Skip to main content
Erschienen in: Indian Journal of Hematology and Blood Transfusion 4/2019

13.05.2019 | Original Article

Inhibition of γ/β Globin Gene Switching in CD 34+ Derived Erythroid Cells by BCL11A RNA Silencing

verfasst von: Seyyed Asadallah Taghavi, Kamran Mousavi Hosseini, Gholamhossein Tamaddon, Leila Kasraian

Erschienen in: Indian Journal of Hematology and Blood Transfusion | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

The induction of fetal haemoglobin (Hb F), due to the sustained clinical effects, is one of the most promising methods for the treatment of β hemoglobinopathies, such as thalassemia major and sickle cell disease (SCD). Inhibition of γ-globin gene silencing, possibly is a suitable strategy to induce HbF expression in these patients. In this study, the possibility of increasing HbF in the CD34+ derived erythroid cells was investigated by BCL11A inhibition using specific small-interfering RNAs (siRNAs). Human peripheral blood-derived hematopoietic stem cells were isolated and differentiated to erythroid cells. Erythroid maturation was investigated using cell morphology parameters and flow cytometry analysis of CD235a expression On day 20, siRNA complementary to BCL11A was transfected to differentiating cells via electroporation. BCL11A expression was evaluated through real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme linked immunosorbant assay (ELISA). β actin was used as the reference gene to confirm the relative expression level of BCL11A gene mRNA. 48 hours after transfection, BCL11A siRNA significantly reduced BCL11A mRNA levels and consequently led to 2.0 fold decrease in corresponding protein. On the 28th day, haemoglobin electrophoresis results showed that Hb F levels in transfected erythroid cells increased 3.3-fold when compared with non transfected cells. In this study we showed that BCL11A inhibition in erythroid cells could increase fetal hemoglobin, and this strategy can be the basis for designing a γ globin expressing cellular system to increase Hb F in patients with thalassemia and SCD.
Literatur
1.
Zurück zum Zitat Williams TN, Weatherall DJ (2012) World distribution, population genetics, and health burden of the hemoglobinopathies. Cold Spring Harb Perspect Med 2:a011692CrossRef Williams TN, Weatherall DJ (2012) World distribution, population genetics, and health burden of the hemoglobinopathies. Cold Spring Harb Perspect Med 2:a011692CrossRef
2.
Zurück zum Zitat Finotti A, Breda L, Lederer CW, Bianchi N, Zuccato C et al (2015) Recent trends in the gene therapy of β-thalassemia. J Blood Med 6:69–85PubMedPubMedCentral Finotti A, Breda L, Lederer CW, Bianchi N, Zuccato C et al (2015) Recent trends in the gene therapy of β-thalassemia. J Blood Med 6:69–85PubMedPubMedCentral
3.
Zurück zum Zitat Arumugam P, Malik P (2010) Genetic therapy for beta-thalassemia: from the bench to the bedside. Hematol Am Soc Hematol Educ Progr 2010:445–450CrossRef Arumugam P, Malik P (2010) Genetic therapy for beta-thalassemia: from the bench to the bedside. Hematol Am Soc Hematol Educ Progr 2010:445–450CrossRef
4.
Zurück zum Zitat Pile FB, Steinberg MH, Rees DC (2017) Sickle cell disease. N Engl J Med 376:1561–1573CrossRef Pile FB, Steinberg MH, Rees DC (2017) Sickle cell disease. N Engl J Med 376:1561–1573CrossRef
5.
Zurück zum Zitat Manwani D, Frenette PS (2013) Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies. Blood 122:3892–3898CrossRef Manwani D, Frenette PS (2013) Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies. Blood 122:3892–3898CrossRef
6.
Zurück zum Zitat Lucarelli G, Andreani M, Angelucci E (2002) The cure of thalassemia by bone marrow transplantation. Blood Rev 16(2):81–85CrossRef Lucarelli G, Andreani M, Angelucci E (2002) The cure of thalassemia by bone marrow transplantation. Blood Rev 16(2):81–85CrossRef
7.
Zurück zum Zitat Bank A (2006) Regulation of human fetal hemoglobin: new players, new complexities. Blood 107(2):435–443CrossRef Bank A (2006) Regulation of human fetal hemoglobin: new players, new complexities. Blood 107(2):435–443CrossRef
8.
Zurück zum Zitat Thein SL, Menzel S, Lathrop M et al (2009) Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Hum Mol Genet 18(R2):R216–R223CrossRef Thein SL, Menzel S, Lathrop M et al (2009) Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Hum Mol Genet 18(R2):R216–R223CrossRef
9.
Zurück zum Zitat Sankaran VG, Xu J, Ragoczy T et al (2009) Developmental and species-divergent globin switching are driven by BCL11A. Nature 460:1093–1097CrossRef Sankaran VG, Xu J, Ragoczy T et al (2009) Developmental and species-divergent globin switching are driven by BCL11A. Nature 460:1093–1097CrossRef
10.
Zurück zum Zitat Menzel S, Garner C, Gut I, Matsuda F, Yamaguchi M, Heath S, Foglio M, Zelenika D, Boland A, Rooks H et al (2007) A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet 39:1197–1199CrossRef Menzel S, Garner C, Gut I, Matsuda F, Yamaguchi M, Heath S, Foglio M, Zelenika D, Boland A, Rooks H et al (2007) A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet 39:1197–1199CrossRef
11.
Zurück zum Zitat Sedgewick AE, Timofeev N, Sebastiani P et al (2008) BCL11A is a major HbF quantitative trait locus in three different populations with beta-hemoglobinopathies. Blood Cells Mol Dis 41:255–258CrossRef Sedgewick AE, Timofeev N, Sebastiani P et al (2008) BCL11A is a major HbF quantitative trait locus in three different populations with beta-hemoglobinopathies. Blood Cells Mol Dis 41:255–258CrossRef
12.
Zurück zum Zitat Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, Mikkola HK, Hirschhorn JN, Cantor AB, Orkin SH (2008) Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322:1839–1842CrossRef Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, Mikkola HK, Hirschhorn JN, Cantor AB, Orkin SH (2008) Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322:1839–1842CrossRef
13.
Zurück zum Zitat Sankaran VG, Xu J, Byron R et al (2011) A functional element necessary for fetal hemoglobin silencing. N Engl J Med 365(9):807–814CrossRef Sankaran VG, Xu J, Byron R et al (2011) A functional element necessary for fetal hemoglobin silencing. N Engl J Med 365(9):807–814CrossRef
14.
Zurück zum Zitat Xu J, Peng C, Sankaran VG, Shao Z, Esrick EB, Chong BG, Ippolito GC, Fujiwara Y, Ebert BL, Tucker PW, Orkin SH (2011) Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science 334:993–996CrossRef Xu J, Peng C, Sankaran VG, Shao Z, Esrick EB, Chong BG, Ippolito GC, Fujiwara Y, Ebert BL, Tucker PW, Orkin SH (2011) Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science 334:993–996CrossRef
15.
Zurück zum Zitat Xu J, Bauer DE, Kerenyi MA, Vo TD, Hou S, Hsu YJ, Yao H, Trowbridge JJ, Mandel G, Orkin SH (2013) Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc Natl Acad Sci USA 110:6518–6523CrossRef Xu J, Bauer DE, Kerenyi MA, Vo TD, Hou S, Hsu YJ, Yao H, Trowbridge JJ, Mandel G, Orkin SH (2013) Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc Natl Acad Sci USA 110:6518–6523CrossRef
16.
Zurück zum Zitat Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W et al (2008) Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci USA 105(5):1620–1625CrossRef Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W et al (2008) Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci USA 105(5):1620–1625CrossRef
17.
Zurück zum Zitat Wilber A, Hargrove PW, Kim YS et al (2011) Therapeutic levels of fetal hemoglobin in erythroid progeny of beta-thalassemic CD34 + cells after lentiviral vector-mediated gene transfer. Blood 117(10):2817–2826CrossRef Wilber A, Hargrove PW, Kim YS et al (2011) Therapeutic levels of fetal hemoglobin in erythroid progeny of beta-thalassemic CD34 + cells after lentiviral vector-mediated gene transfer. Blood 117(10):2817–2826CrossRef
18.
Zurück zum Zitat Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in Trans. Plant Cell Online 2(4):279–289CrossRef Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in Trans. Plant Cell Online 2(4):279–289CrossRef
19.
Zurück zum Zitat Melnikova I (2007) RNA-based therapies. Nat Rev Drug Discov 6(11):863–864CrossRef Melnikova I (2007) RNA-based therapies. Nat Rev Drug Discov 6(11):863–864CrossRef
20.
Zurück zum Zitat Skoblov M (2009) Prospects of antisense therapy technologies. Mol Biol 43(6):917–929CrossRef Skoblov M (2009) Prospects of antisense therapy technologies. Mol Biol 43(6):917–929CrossRef
21.
Zurück zum Zitat Ghosal A, Kabir AH, Mandal A (2011) RNA interference and its therapeutic potential. Cent Euro J Med 6(2):137–147 Ghosal A, Kabir AH, Mandal A (2011) RNA interference and its therapeutic potential. Cent Euro J Med 6(2):137–147
22.
Zurück zum Zitat Fordis CM, Anagnou NP, Dean A, Nienhuis AW, Schechter AN (1984) A beta-globin gene, inactive in the K562 leukemic cell, functions normally in a heterologous expression system. Proc Natl Acad Sci USA 81:4485–4489CrossRef Fordis CM, Anagnou NP, Dean A, Nienhuis AW, Schechter AN (1984) A beta-globin gene, inactive in the K562 leukemic cell, functions normally in a heterologous expression system. Proc Natl Acad Sci USA 81:4485–4489CrossRef
23.
Zurück zum Zitat Trakarnsanga K, Wilson MC, Lau W et al (2014) Induction of adult levels of beta-globin in human erythroid cells that intrinsically express embryonic or fetal globin by transduction with KLF1 and BCL11A-XL. Haematologica 99:1677–1685CrossRef Trakarnsanga K, Wilson MC, Lau W et al (2014) Induction of adult levels of beta-globin in human erythroid cells that intrinsically express embryonic or fetal globin by transduction with KLF1 and BCL11A-XL. Haematologica 99:1677–1685CrossRef
24.
Zurück zum Zitat Xu J, Sankaran VG, Ni M et al (2010) Transcriptional silencing of {gamma}-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev 24(8):783–798CrossRef Xu J, Sankaran VG, Ni M et al (2010) Transcriptional silencing of {gamma}-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev 24(8):783–798CrossRef
Metadaten
Titel
Inhibition of γ/β Globin Gene Switching in CD 34+ Derived Erythroid Cells by BCL11A RNA Silencing
verfasst von
Seyyed Asadallah Taghavi
Kamran Mousavi Hosseini
Gholamhossein Tamaddon
Leila Kasraian
Publikationsdatum
13.05.2019
Verlag
Springer India
Erschienen in
Indian Journal of Hematology and Blood Transfusion / Ausgabe 4/2019
Print ISSN: 0971-4502
Elektronische ISSN: 0974-0449
DOI
https://doi.org/10.1007/s12288-019-01131-8

Weitere Artikel der Ausgabe 4/2019

Indian Journal of Hematology and Blood Transfusion 4/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.