazzolini C, Priori SG et al (2010) Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them?: data from the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation 122:1272–1282PubMedCrossRef Schwartz PJ, Spazzolini C, Priori SG et al (2010) Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them?: data from the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation 122:1272–1282PubMedCrossRef
44.
Zurück zum Zitat Shimizu W, Noda T, Takaki H et al (2003) Epinephrine unmasks latent mutation carriers with LQT1 form of congenital long-QT syndrome. J Am Coll Cardiol 41:633–642PubMedCrossRef Shimizu W, Noda T, Takaki H et al (2003) Epinephrine unmasks latent mutation carriers with LQT1 form of congenital long-QT syndrome. J Am Coll Cardiol 41:633–642PubMedCrossRef
45.
Zurück zum Zitat Stramba-Badiale M, Spagnolo D, Bosi G et al (1995) Are gender differences in QTc present at birth? MISNES Investigators. Multicenter Italian Study on Neonatal Electrocardiography and Sudden Infant Death Syndrome. Am J Cardiol 75:1277–1278PubMedCrossRef Stramba-Badiale M, Spagnolo D, Bosi G et al (1995) Are gender differences in QTc present at birth? MISNES Investigators. Multicenter Italian Study on Neonatal Electrocardiography and Sudden Infant Death Syndrome. Am J Cardiol 75:1277–1278PubMedCrossRef
46.
Zurück zum Zitat Tester DJ, Will ML, Haglund CM et al (2005) Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2:507–517PubMedCrossRef Tester DJ, Will ML, Haglund CM et al (2005) Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2:507–517PubMedCrossRef
47.
Zurück zum Zitat Tristani-Firouzi M, Jensen JL, Donaldson MR et al (2002) Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest 110:381–388PubMed Tristani-Firouzi M, Jensen JL, Donaldson MR et al (2002) Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest 110:381–388PubMed
48.
Zurück zum Zitat Wang Q, Shen J, Splawski I et al (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805–811PubMedCrossRef Wang Q, Shen J, Splawski I et al (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805–811PubMedCrossRef
49.
Zurück zum Zitat Yang Y, Liang B, Liu J et al (2010) Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet 86:872–880PubMedCrossRef Yang Y, Liang B, Liu J et al (2010) Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet 86:872–880PubMedCrossRef
50.
Zurück zum Zitat Zareba W (2006) Genotype-specific ECG patterns in long QT syndrome. J Electrocardiol 39:S101–S106PubMedCrossRef Zareba W (2006) Genotype-specific ECG patterns in long QT syndrome. J Electrocardiol 39:S101–S106PubMedCrossRef
51.
Zurück zum Zitat Zareba W, Moss AJ, Locati EH et al (2003) Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J Am Coll Cardiol 42:103–109PubMedCrossRef Zareba W, Moss AJ, Locati EH et al (2003) Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J Am Coll Cardiol 42:103–109PubMedCrossRef
52.
Zurück zum Zitat Zhang S, Yin K, Ren X et al (2008) Identification of a novel KCNQ1 mutation associated with both Jervell and Lange-Nielsen and Romano-Ward forms of long QT syndrome in a Chinese family. BMC Med Genet 9:24PubMedCrossRef Zhang S, Yin K, Ren X et al (2008) Identification of a novel KCNQ1 mutation associated with both Jervell and Lange-Nielsen and Romano-Ward forms of long QT syndrome in a Chinese family. BMC Med Genet 9:24PubMedCrossRef
53.
Zurück zum Zitat Zhang X, Chen S, Zhang L et al (2008) Protective effect of KCNH2 single nucleotide polymorphism K897T in LQTS families and identification of novel KCNQ1 and KCNH2 mutations. BMC Med Genet 9:87PubMedCrossRef Zhang X, Chen S, Zhang L et al (2008) Protective effect of KCNH2 single nucleotide polymorphism K897T in LQTS families and identification of novel KCNQ1 and KCNH2 mutations. BMC Med Genet 9:87PubMedCrossRef
Metadaten
Titel
Inherited long QT syndrome
Clinical manifestation, genetic diagnostics, and therapy
verfasst von
Dr. med. Sven Zumhagen, M.D.
Birgit Stallmeyer, Ph.D.
Corinna Friedrich, Ph.D.
Lars Eckardt, M.D.
Guiscard Seebohm, Ph.D.
Eric Schulze-Bahr, M.D.
Publikationsdatum
01.09.2012
Verlag
Springer-Verlag
Erschienen in
Herzschrittmachertherapie + Elektrophysiologie / Ausgabe 3/2012
Print ISSN: 0938-7412
Elektronische ISSN: 1435-1544
DOI
https://doi.org/10.1007/s00399-012-0232-8

Weitere Artikel der Ausgabe 3/2012

Herzschrittmachertherapie + Elektrophysiologie 3/2012 Zur Ausgabe

Schwerpunkt

Short-QT-Syndrom

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.