Skip to main content
Erschienen in: Tumor Biology 3/2016

10.10.2015 | Original Article

Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells

verfasst von: Yunke Bi, Chen Shen, Chenguang Li, Yaohua Liu, Dandan Gao, Chen Shi, Fei Peng, Zhendong Liu, Boxian Zhao, Zhixing Zheng, Xiaoxiong Wang, Xu Hou, Huailei Liu, Jianing Wu, Huichao Zou, Kaikai Wang, Chen Zhong, Jiakang Zhang, Changbin Shi, Shiguang Zhao

Erschienen in: Tumor Biology | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Glioma is the most common primary brain tumor in the central nervous system (CNS) with high morbidity and mortality in adults. Although standardized comprehensive therapy has been adapted, the prognosis of glioma patients is still frustrating and thus novel therapeutic strategies are urgently in need. Quercetin (Quer), an important flavonoid compound found in many herbs, is shown to be effective in some tumor models including glioma. Recently, it is reported that adequate regulation of autophagy can strengthen cytotoxic effect of anticancer drugs. However, it is not yet fully clear how we should modulate autophagy to achieve a satisfactory therapeutic effect. 3-Methyladenine (3-MA) and Beclin1 short hairpin RNA (shRNA) were used to inhibit the early stage of autophage while chloroquine (CQ) to inhibit the late stage. MTT assay was implemented to determine cell viability. Transmission electron microscopy, western blot, and immunohistochemistry were adopted to evaluate autophagy. Western blot, flow cytometry, and immunohistochemistry were used to detect apoptosis. C6 glioma xenograft models were established to assess the therapeutic effect (the body weight change, the median survival time, and tumor volume) in vivo. Quercetin can inhibit cell viability and induce autophagy of U87 and U251 glioma cells in a dose-dependent manner. Inhibition of early-stage autophagy by 3-MA or shRNA against Beclin1 attenuated the quercetin-induced cytotoxicity. In contrast, suppression of autophagy at a late stage by CQ enhanced the anti-glioma efficiency of quercetin. Therapeutic effect of quercetin for malignant glioma can be strengthened by inhibition of autophagy at a late stage, not initial stage, which may provide a novel opportunity for glioma therapy.
Literatur
1.
Zurück zum Zitat Frassanito P, Tamburrini G, Massimi L, Caldarelli M, Di Rocco C. Ghost tumors of the central nervous system: definition, clinical implications, and proposal of classification. World Neurosurg. 2015;84(3):663–70.CrossRefPubMed Frassanito P, Tamburrini G, Massimi L, Caldarelli M, Di Rocco C. Ghost tumors of the central nervous system: definition, clinical implications, and proposal of classification. World Neurosurg. 2015;84(3):663–70.CrossRefPubMed
2.
Zurück zum Zitat Meyer MA. Malignant gliomas in adults. N Engl J Med. 2008;359(17):1850.PubMed Meyer MA. Malignant gliomas in adults. N Engl J Med. 2008;359(17):1850.PubMed
3.
Zurück zum Zitat Zhu Z, Khan MA, Weiler M, Blaes J, Jestaedt L, Geibert M, et al. Targeting self-renewal in high-grade brain tumors leads to loss of brain tumor stem cells and prolonged survival. Cell Stem Cell. 2014;15(2):185–98.CrossRefPubMed Zhu Z, Khan MA, Weiler M, Blaes J, Jestaedt L, Geibert M, et al. Targeting self-renewal in high-grade brain tumors leads to loss of brain tumor stem cells and prolonged survival. Cell Stem Cell. 2014;15(2):185–98.CrossRefPubMed
4.
Zurück zum Zitat Grossman SA, Batara JF. Current management of glioblastoma multiforme. Semin Oncol. 2004;31(5):635–44.CrossRefPubMed Grossman SA, Batara JF. Current management of glioblastoma multiforme. Semin Oncol. 2004;31(5):635–44.CrossRefPubMed
5.
Zurück zum Zitat Saito N, Fu J, Zheng S, Yao J, Wang S, Liu DD, et al. A high Notch pathway activation predicts response to gamma secretase inhibitors in proneural subtype of glioma tumor-initiating cells. Stem Cells. 2014;32(1):301–12.CrossRefPubMedPubMedCentral Saito N, Fu J, Zheng S, Yao J, Wang S, Liu DD, et al. A high Notch pathway activation predicts response to gamma secretase inhibitors in proneural subtype of glioma tumor-initiating cells. Stem Cells. 2014;32(1):301–12.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Watkins S, Robel S, Kimbrough IF, Robert SM, Ellis-Davies G, Sontheimer H. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat Commun. 2014;5:4196.CrossRefPubMedPubMedCentral Watkins S, Robel S, Kimbrough IF, Robert SM, Ellis-Davies G, Sontheimer H. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat Commun. 2014;5:4196.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Kim H, Moon JY, Ahn KS, Cho SK. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid Med Cell Longev. 2013;2013:596496.PubMedPubMedCentral Kim H, Moon JY, Ahn KS, Cho SK. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid Med Cell Longev. 2013;2013:596496.PubMedPubMedCentral
8.
Zurück zum Zitat Jakubowicz-Gil J, Langner E, Badziul D, Wertel I, Rzeski W. Apoptosis induction in human glioblastoma multiforme T98G cells upon temozolomide and quercetin treatment. Tumour Biol. 2013;34(4):2367–78.CrossRefPubMedPubMedCentral Jakubowicz-Gil J, Langner E, Badziul D, Wertel I, Rzeski W. Apoptosis induction in human glioblastoma multiforme T98G cells upon temozolomide and quercetin treatment. Tumour Biol. 2013;34(4):2367–78.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Kim EJ, Choi CH, Park JY, Kang SK, Kim YK. Underlying mechanism of quercetin-induced cell death in human glioma cells. Neurochem Res. 2008;33(6):971–9.CrossRefPubMed Kim EJ, Choi CH, Park JY, Kang SK, Kim YK. Underlying mechanism of quercetin-induced cell death in human glioma cells. Neurochem Res. 2008;33(6):971–9.CrossRefPubMed
10.
Zurück zum Zitat Siegelin MD, Reuss DE, Habel A, Rami A, von Deimling A. Quercetin promotes degradation of survivin and thereby enhances death-receptor-mediated apoptosis in glioma cells. Neuro Oncol. 2009;11(2):122–31.CrossRefPubMedPubMedCentral Siegelin MD, Reuss DE, Habel A, Rami A, von Deimling A. Quercetin promotes degradation of survivin and thereby enhances death-receptor-mediated apoptosis in glioma cells. Neuro Oncol. 2009;11(2):122–31.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Wang G, Wang JJ, Chen XL, Du SM, Li DS, Pei ZJ, et al. The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death Dis. 2013;4, e746.CrossRefPubMedPubMedCentral Wang G, Wang JJ, Chen XL, Du SM, Li DS, Pei ZJ, et al. The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death Dis. 2013;4, e746.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Faria A, Meireles M, Fernandes I, Santos-Buelga C, Gonzalez-Manzano S, Duenas M, et al. Flavonoid metabolites transport across a human BBB model. Food Chem. 2014;149:190–6.CrossRefPubMed Faria A, Meireles M, Fernandes I, Santos-Buelga C, Gonzalez-Manzano S, Duenas M, et al. Flavonoid metabolites transport across a human BBB model. Food Chem. 2014;149:190–6.CrossRefPubMed
13.
Zurück zum Zitat Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ. Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol Med. 2004;36(5):592–604.CrossRefPubMed Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ. Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol Med. 2004;36(5):592–604.CrossRefPubMed
14.
Zurück zum Zitat Yang Y, Bai L, Li X, Xiong J, Xu P, Guo C, et al. Transport of active flavonoids, based on cytotoxicity and lipophilicity: an evaluation using the blood-brain barrier cell and Caco-2 cell models. Toxicol In Vitro. 2014;28(3):388–96.CrossRefPubMed Yang Y, Bai L, Li X, Xiong J, Xu P, Guo C, et al. Transport of active flavonoids, based on cytotoxicity and lipophilicity: an evaluation using the blood-brain barrier cell and Caco-2 cell models. Toxicol In Vitro. 2014;28(3):388–96.CrossRefPubMed
15.
Zurück zum Zitat Mrozikiewicz PM, Bogacz A, Bartkowiak-Wieczorek J, Kujawski R, Mikolajczak PL, Ozarowski M, et al. Screening for impact of popular herbs improving mental abilities on the transcriptional level of brain transporters. Acta Pharm. 2014;64(2):223–32.CrossRefPubMed Mrozikiewicz PM, Bogacz A, Bartkowiak-Wieczorek J, Kujawski R, Mikolajczak PL, Ozarowski M, et al. Screening for impact of popular herbs improving mental abilities on the transcriptional level of brain transporters. Acta Pharm. 2014;64(2):223–32.CrossRefPubMed
16.
Zurück zum Zitat Tanida I. Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal. 2011;14(11):2201–14.CrossRefPubMed Tanida I. Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal. 2011;14(11):2201–14.CrossRefPubMed
17.
Zurück zum Zitat Fantin VR, Abraham RT. Self-eating limits EGFR-dependent tumor growth. Cell. 2013;154(6):1184–6.CrossRefPubMed Fantin VR, Abraham RT. Self-eating limits EGFR-dependent tumor growth. Cell. 2013;154(6):1184–6.CrossRefPubMed
18.
19.
Zurück zum Zitat Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y, et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature. 2015;522(7556):359–62.CrossRefPubMed Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y, et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature. 2015;522(7556):359–62.CrossRefPubMed
20.
Zurück zum Zitat Su Z, Yang Z, Xu Y, Chen Y, Yu Q. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotargrt. 2015;6(11):8474–90.CrossRef Su Z, Yang Z, Xu Y, Chen Y, Yu Q. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotargrt. 2015;6(11):8474–90.CrossRef
21.
Zurück zum Zitat Cecconi F, Jaattela M. Targeting ions-induced autophagy in cancer. Cancer Cell. 2014;26(5):599–600.CrossRefPubMed Cecconi F, Jaattela M. Targeting ions-induced autophagy in cancer. Cancer Cell. 2014;26(5):599–600.CrossRefPubMed
22.
Zurück zum Zitat Carroll RG, Martin SJ. Autophagy in multiple myeloma: what makes you stronger can also kill you. Cancer Cell. 2013;23(4):425–6.CrossRefPubMed Carroll RG, Martin SJ. Autophagy in multiple myeloma: what makes you stronger can also kill you. Cancer Cell. 2013;23(4):425–6.CrossRefPubMed
23.
Zurück zum Zitat Sun K, Guo XL, Zhao QD, Jing YY, Kou XR, Xie XQ, et al. Paradoxical role of autophagy in the dysplastic and tumor-forming stages of hepatocarcinoma development in rats. Cell Death Dis. 2013;4, e501.CrossRefPubMedPubMedCentral Sun K, Guo XL, Zhao QD, Jing YY, Kou XR, Xie XQ, et al. Paradoxical role of autophagy in the dysplastic and tumor-forming stages of hepatocarcinoma development in rats. Cell Death Dis. 2013;4, e501.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Mathew R, Khor S, Hackett SR, Rabinowitz JD, Perlman DH, White E. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol Cell. 2014;55(6):916–30.CrossRefPubMedPubMedCentral Mathew R, Khor S, Hackett SR, Rabinowitz JD, Perlman DH, White E. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol Cell. 2014;55(6):916–30.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Ferry DR, Smith A, Malkhandi J, Fyfe DW, DeTakats PG, Anderson D, et al. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res. 1996;2(4):659–68.PubMed Ferry DR, Smith A, Malkhandi J, Fyfe DW, DeTakats PG, Anderson D, et al. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res. 1996;2(4):659–68.PubMed
27.
Zurück zum Zitat Iwamoto FM, Kreisl TN, Kim L, Duic JP, Butman JA, Albert PS, et al. Phase 2 trial of talampanel, a glutamate receptor inhibitor, for adults with recurrent malignant gliomas. Cancer. 2010;116(7):1776–82.CrossRefPubMedPubMedCentral Iwamoto FM, Kreisl TN, Kim L, Duic JP, Butman JA, Albert PS, et al. Phase 2 trial of talampanel, a glutamate receptor inhibitor, for adults with recurrent malignant gliomas. Cancer. 2010;116(7):1776–82.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Euhus DM, Hudd C, LaRegina MC, Johnson FE. Tumor measurement in the nude mouse. J Surg Oncol. 1986;31(4):229–34.CrossRefPubMed Euhus DM, Hudd C, LaRegina MC, Johnson FE. Tumor measurement in the nude mouse. J Surg Oncol. 1986;31(4):229–34.CrossRefPubMed
29.
Zurück zum Zitat Zhou J, Liang S, Fang L, Chen L, Tang M, Xu Y, et al. Quantitative proteomic analysis of HepG2 cells treated with quercetin suggests IQGAP1 involved in quercetin-induced regulation of cell proliferation and migration. Omics. 2009;13(2):93–103.CrossRefPubMed Zhou J, Liang S, Fang L, Chen L, Tang M, Xu Y, et al. Quantitative proteomic analysis of HepG2 cells treated with quercetin suggests IQGAP1 involved in quercetin-induced regulation of cell proliferation and migration. Omics. 2009;13(2):93–103.CrossRefPubMed
30.
Zurück zum Zitat Bischoff SC. Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care. 2008;11(6):733–40.CrossRefPubMed Bischoff SC. Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care. 2008;11(6):733–40.CrossRefPubMed
32.
Zurück zum Zitat Li C, Liu Y, Liu H, Zhang W, Shen C, Cho K, et al. Impact of autophagy inhibition at different stages on cytotoxic effect of autophagy inducer in glioblastoma cells. Cell Physiol Biochem. 2015;35(4):1303–16.CrossRefPubMed Li C, Liu Y, Liu H, Zhang W, Shen C, Cho K, et al. Impact of autophagy inhibition at different stages on cytotoxic effect of autophagy inducer in glioblastoma cells. Cell Physiol Biochem. 2015;35(4):1303–16.CrossRefPubMed
33.
Zurück zum Zitat Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Hill JA, et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation. 2012;125(25):3170–81.CrossRefPubMedPubMedCentral Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Hill JA, et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation. 2012;125(25):3170–81.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Geng Y, Kohli L, Klocke BJ, Roth KA. Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent. Neuro Oncol. 2010;12(5):473–81.PubMedPubMedCentral Geng Y, Kohli L, Klocke BJ, Roth KA. Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent. Neuro Oncol. 2010;12(5):473–81.PubMedPubMedCentral
35.
Zurück zum Zitat Wu G, Li H, Ji Z, Jiang X, Lei Y, Sun M. Inhibition of autophagy by autophagic inhibitors enhances apoptosis induced by bortezomib in non-small cell lung cancer cells. Biotechnol Lett. 2014;36(6):1171–8.CrossRefPubMed Wu G, Li H, Ji Z, Jiang X, Lei Y, Sun M. Inhibition of autophagy by autophagic inhibitors enhances apoptosis induced by bortezomib in non-small cell lung cancer cells. Biotechnol Lett. 2014;36(6):1171–8.CrossRefPubMed
36.
Zurück zum Zitat Liang X, Tang J, Liang Y, Jin R, Cai X. Suppression of autophagy by chloroquine sensitizes 5-fluorouracil-mediated cell death in gallbladder carcinoma cells. Cell Biosci. 2014;4(1):10.CrossRefPubMedPubMedCentral Liang X, Tang J, Liang Y, Jin R, Cai X. Suppression of autophagy by chloroquine sensitizes 5-fluorouracil-mediated cell death in gallbladder carcinoma cells. Cell Biosci. 2014;4(1):10.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Wu Z, Chang PC, Yang JC, Chu CY, Wang LY, Chen NT, et al. Autophagy blockade sensitizes prostate cancer cells towards Src family kinase inhibitors. Genes Cancer. 2010;1(1):40–9.CrossRefPubMedPubMedCentral Wu Z, Chang PC, Yang JC, Chu CY, Wang LY, Chen NT, et al. Autophagy blockade sensitizes prostate cancer cells towards Src family kinase inhibitors. Genes Cancer. 2010;1(1):40–9.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Ge PF, Zhang JZ, Wang XF, Meng FK, Li WC, Luan YX, et al. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells. Acta Pharmacol Sin. 2009;30(7):1046–52.CrossRefPubMedPubMedCentral Ge PF, Zhang JZ, Wang XF, Meng FK, Li WC, Luan YX, et al. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells. Acta Pharmacol Sin. 2009;30(7):1046–52.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Macintosh RL, Timpson P, Thorburn J, Anderson KI, Thorburn A, Ryan KM. Inhibition of autophagy impairs tumor cell invasion in an organotypic model. Cell Cycle. 2012;11(10):2022–9.CrossRefPubMedPubMedCentral Macintosh RL, Timpson P, Thorburn J, Anderson KI, Thorburn A, Ryan KM. Inhibition of autophagy impairs tumor cell invasion in an organotypic model. Cell Cycle. 2012;11(10):2022–9.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Wirth M, Joachim J, Tooze SA. Autophagosome formation—the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Semin Cancer Biol. 2013;23(5):301–9.CrossRefPubMed Wirth M, Joachim J, Tooze SA. Autophagosome formation—the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Semin Cancer Biol. 2013;23(5):301–9.CrossRefPubMed
41.
Zurück zum Zitat Shin JY, Hong SH, Kang B, Minai-Tehrani A, Cho MH. Overexpression of Beclin1 induced autophagy and apoptosis in lungs of K-rasLA1 mice. Lung Cancer. 2013;81(3):362–70.CrossRefPubMed Shin JY, Hong SH, Kang B, Minai-Tehrani A, Cho MH. Overexpression of Beclin1 induced autophagy and apoptosis in lungs of K-rasLA1 mice. Lung Cancer. 2013;81(3):362–70.CrossRefPubMed
42.
Zurück zum Zitat Wirawan E, Lippens S, Vanden BT, Romagnoli A, Fimia GM, Piacentini M, et al. Beclin1: a role in membrane dynamics and beyond. Autophagy. 2012;8(1):6–17.CrossRefPubMed Wirawan E, Lippens S, Vanden BT, Romagnoli A, Fimia GM, Piacentini M, et al. Beclin1: a role in membrane dynamics and beyond. Autophagy. 2012;8(1):6–17.CrossRefPubMed
Metadaten
Titel
Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells
verfasst von
Yunke Bi
Chen Shen
Chenguang Li
Yaohua Liu
Dandan Gao
Chen Shi
Fei Peng
Zhendong Liu
Boxian Zhao
Zhixing Zheng
Xiaoxiong Wang
Xu Hou
Huailei Liu
Jianing Wu
Huichao Zou
Kaikai Wang
Chen Zhong
Jiakang Zhang
Changbin Shi
Shiguang Zhao
Publikationsdatum
10.10.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 3/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4125-4

Weitere Artikel der Ausgabe 3/2016

Tumor Biology 3/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.