Skip to main content
Erschienen in: Clinical and Translational Oncology 4/2019

04.09.2018 | Research Article

Inhibiting 6-phosphogluconate dehydrogenase enhances chemotherapy efficacy in cervical cancer via AMPK-independent inhibition of RhoA and Rac1

Erschienen in: Clinical and Translational Oncology | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Background

The oxidative pentose phosphate pathway (PPP) is essential for cancer metabolism and growth. However, the contribution of 6-phosphogluconate dehydrogenase (6PGD), a key enzyme of PPP, to cervical cancer development remains largely unknown.

Methods

mRNA and protein levels of 6PGD were analyzed in cervical cancer cells and tissues derived from patients and compared to normal counterparts. Using cell culture system and xenograft mouse model, the functions of 6PGD in cervical cancer are determined and its molecular mechanism is analyzed. 6PGD inhibitor physcion and siRNA knockdown were used.

Results

In this work, we demonstrate that 6PGD is aberrantly upregulated and activated in cervical cancer cells and patient tissues compared to normal counterparts. Using different approaches and preclinical models, we show that 6PGD inhibition decreases growth and migration, and enhances chemosensitivity in cervical cancer. Mechanistically, inhibition of 6PGD activates AMP-activated protein kinase (AMPK) and decreases RhoA and Rac1 activities. AMPK depletion significantly reduces the effects of 6PGD inhibition in decreasing RhoA and Rac1 activities, growth and migration in cervical cancer cells.

Conclusions

Our work is the first to demonstrate the aberrant expression of 6PGD and its predominant roles in cervical cancer cell growth and migration, via a AMPK-dependent activation. Our findings suggest 6PGD as a potential therapeutic target to enhance chemosensitivity in cervical cancer.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.CrossRef
2.
Zurück zum Zitat Zhu H, Luo H, Zhang W, Shen Z, Hu X, Zhu X. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des Devel Ther. 2016;10:1885–95.CrossRefPubMedPubMedCentral Zhu H, Luo H, Zhang W, Shen Z, Hu X, Zhu X. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des Devel Ther. 2016;10:1885–95.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Chen J, Xiong J, Liu H, Chernenko G, Tang SC. Distinct BAG-1 isoforms have different anti-apoptotic functions in BAG-1-transfected C33A human cervical carcinoma cell line. Oncogene. 2002;21(46):7050–9.CrossRefPubMed Chen J, Xiong J, Liu H, Chernenko G, Tang SC. Distinct BAG-1 isoforms have different anti-apoptotic functions in BAG-1-transfected C33A human cervical carcinoma cell line. Oncogene. 2002;21(46):7050–9.CrossRefPubMed
4.
Zurück zum Zitat Chao CC. Enhanced excision repair of DNA damage due to cis-diamminedichloroplatinum(II) in resistant cervix carcinoma HeLa cells. Eur J Pharmacol. 1994;268(3):347–55.CrossRefPubMed Chao CC. Enhanced excision repair of DNA damage due to cis-diamminedichloroplatinum(II) in resistant cervix carcinoma HeLa cells. Eur J Pharmacol. 1994;268(3):347–55.CrossRefPubMed
5.
Zurück zum Zitat Qureshi R, Arora H, Rizvi MA. EMT in cervical cancer: its role in tumour progression and response to therapy. Cancer Lett. 2015;356(2):321–31.CrossRefPubMed Qureshi R, Arora H, Rizvi MA. EMT in cervical cancer: its role in tumour progression and response to therapy. Cancer Lett. 2015;356(2):321–31.CrossRefPubMed
6.
Zurück zum Zitat Chang B, Kim J, Jeong D, Jeong Y, Jeon S, Jung SI, et al. Klotho inhibits the capacity of cell migration and invasion in cervical cancer. Oncol Rep. 2012;28(3):1022–8.CrossRefPubMed Chang B, Kim J, Jeong D, Jeong Y, Jeon S, Jung SI, et al. Klotho inhibits the capacity of cell migration and invasion in cervical cancer. Oncol Rep. 2012;28(3):1022–8.CrossRefPubMed
7.
Zurück zum Zitat Perez-Plasencia C, Duenas-Gonzalez A, Alatorre-Tavera B. Second hit in cervical carcinogenesis process: involvement of wnt/beta catenin pathway. Int Arch Med. 2008;1(1):10.CrossRefPubMedPubMedCentral Perez-Plasencia C, Duenas-Gonzalez A, Alatorre-Tavera B. Second hit in cervical carcinogenesis process: involvement of wnt/beta catenin pathway. Int Arch Med. 2008;1(1):10.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.CrossRefPubMed Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.CrossRefPubMed
9.
Zurück zum Zitat Shan C, Elf S, Ji Q, Kang HB, Zhou L, Hitosugi T, et al. Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth. Mol Cell. 2014;55(4):552–65.CrossRefPubMedPubMedCentral Shan C, Elf S, Ji Q, Kang HB, Zhou L, Hitosugi T, et al. Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth. Mol Cell. 2014;55(4):552–65.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Nordenberg J, Aviram R, Beery E, Stenzel KH, Novogrodsky A. Inhibition of 6-phosphogluconate dehydrogenase by glucose 1,6-diphosphate in human normal and malignant colon extracts. Cancer Lett. 1984;23(2):193–9.CrossRefPubMed Nordenberg J, Aviram R, Beery E, Stenzel KH, Novogrodsky A. Inhibition of 6-phosphogluconate dehydrogenase by glucose 1,6-diphosphate in human normal and malignant colon extracts. Cancer Lett. 1984;23(2):193–9.CrossRefPubMed
12.
Zurück zum Zitat Giusti L, Iacconi P, Ciregia F, Giannaccini G, Donatini GL, Basolo F, et al. Fine-needle aspiration of thyroid nodules: proteomic analysis to identify cancer biomarkers. J Proteome Res. 2008;7(9):4079–88.CrossRefPubMed Giusti L, Iacconi P, Ciregia F, Giannaccini G, Donatini GL, Basolo F, et al. Fine-needle aspiration of thyroid nodules: proteomic analysis to identify cancer biomarkers. J Proteome Res. 2008;7(9):4079–88.CrossRefPubMed
13.
Zurück zum Zitat Zheng W, Feng Q, Liu J, Guo Y, Gao L, Li R, et al. Inhibition of 6-phosphogluconate dehydrogenase reverses cisplatin resistance in ovarian and lung cancer. Front Pharmacol. 2017;8:421.CrossRefPubMedPubMedCentral Zheng W, Feng Q, Liu J, Guo Y, Gao L, Li R, et al. Inhibition of 6-phosphogluconate dehydrogenase reverses cisplatin resistance in ovarian and lung cancer. Front Pharmacol. 2017;8:421.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Elf S, Lin R, Xia S, Pan Y, Shan C, Wu S, et al. Targeting 6-phosphogluconate dehydrogenase in the oxidative PPP sensitizes leukemia cells to antimalarial agent dihydroartemisinin. Oncogene. 2017;36(2):254–62.CrossRefPubMed Elf S, Lin R, Xia S, Pan Y, Shan C, Wu S, et al. Targeting 6-phosphogluconate dehydrogenase in the oxidative PPP sensitizes leukemia cells to antimalarial agent dihydroartemisinin. Oncogene. 2017;36(2):254–62.CrossRefPubMed
15.
Zurück zum Zitat Chan B, VanderLaan PA, Sukhatme VP. 6-Phosphogluconate dehydrogenase regulates tumor cell migration in vitro by regulating receptor tyrosine kinase c-Met. Biochem Biophys Res Commun. 2013;439(2):247–51.CrossRefPubMed Chan B, VanderLaan PA, Sukhatme VP. 6-Phosphogluconate dehydrogenase regulates tumor cell migration in vitro by regulating receptor tyrosine kinase c-Met. Biochem Biophys Res Commun. 2013;439(2):247–51.CrossRefPubMed
16.
Zurück zum Zitat Lin R, Elf S, Shan C, Kang HB, Ji Q, Zhou L, et al. 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling. Nat Cell Biol. 2015;17(11):1484–96.CrossRefPubMedPubMedCentral Lin R, Elf S, Shan C, Kang HB, Ji Q, Zhou L, et al. 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling. Nat Cell Biol. 2015;17(11):1484–96.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Higareda-Almaraz JC, Enriquez-Gasca Mdel R, Hernandez-Ortiz M, Resendis-Antonio O, Encarnacion-Guevara S. Proteomic patterns of cervical cancer cell lines, a network perspective. BMC Syst Biol. 2011;5:96.CrossRefPubMedPubMedCentral Higareda-Almaraz JC, Enriquez-Gasca Mdel R, Hernandez-Ortiz M, Resendis-Antonio O, Encarnacion-Guevara S. Proteomic patterns of cervical cancer cell lines, a network perspective. BMC Syst Biol. 2011;5:96.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Fogarty S, Hardie DG. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta. 2010;1804(3):581–91.CrossRefPubMed Fogarty S, Hardie DG. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta. 2010;1804(3):581–91.CrossRefPubMed
20.
Zurück zum Zitat Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022–43.PubMed Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022–43.PubMed
21.
Zurück zum Zitat Bonham DG. A new test for the diagnosis of gynaecological cancer, 6-phosphogluconate dehydrogenase activity in vaginal fluid. Triangle Sandoz J Med Sci. 1964;7:157–62. Bonham DG. A new test for the diagnosis of gynaecological cancer, 6-phosphogluconate dehydrogenase activity in vaginal fluid. Triangle Sandoz J Med Sci. 1964;7:157–62.
22.
Zurück zum Zitat Bell JL, Egerton ME. 6-phosphogluconate dehydrogenase estimation in vaginal fluid in the diagnosis of cervical cancer. J Obstet Gynaecol Br Commonw. 1965;72:603–9.CrossRefPubMed Bell JL, Egerton ME. 6-phosphogluconate dehydrogenase estimation in vaginal fluid in the diagnosis of cervical cancer. J Obstet Gynaecol Br Commonw. 1965;72:603–9.CrossRefPubMed
23.
Zurück zum Zitat Hoffman RL, Merritt JW. 6-Phosphogluconate dehydrogenase in uterine cancer detection. Am J Obstet Gynecol. 1965;92:650–7.CrossRefPubMed Hoffman RL, Merritt JW. 6-Phosphogluconate dehydrogenase in uterine cancer detection. Am J Obstet Gynecol. 1965;92:650–7.CrossRefPubMed
24.
Zurück zum Zitat Yan Y, Tsukamoto O, Nakano A, Kato H, Kioka H, Ito N, et al. Augmented AMPK activity inhibits cell migration by phosphorylating the novel substrate Pdlim5. Nat Commun. 2015;6:6137.CrossRefPubMedPubMedCentral Yan Y, Tsukamoto O, Nakano A, Kato H, Kioka H, Ito N, et al. Augmented AMPK activity inhibits cell migration by phosphorylating the novel substrate Pdlim5. Nat Commun. 2015;6:6137.CrossRefPubMedPubMedCentral
25.
Metadaten
Titel
Inhibiting 6-phosphogluconate dehydrogenase enhances chemotherapy efficacy in cervical cancer via AMPK-independent inhibition of RhoA and Rac1
Publikationsdatum
04.09.2018
Erschienen in
Clinical and Translational Oncology / Ausgabe 4/2019
Print ISSN: 1699-048X
Elektronische ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-018-1937-x

Weitere Artikel der Ausgabe 4/2019

Clinical and Translational Oncology 4/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.