Skip to main content
Erschienen in: Medical Oncology 1/2011

01.03.2011 | Original paper

Inhibition of autophagy by 3-MA potentiates cisplatin-induced apoptosis in esophageal squamous cell carcinoma cells

verfasst von: Donglei Liu, Yang Yang, Quan Liu, Jianjun Wang

Erschienen in: Medical Oncology | Ausgabe 1/2011

Einloggen, um Zugang zu erhalten

Abstract

Cisplatin (DDP)-based adjuvant chemotherapy is widely used for the treatment of esophageal cancer. However, DDP resistance has become more common and thus new approaches are required to be explored. Cisplatin was used to induce autophagy in the human esophageal cancer cell line, EC9706 cells, and the effect of autophagy on the survival of EC9706 cells was investigated using an autophagy inhibitor 3-MA. Cell viability was measured by CCK8 assay. Apoptosis and cell cycle were detected by flow cytometry. Monodansylcadaverine (MDC) was used to detect autophagy. Western blotting assay was used to investigate the molecular changes that occurred in the course of treatment. DDP inhibited cell proliferation, induced cell death and cell cycle arrest at S phage. Moreover, autophagy was activated through class III PI3K pathway. The expression of autophagy-related Beclin1 and LC3-I was up-regulated and part of LC3-I was converted into LC3-II. However, after the combination treatment of 3-MA and DDP, the cell inhibitory rate increased; the apoptosis rate and the numbers of cells in S phase also increased. Furthermore, the accumulation of autophagic vacuoles was decreased; the expression of Beclin1 and LC3 was significantly down-regulated and the release of cytochrome c was decreased. DDP-induced apoptosis in EC9706 cells can be enhanced by the inhibitor of autophagy, 3-MA. Autophagy might play a role as a self-protective mechanism in DDP-treated esophageal cancer cells, and its inhibition could be a novel strategy for the adjuvant chemotherapy of esophageal cancer.
Literatur
1.
Zurück zum Zitat Pisani P, Parkin DM, Bray F, Ferlay J. Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer. 1999;83:18–29.PubMedCrossRef Pisani P, Parkin DM, Bray F, Ferlay J. Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer. 1999;83:18–29.PubMedCrossRef
4.
5.
Zurück zum Zitat Kroemer G, et al. Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ. 2005;12:1463–7.PubMedCrossRef Kroemer G, et al. Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ. 2005;12:1463–7.PubMedCrossRef
6.
Zurück zum Zitat Li J, et al. Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann Surg Oncol. 2009;16:761–71.PubMedCrossRef Li J, et al. Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann Surg Oncol. 2009;16:761–71.PubMedCrossRef
7.
Zurück zum Zitat Lomonaco SL, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer. 2009;125:717–22.PubMedCrossRef Lomonaco SL, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer. 2009;125:717–22.PubMedCrossRef
8.
Zurück zum Zitat Chen Y, Lu Y, Lu C, Zhang L. Beclin-1 expression is a predictor of clinical outcome in patients with esophageal squamous cell carcinoma and correlated to hypoxia-inducible factor (HIF)-1alpha expression. Pathol Oncol Res. 2009. doi: 10.1007/s12253-008-9143-8. Chen Y, Lu Y, Lu C, Zhang L. Beclin-1 expression is a predictor of clinical outcome in patients with esophageal squamous cell carcinoma and correlated to hypoxia-inducible factor (HIF)-1alpha expression. Pathol Oncol Res. 2009. doi: 10.​1007/​s12253-008-9143-8.
9.
Zurück zum Zitat Munafo DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci. 2001;114:3619–29.PubMed Munafo DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci. 2001;114:3619–29.PubMed
10.
Zurück zum Zitat Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol. 1995;66:3–14.PubMed Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol. 1995;66:3–14.PubMed
11.
Zurück zum Zitat Goodsell DS. The molecular perspective: cytochrome c and apoptosis. Stem Cells. 2004;22:428–9.PubMedCrossRef Goodsell DS. The molecular perspective: cytochrome c and apoptosis. Stem Cells. 2004;22:428–9.PubMedCrossRef
12.
Zurück zum Zitat Liang XH, et al. Induction of autophagy and inhibition of tumorgenesis by Beclin1. Nature. 1999;402:672–6.PubMedCrossRef Liang XH, et al. Induction of autophagy and inhibition of tumorgenesis by Beclin1. Nature. 1999;402:672–6.PubMedCrossRef
13.
Zurück zum Zitat Kabeya Y, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–8.PubMedCrossRef Kabeya Y, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–8.PubMedCrossRef
14.
Zurück zum Zitat Galluzzi L, et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryote. Cell Death Differ. 2009;16:1093–107.PubMedCrossRef Galluzzi L, et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryote. Cell Death Differ. 2009;16:1093–107.PubMedCrossRef
15.
Zurück zum Zitat Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science. 2004;306:990–5.PubMedCrossRef Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science. 2004;306:990–5.PubMedCrossRef
16.
Zurück zum Zitat Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev. 2007;33:9–23.PubMedCrossRef Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev. 2007;33:9–23.PubMedCrossRef
18.
Zurück zum Zitat Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22:7265–79.PubMedCrossRef Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22:7265–79.PubMedCrossRef
19.
Zurück zum Zitat Kartalou M, Essigmann JM. Mechanisms of resistance to cisplatin. Mutat Res. 2001;478:23–43.PubMed Kartalou M, Essigmann JM. Mechanisms of resistance to cisplatin. Mutat Res. 2001;478:23–43.PubMed
20.
Zurück zum Zitat Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA. 1982;79:1889–92.PubMedCrossRef Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA. 1982;79:1889–92.PubMedCrossRef
21.
Zurück zum Zitat Lum JJ, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell. 2005;120:237–48.PubMedCrossRef Lum JJ, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell. 2005;120:237–48.PubMedCrossRef
22.
Zurück zum Zitat Herman-Antosiewicz A, Johnson DE, Singh SV. Sulforaphane causes autophagy to inhibit release of cytochrome c and apoptosis in human prostate cancer cells. Cancer Res. 2006;66:5828–35.PubMedCrossRef Herman-Antosiewicz A, Johnson DE, Singh SV. Sulforaphane causes autophagy to inhibit release of cytochrome c and apoptosis in human prostate cancer cells. Cancer Res. 2006;66:5828–35.PubMedCrossRef
23.
Zurück zum Zitat Nishikawa T, et al. Inhibition of autophagy potentiates sulforaphane—induced apoptosis in human colon cancer cells. Ann Surg Oncol. 2009 [Epub ahead of print]. doi: 10.1245/s10434-009-0696-x. Nishikawa T, et al. Inhibition of autophagy potentiates sulforaphane—induced apoptosis in human colon cancer cells. Ann Surg Oncol. 2009 [Epub ahead of print]. doi: 10.​1245/​s10434-009-0696-x.
24.
Zurück zum Zitat Degenhardt K, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64.PubMedCrossRef Degenhardt K, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64.PubMedCrossRef
25.
Zurück zum Zitat Karantza-Wadsworth V, et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 2007;21:1621–35.PubMedCrossRef Karantza-Wadsworth V, et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 2007;21:1621–35.PubMedCrossRef
26.
Zurück zum Zitat Katayama M, Kawaguchi T, Berger MS, Pieper RO. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 2007;14:548–58.PubMedCrossRef Katayama M, Kawaguchi T, Berger MS, Pieper RO. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 2007;14:548–58.PubMedCrossRef
27.
Zurück zum Zitat Pan J, et al. Autophagy induced by farnesyltransferase inhibitors in cancer cells. Cancer Biol Ther. 2008;7:1679–84.PubMedCrossRef Pan J, et al. Autophagy induced by farnesyltransferase inhibitors in cancer cells. Cancer Biol Ther. 2008;7:1679–84.PubMedCrossRef
28.
Zurück zum Zitat Park MA, et al. Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol Ther. 2008;7:1648–62.PubMedCrossRef Park MA, et al. Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol Ther. 2008;7:1648–62.PubMedCrossRef
29.
Zurück zum Zitat de Bruin EC, Medema JP. Apoptosis and non-apoptotic death in cancer development and treatment response. Cancer Treat Rev. 2008;34:737–49.PubMedCrossRef de Bruin EC, Medema JP. Apoptosis and non-apoptotic death in cancer development and treatment response. Cancer Treat Rev. 2008;34:737–49.PubMedCrossRef
30.
Zurück zum Zitat Maiuri MC, et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ. 2009;16:87–93.PubMedCrossRef Maiuri MC, et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ. 2009;16:87–93.PubMedCrossRef
31.
Zurück zum Zitat Ding WX, et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem. 2007;282:4702–10.PubMedCrossRef Ding WX, et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem. 2007;282:4702–10.PubMedCrossRef
32.
Zurück zum Zitat Wu YC, et al. Inhibition of macroautophagy by bafilomycin A1 lowers proliferation and induces apoptosis in colon cancer cells. Biochem Biophys Res Commun. 2009;382:451–6.PubMedCrossRef Wu YC, et al. Inhibition of macroautophagy by bafilomycin A1 lowers proliferation and induces apoptosis in colon cancer cells. Biochem Biophys Res Commun. 2009;382:451–6.PubMedCrossRef
33.
Zurück zum Zitat Gozuacik D, Kimch A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004;23:2891–906.PubMedCrossRef Gozuacik D, Kimch A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004;23:2891–906.PubMedCrossRef
34.
Zurück zum Zitat Yang C, et al. Inhibition of autophagy induced by overexpression of mda-7/interleukin-24 strongly augments the antileukemia activity in vitro and in vivo. Cancer Gene Ther. 2009 [Epub ahead of print]. doi: 10.1038/cgt.2009.57. Yang C, et al. Inhibition of autophagy induced by overexpression of mda-7/interleukin-24 strongly augments the antileukemia activity in vitro and in vivo. Cancer Gene Ther. 2009 [Epub ahead of print]. doi: 10.​1038/​cgt.​2009.​57.
35.
Zurück zum Zitat Chen N, Karantza-Wadsworth V. Role and regulation of autophagy in cancer. Biochim Biophys Acta. 2009;1793:1516–23.PubMedCrossRef Chen N, Karantza-Wadsworth V. Role and regulation of autophagy in cancer. Biochim Biophys Acta. 2009;1793:1516–23.PubMedCrossRef
36.
Zurück zum Zitat Iwamaru A, et al. Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene. 2007;26:1840–51.PubMedCrossRef Iwamaru A, et al. Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene. 2007;26:1840–51.PubMedCrossRef
37.
Zurück zum Zitat Takeuchi H, et al. Synergistic augmentation of rapamycin-induced auto-phagy in malignant glioma cells by phosphatidylinositol 3-kinase protein kinase B inhibitors. Cancer Res. 2005;65:3336–46.PubMed Takeuchi H, et al. Synergistic augmentation of rapamycin-induced auto-phagy in malignant glioma cells by phosphatidylinositol 3-kinase protein kinase B inhibitors. Cancer Res. 2005;65:3336–46.PubMed
Metadaten
Titel
Inhibition of autophagy by 3-MA potentiates cisplatin-induced apoptosis in esophageal squamous cell carcinoma cells
verfasst von
Donglei Liu
Yang Yang
Quan Liu
Jianjun Wang
Publikationsdatum
01.03.2011
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 1/2011
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-009-9397-3

Weitere Artikel der Ausgabe 1/2011

Medical Oncology 1/2011 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.