Skip to main content
Erschienen in: Inflammation 2/2018

02.12.2017 | ORIGINAL ARTICLE

Inhibition of Complement Drives Increase in Early Growth Response Proteins and Neuroprotection Mediated by Salidroside After Cerebral Ischemia

verfasst von: Wenfang Lai, XiuLi Xie, Xiaoqin Zhang, Yingzheng Wang, Kedan Chu, John Brown, Lidian Chen, Guizhu Hong

Erschienen in: Inflammation | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Salidroside is neuroprotective across a wide therapeutic time-window after cerebral ischemia-reperfusion injury (IRI). Here, we investigated the role of complement in mediating effects of salidroside after cerebral IRI in rats. Rats were administrated with vehicle or salidroside 50 mg/kg, given daily for either 24 or 48 h, after middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for 1 h. Levels of proteins in ischemic brain were measured by immunofluorescence and western blotting. We observed early increases in the deposition of immunoglobulin M, mannose-binding lectin 2, and annexin IV on cerebral endothelial cells, induction of the complement components C3 and C3a, by 24 h after IRI, and a later significant increase in the complement component C1q by 48 h. Salidroside prevented these changes. The neuroplasticity-related early growth response proteins Egr1, Egr2, and Egr4 and activity-regulated cytoskeleton-associated protein increased transiently in the first 6 h after IRI but then decreased below baseline by 48 h after IRI. Neither salidroside nor a C3a receptor antagonist (C3aRA) affected these proteins 24 h after IRI, but both reversed their later decreases to similar and non-additive extents. Salidroside and C3aRA increased NeuN in a non-additive manner after IRI. Our results suggest that salidroside exerts neuroprotection by reducing early activation of the lectin pathway on the cerebral endothelium and inhibiting the gradual activation of the classical pathway after cerebral IRI. This prolonged neuroprotection may depend, at least in part, on increased expression of neuroplasticity-related genes driven by reduced complement activation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Arumugam, T.V., T.M. Woodruff, J.D. Lathia, P.K. Selvaraj, M.P. Mattson, and S.M. Taylor. 2009. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience 158: 1074–1089.CrossRefPubMed Arumugam, T.V., T.M. Woodruff, J.D. Lathia, P.K. Selvaraj, M.P. Mattson, and S.M. Taylor. 2009. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience 158: 1074–1089.CrossRefPubMed
2.
Zurück zum Zitat Cowell, R.M., J.M. Plane, and F.S. Silverstein. 2003. Complement activation contributes to hypoxic-ischemic brain injury in neonatal rats. Journal of Neuroscience 23: 9459–9468.PubMed Cowell, R.M., J.M. Plane, and F.S. Silverstein. 2003. Complement activation contributes to hypoxic-ischemic brain injury in neonatal rats. Journal of Neuroscience 23: 9459–9468.PubMed
3.
Zurück zum Zitat Mocco, J., W.J. Mack, A.F. Ducruet, S.A. Sosunov, M.E. Sughrue, B.G. Hassid, M.N. Nair, I. Laufer, R.J. Komotar, M. Claire, H. Holland, D.J. Pinsky, and E.J. Connolly. 2006. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circulation Research 99: 209–217.CrossRefPubMed Mocco, J., W.J. Mack, A.F. Ducruet, S.A. Sosunov, M.E. Sughrue, B.G. Hassid, M.N. Nair, I. Laufer, R.J. Komotar, M. Claire, H. Holland, D.J. Pinsky, and E.J. Connolly. 2006. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circulation Research 99: 209–217.CrossRefPubMed
4.
Zurück zum Zitat Elvington, A., C. Atkinson, L. Kulik, H. Zhu, J. Yu, M.S. Kindy, V.M. Holers, and S. Tomlinson. 2012. Pathogenic natural antibodies propagate cerebral injury following ischemic stroke in mice. Journal of Immunology 188: 1460–1468.CrossRef Elvington, A., C. Atkinson, L. Kulik, H. Zhu, J. Yu, M.S. Kindy, V.M. Holers, and S. Tomlinson. 2012. Pathogenic natural antibodies propagate cerebral injury following ischemic stroke in mice. Journal of Immunology 188: 1460–1468.CrossRef
5.
Zurück zum Zitat Ducruet, A.F., S.A. Sosunov, B.E. Zacharia, J. Gorski, M.L. Yeh, P. Derosa, G. Cohen, P.R. Gigante, and E.J. Connolly. 2011. The neuroprotective effect of genetic mannose-binding lectin deficiency is not sustained in the sub-acute phase of stroke. Translational Stroke Research 2: 588–599.CrossRefPubMedCentralPubMed Ducruet, A.F., S.A. Sosunov, B.E. Zacharia, J. Gorski, M.L. Yeh, P. Derosa, G. Cohen, P.R. Gigante, and E.J. Connolly. 2011. The neuroprotective effect of genetic mannose-binding lectin deficiency is not sustained in the sub-acute phase of stroke. Translational Stroke Research 2: 588–599.CrossRefPubMedCentralPubMed
6.
Zurück zum Zitat Cervera, A., A.M. Planas, C. Justicia, X. Urra, J.C. Jensenius, F. Torres, F. Lozano, and A. Chamorro. 2010. Genetically-defined deficiency of mannose-binding lectin is associated with protection after experimental stroke in mice and outcome in human stroke. PLoS One 5: e8433.CrossRefPubMedCentralPubMed Cervera, A., A.M. Planas, C. Justicia, X. Urra, J.C. Jensenius, F. Torres, F. Lozano, and A. Chamorro. 2010. Genetically-defined deficiency of mannose-binding lectin is associated with protection after experimental stroke in mice and outcome in human stroke. PLoS One 5: e8433.CrossRefPubMedCentralPubMed
7.
Zurück zum Zitat Morrison, H., J. Frye, G. Davis-Gorman, J. Funk, P. McDonagh, G. Stahl, and L. Ritter. 2011. The contribution of mannose binding lectin to reperfusion injury after ischemic stroke. Current Neurovascular Research 8: 52–63.CrossRefPubMedCentralPubMed Morrison, H., J. Frye, G. Davis-Gorman, J. Funk, P. McDonagh, G. Stahl, and L. Ritter. 2011. The contribution of mannose binding lectin to reperfusion injury after ischemic stroke. Current Neurovascular Research 8: 52–63.CrossRefPubMedCentralPubMed
8.
Zurück zum Zitat Orsini, F., P. Villa, S. Parrella, R. Zangari, E.R. Zanier, R. Gesuete, M. Stravalaci, S. Fumagalli, R. Ottria, J.J. Reina, A. Paladini, E. Micotti, R. Ribeiro-Viana, J. Rojo, V.I. Pavlov, G.L. Stahl, A. Bernardi, M. Gobbi, and M.G. De Simoni. 2012. Targeting mannose-binding lectin confers long-lasting protection with a surprisingly wide therapeutic window in cerebral ischemia. Circulation 126: 1484–1494.CrossRefPubMedCentralPubMed Orsini, F., P. Villa, S. Parrella, R. Zangari, E.R. Zanier, R. Gesuete, M. Stravalaci, S. Fumagalli, R. Ottria, J.J. Reina, A. Paladini, E. Micotti, R. Ribeiro-Viana, J. Rojo, V.I. Pavlov, G.L. Stahl, A. Bernardi, M. Gobbi, and M.G. De Simoni. 2012. Targeting mannose-binding lectin confers long-lasting protection with a surprisingly wide therapeutic window in cerebral ischemia. Circulation 126: 1484–1494.CrossRefPubMedCentralPubMed
9.
Zurück zum Zitat de la Rosa, X., A. Cervera, A.K. Kristoffersen, C.P. Valdes, H.M. Varma, C. Justicia, T. Durduran, A. Chamorro, and A.M. Planas. 2014. Mannose-binding lectin promotes local microvascular thrombosis after transient brain ischemia in mice. Stroke 45: 1453–1459.CrossRefPubMed de la Rosa, X., A. Cervera, A.K. Kristoffersen, C.P. Valdes, H.M. Varma, C. Justicia, T. Durduran, A. Chamorro, and A.M. Planas. 2014. Mannose-binding lectin promotes local microvascular thrombosis after transient brain ischemia in mice. Stroke 45: 1453–1459.CrossRefPubMed
10.
Zurück zum Zitat Osthoff, M., M. Katan, F. Fluri, P. Schuetz, R. Bingisser, L. Kappos, A.J. Steck, S.T. Engelter, B. Mueller, M. Christ-Crain, and M. Trendelenburg. 2011. Mannose-binding lectin deficiency is associated with smaller infarction size and favorable outcome in ischemic stroke patients. PLoS One 6: e21338.CrossRefPubMedCentralPubMed Osthoff, M., M. Katan, F. Fluri, P. Schuetz, R. Bingisser, L. Kappos, A.J. Steck, S.T. Engelter, B. Mueller, M. Christ-Crain, and M. Trendelenburg. 2011. Mannose-binding lectin deficiency is associated with smaller infarction size and favorable outcome in ischemic stroke patients. PLoS One 6: e21338.CrossRefPubMedCentralPubMed
11.
Zurück zum Zitat Petry, F., P.J. McClive, M. Botto, B.J. Morley, G. Morahan, and M. Loos. 1996. The mouse C1q genes are clustered on chromosome 4 and show conservation of gene organization. Immunogenetics 43: 370–376.PubMed Petry, F., P.J. McClive, M. Botto, B.J. Morley, G. Morahan, and M. Loos. 1996. The mouse C1q genes are clustered on chromosome 4 and show conservation of gene organization. Immunogenetics 43: 370–376.PubMed
12.
Zurück zum Zitat De Simoni, M.G., E. Rossi, C. Storini, S. Pizzimenti, C. Echart, and L. Bergamaschini. 2004. The powerful neuroprotective action of C1-inhibitor on brain ischemia-reperfusion injury does not require C1q. American Journal of Pathology 164: 1857–1863.CrossRefPubMedCentralPubMed De Simoni, M.G., E. Rossi, C. Storini, S. Pizzimenti, C. Echart, and L. Bergamaschini. 2004. The powerful neuroprotective action of C1-inhibitor on brain ischemia-reperfusion injury does not require C1q. American Journal of Pathology 164: 1857–1863.CrossRefPubMedCentralPubMed
13.
Zurück zum Zitat Elvington, A., C. Atkinson, H. Zhu, J. Yu, K. Takahashi, G.L. Stahl, M.S. Kindy, and S. Tomlinson. 2012. The alternative complement pathway propagates inflammation and injury in murine ischemic stroke. Journal of Immunology 189: 4640–4647.CrossRef Elvington, A., C. Atkinson, H. Zhu, J. Yu, K. Takahashi, G.L. Stahl, M.S. Kindy, and S. Tomlinson. 2012. The alternative complement pathway propagates inflammation and injury in murine ischemic stroke. Journal of Immunology 189: 4640–4647.CrossRef
14.
Zurück zum Zitat Alawieh, A., and S. Tomlinson. 2016. Injury site-specific targeting of complement inhibitors for treating stroke. Immunological Reviews 274: 270–280.CrossRefPubMedCentralPubMed Alawieh, A., and S. Tomlinson. 2016. Injury site-specific targeting of complement inhibitors for treating stroke. Immunological Reviews 274: 270–280.CrossRefPubMedCentralPubMed
15.
Zurück zum Zitat Wei, Y., H. Hong, X. Zhang, W. Lai, Y. Wang, K. Chu, J. Brown, G. Hong, and L. Chen. 2017. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40: 1297–1309.CrossRefPubMed Wei, Y., H. Hong, X. Zhang, W. Lai, Y. Wang, K. Chu, J. Brown, G. Hong, and L. Chen. 2017. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40: 1297–1309.CrossRefPubMed
16.
Zurück zum Zitat Shi, T.Y., S.F. Feng, J.H. Xing, Y.M. Wu, X.Q. Li, N. Zhang, Z. Tian, S.B. Liu, and M.G. Zhao. 2012. Neuroprotective effects of salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro. Neurotoxicity Research 21: 358–367.CrossRefPubMed Shi, T.Y., S.F. Feng, J.H. Xing, Y.M. Wu, X.Q. Li, N. Zhang, Z. Tian, S.B. Liu, and M.G. Zhao. 2012. Neuroprotective effects of salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro. Neurotoxicity Research 21: 358–367.CrossRefPubMed
17.
Zurück zum Zitat Lai, W., Z. Zheng, X. Zhang, Y. Wei, K. Chu, J. Brown, G. Hong, and L. Chen. 2015. Salidroside-mediated neuroprotection is associated with induction of early growth response genes (Egrs) across a wide therapeutic window. Neurotoxicity Research 28: 108–121.CrossRefPubMed Lai, W., Z. Zheng, X. Zhang, Y. Wei, K. Chu, J. Brown, G. Hong, and L. Chen. 2015. Salidroside-mediated neuroprotection is associated with induction of early growth response genes (Egrs) across a wide therapeutic window. Neurotoxicity Research 28: 108–121.CrossRefPubMed
18.
Zurück zum Zitat Cole, A.J., D.W. Saffen, J.M. Baraban, and P.F. Worley. 1989. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340: 474–476.CrossRefPubMed Cole, A.J., D.W. Saffen, J.M. Baraban, and P.F. Worley. 1989. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340: 474–476.CrossRefPubMed
19.
Zurück zum Zitat O'Donovan, K.J., W.G. Tourtellotte, J. Millbrandt, and J.M. Baraban. 1999. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends in Neurosciences 22: 167–173.CrossRefPubMed O'Donovan, K.J., W.G. Tourtellotte, J. Millbrandt, and J.M. Baraban. 1999. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends in Neurosciences 22: 167–173.CrossRefPubMed
20.
Zurück zum Zitat Kawahara, N., Y. Wang, A. Mukasa, K. Furuya, T. Shimizu, T. Hamakubo, H. Aburatani, T. Kodama, and T. Kirino. 2004. Genome-wide gene expression analysis for induced ischemic tolerance and delayed neuronal death following transient global ischemia in rats. Journal of Cerebral Blood Flow & Metabolism 24: 212–223.CrossRef Kawahara, N., Y. Wang, A. Mukasa, K. Furuya, T. Shimizu, T. Hamakubo, H. Aburatani, T. Kodama, and T. Kirino. 2004. Genome-wide gene expression analysis for induced ischemic tolerance and delayed neuronal death following transient global ischemia in rats. Journal of Cerebral Blood Flow & Metabolism 24: 212–223.CrossRef
21.
Zurück zum Zitat Pérez-Cadahía, B., B. Drobic, and J.R. Davie. 2011. Activation and function of immediate-early genes in the nervous. Biochemistry and Cell Biology 89: 61–73.CrossRefPubMed Pérez-Cadahía, B., B. Drobic, and J.R. Davie. 2011. Activation and function of immediate-early genes in the nervous. Biochemistry and Cell Biology 89: 61–73.CrossRefPubMed
22.
Zurück zum Zitat Longa, E.Z., P.R. Weinstein, S. Carlson, and R. Cummins. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84–91.CrossRefPubMed Longa, E.Z., P.R. Weinstein, S. Carlson, and R. Cummins. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84–91.CrossRefPubMed
23.
Zurück zum Zitat Belayev, L., O.F. Alonso, R. Busto, W. Zhao, and M.D. Ginsberg. 1996. Middle cerebral artery occlusion in the rat by intraluminal suture. neurological and pathological evaluation of an improved model. Stroke 27: 1616–1622 discussion 1623.CrossRefPubMed Belayev, L., O.F. Alonso, R. Busto, W. Zhao, and M.D. Ginsberg. 1996. Middle cerebral artery occlusion in the rat by intraluminal suture. neurological and pathological evaluation of an improved model. Stroke 27: 1616–1622 discussion 1623.CrossRefPubMed
24.
Zurück zum Zitat Nakayama, H., M.D. Ginsberg, and W.D. Dietrich. 1988. (S)-emopamil, a novel calcium channel blocker and serotonin S2 antagonist, markedly reduces infarct size following middle cerebral artery occlusion in the rat. Neurology 38: 1667–1673.CrossRefPubMed Nakayama, H., M.D. Ginsberg, and W.D. Dietrich. 1988. (S)-emopamil, a novel calcium channel blocker and serotonin S2 antagonist, markedly reduces infarct size following middle cerebral artery occlusion in the rat. Neurology 38: 1667–1673.CrossRefPubMed
25.
Zurück zum Zitat Ducruet, A.F., B.G. Hassid, W.J. Mack, S.A. Sosunov, M.L. Otten, D.J. Fusco, Z.L. Hickman, G.H. Kim, R.J. Komotar, and J. Mocco. 2008. C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. Journal of Cerebral Blood Flow & Metabolism 28: 1048–1058.CrossRef Ducruet, A.F., B.G. Hassid, W.J. Mack, S.A. Sosunov, M.L. Otten, D.J. Fusco, Z.L. Hickman, G.H. Kim, R.J. Komotar, and J. Mocco. 2008. C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. Journal of Cerebral Blood Flow & Metabolism 28: 1048–1058.CrossRef
26.
Zurück zum Zitat Lai, W., X. Tian, Q. Xiang, K. Chu, Y. Wei, J. Deng, S. Zhang, J. Brown, and G. Hong. 2015. 11Beta-HSD1 modulates LPS-induced innate immune responses in adipocytes by altering expression of PTEN. Molecular Endocrinology 29: 558–570.CrossRefPubMedCentralPubMed Lai, W., X. Tian, Q. Xiang, K. Chu, Y. Wei, J. Deng, S. Zhang, J. Brown, and G. Hong. 2015. 11Beta-HSD1 modulates LPS-induced innate immune responses in adipocytes by altering expression of PTEN. Molecular Endocrinology 29: 558–570.CrossRefPubMedCentralPubMed
28.
Zurück zum Zitat Atkinson, C., H. Zhu, F. Qiao, J.C. Varela, J. Yu, H. Song, M.S. Kindy, and S. Tomlinson. 2006. Complement-dependent P-selectin expression and injury following ischemic stroke. Journal of Immunology 177: 7266–7274.CrossRef Atkinson, C., H. Zhu, F. Qiao, J.C. Varela, J. Yu, H. Song, M.S. Kindy, and S. Tomlinson. 2006. Complement-dependent P-selectin expression and injury following ischemic stroke. Journal of Immunology 177: 7266–7274.CrossRef
29.
Zurück zum Zitat Mack, W.J., M.E. Sughrue, A.F. Ducruet, J. Mocco, S.A. Sosunov, B.G. Hassid, J.Z. Silverberg, V.S. Ten, D.J. Pinsky, and E.J. Connolly. 2006. Temporal pattern of C1q deposition after transient focal cerebral ischemia. Journal of Neuroscience Research 83: 883–889.CrossRefPubMed Mack, W.J., M.E. Sughrue, A.F. Ducruet, J. Mocco, S.A. Sosunov, B.G. Hassid, J.Z. Silverberg, V.S. Ten, D.J. Pinsky, and E.J. Connolly. 2006. Temporal pattern of C1q deposition after transient focal cerebral ischemia. Journal of Neuroscience Research 83: 883–889.CrossRefPubMed
30.
Zurück zum Zitat Luo, H., W. Li, F. Yang, L. Zhou, P. Wen, and J. Zhou. 2013. Expressions of complement C1q and C3c in rat brain tissues with cerebral ischemia/reperfusion injury. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 29: 897–900.PubMed Luo, H., W. Li, F. Yang, L. Zhou, P. Wen, and J. Zhou. 2013. Expressions of complement C1q and C3c in rat brain tissues with cerebral ischemia/reperfusion injury. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 29: 897–900.PubMed
31.
Zurück zum Zitat Silverman, S.M., B.J. Kim, G.R. Howell, J. Miller, S.W. John, R.J. Wordinger, and A.F. Clark. 2016. C1q propagates microglial activation and neurodegeneration in the visual axis following retinal ischemia/reperfusion injury. Molecular Neurodegeneration 11: 24.CrossRefPubMedCentralPubMed Silverman, S.M., B.J. Kim, G.R. Howell, J. Miller, S.W. John, R.J. Wordinger, and A.F. Clark. 2016. C1q propagates microglial activation and neurodegeneration in the visual axis following retinal ischemia/reperfusion injury. Molecular Neurodegeneration 11: 24.CrossRefPubMedCentralPubMed
32.
Zurück zum Zitat Lee, Y., J.C. Jung, S. Jang, J. Kim, Z. Ali, I.A. Khan, and S. Oh. 2013. Anti-inflammatory and neuroprotective effects of constituents isolated from Rhodiola rosea. Evidence-based Complementary and Alternative Medicine 2013: 514049.PubMedCentralPubMed Lee, Y., J.C. Jung, S. Jang, J. Kim, Z. Ali, I.A. Khan, and S. Oh. 2013. Anti-inflammatory and neuroprotective effects of constituents isolated from Rhodiola rosea. Evidence-based Complementary and Alternative Medicine 2013: 514049.PubMedCentralPubMed
33.
Zurück zum Zitat Bozon, B., S. Davis, and S. Laroche. 2003. A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40: 695–701.CrossRefPubMed Bozon, B., S. Davis, and S. Laroche. 2003. A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40: 695–701.CrossRefPubMed
34.
Zurück zum Zitat Jones, M.W., M.L. Errington, P.J. French, A. Fine, T.V. Bliss, S. Garel, P. Charnay, B. Bozon, S. Laroche, and S. Davis. 2001. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nature Neuroscience 4: 289–296.CrossRefPubMed Jones, M.W., M.L. Errington, P.J. French, A. Fine, T.V. Bliss, S. Garel, P. Charnay, B. Bozon, S. Laroche, and S. Davis. 2001. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nature Neuroscience 4: 289–296.CrossRefPubMed
35.
Zurück zum Zitat Lee, J.L., B.J. Everitt, and K.L. Thomas. 2004. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304: 839–843.CrossRefPubMed Lee, J.L., B.J. Everitt, and K.L. Thomas. 2004. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304: 839–843.CrossRefPubMed
36.
Zurück zum Zitat Inokuchi, K., A. Murayama, and F. Ozawa. 1996. MRNA differential display reveals Krox-20 as a neural plasticity-regulated gene in the rat hippocampus. Biochemical and Biophysical Research Communications 221: 430–436.CrossRefPubMed Inokuchi, K., A. Murayama, and F. Ozawa. 1996. MRNA differential display reveals Krox-20 as a neural plasticity-regulated gene in the rat hippocampus. Biochemical and Biophysical Research Communications 221: 430–436.CrossRefPubMed
37.
Zurück zum Zitat Williams, J., M. Dragunow, P. Lawlor, S. Mason, W.C. Abraham, J. Leah, R. Bravo, J. Demmer, and W. Tate. 1995. Krox20 may play a key role in the stabilization of long-term potentiation. Brain Research. Molecular Brain Research 28: 87–93.CrossRefPubMed Williams, J., M. Dragunow, P. Lawlor, S. Mason, W.C. Abraham, J. Leah, R. Bravo, J. Demmer, and W. Tate. 1995. Krox20 may play a key role in the stabilization of long-term potentiation. Brain Research. Molecular Brain Research 28: 87–93.CrossRefPubMed
38.
Zurück zum Zitat DeSteno, D.A., and C. Schmauss. 2008. Induction of early growth response gene 2 expression in the forebrain of mice performing an attention-set-shifting task. Neuroscience 152: 417–428.CrossRefPubMedCentralPubMed DeSteno, D.A., and C. Schmauss. 2008. Induction of early growth response gene 2 expression in the forebrain of mice performing an attention-set-shifting task. Neuroscience 152: 417–428.CrossRefPubMedCentralPubMed
39.
Zurück zum Zitat Li, L., J. Carter, X. Gao, J. Whitehead, and W.G. Tourtellotte. 2005. The neuroplasticity-associated arc gene is a direct transcriptional target of early growth response (Egr) transcription factors. Molecular & Cellular Biology 25: 10286–10300.CrossRef Li, L., J. Carter, X. Gao, J. Whitehead, and W.G. Tourtellotte. 2005. The neuroplasticity-associated arc gene is a direct transcriptional target of early growth response (Egr) transcription factors. Molecular & Cellular Biology 25: 10286–10300.CrossRef
40.
Zurück zum Zitat Honkaniemi, J., B.A. States, P.R. Weinstein, J. Espinoza, and F.R. Sharp. 1997. Expression of zinc finger immediate early genes in rat brain after permanent middle cerebral artery occlusion. Journal of Cerebral Blood Flow & Metabolism 17: 636–646.CrossRef Honkaniemi, J., B.A. States, P.R. Weinstein, J. Espinoza, and F.R. Sharp. 1997. Expression of zinc finger immediate early genes in rat brain after permanent middle cerebral artery occlusion. Journal of Cerebral Blood Flow & Metabolism 17: 636–646.CrossRef
41.
Zurück zum Zitat Honkaniemi, J., and F.R. Sharp. 1996. Global ischemia induces immediate-early genes encoding zinc finger transcription factors. Journal of Cerebral Blood Flow & Metabolism 16: 557–565.CrossRef Honkaniemi, J., and F.R. Sharp. 1996. Global ischemia induces immediate-early genes encoding zinc finger transcription factors. Journal of Cerebral Blood Flow & Metabolism 16: 557–565.CrossRef
42.
Zurück zum Zitat Ducruet, A.F., S.A. Sosunov, S.H. Visovatti, D. Petrovic-Djergovic, W.J. Mack, E.J. Connolly, and D.J. Pinsky. 2011. Paradoxical exacerbation of neuronal injury in reperfused stroke despite improved blood flow and reduced inflammation in early growth response-1 gene-deleted mice. Neurological Research 33: 717–725.CrossRefPubMedCentralPubMed Ducruet, A.F., S.A. Sosunov, S.H. Visovatti, D. Petrovic-Djergovic, W.J. Mack, E.J. Connolly, and D.J. Pinsky. 2011. Paradoxical exacerbation of neuronal injury in reperfused stroke despite improved blood flow and reduced inflammation in early growth response-1 gene-deleted mice. Neurological Research 33: 717–725.CrossRefPubMedCentralPubMed
43.
Zurück zum Zitat Tan, C.B., M. Gao, W.R. Xu, X.Y. Yang, X.M. Zhu, and G.H. Du. 2009. Protective effects of salidroside on endothelial cell apoptosis induced by cobalt chloride. Biological & Pharmaceutical Bulletin 32: 1359–1363.CrossRef Tan, C.B., M. Gao, W.R. Xu, X.Y. Yang, X.M. Zhu, and G.H. Du. 2009. Protective effects of salidroside on endothelial cell apoptosis induced by cobalt chloride. Biological & Pharmaceutical Bulletin 32: 1359–1363.CrossRef
44.
Zurück zum Zitat Xu, M.C., H.M. Shi, H. Wang, and X.F. Gao. 2013. Salidroside protects against hydrogen peroxide-induced injury in HUVECs via the regulation of REDD1 and mTOR activation. Molecular Medicine Reports 8: 147–153.CrossRefPubMed Xu, M.C., H.M. Shi, H. Wang, and X.F. Gao. 2013. Salidroside protects against hydrogen peroxide-induced injury in HUVECs via the regulation of REDD1 and mTOR activation. Molecular Medicine Reports 8: 147–153.CrossRefPubMed
45.
Zurück zum Zitat Shi, K., X. Wang, J. Zhu, G. Cao, K. Zhang, and Z. Su. 2015. Salidroside protects retinal endothelial cells against hydrogen peroxide-induced injury via modulating oxidative status and apoptosis. Bioscience, Biotechnology, and Biochemistry 79: 1406–1413.CrossRefPubMed Shi, K., X. Wang, J. Zhu, G. Cao, K. Zhang, and Z. Su. 2015. Salidroside protects retinal endothelial cells against hydrogen peroxide-induced injury via modulating oxidative status and apoptosis. Bioscience, Biotechnology, and Biochemistry 79: 1406–1413.CrossRefPubMed
46.
Zurück zum Zitat Chaitanya, G.V., A. Minagar, and J.S. Alexander. 2014. Neuronal and astrocytic interactions modulate brain endothelial properties during metabolic stresses of in vitro cerebral ischemia. Cell Communication and Signaling 12: 7.CrossRefPubMedCentralPubMed Chaitanya, G.V., A. Minagar, and J.S. Alexander. 2014. Neuronal and astrocytic interactions modulate brain endothelial properties during metabolic stresses of in vitro cerebral ischemia. Cell Communication and Signaling 12: 7.CrossRefPubMedCentralPubMed
47.
Zurück zum Zitat Chaitanya, G.V., W.E. Cromer, S.R. Wells, M.H. Jennings, P.O. Couraud, I.A. Romero, B. Weksler, A. Erdreich-Epstein, J.M. Mathis, A. Minagar, and J.S. Alexander. 2011. Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro. Journal of Neuroinflammation 8: 162.CrossRefPubMedCentralPubMed Chaitanya, G.V., W.E. Cromer, S.R. Wells, M.H. Jennings, P.O. Couraud, I.A. Romero, B. Weksler, A. Erdreich-Epstein, J.M. Mathis, A. Minagar, and J.S. Alexander. 2011. Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro. Journal of Neuroinflammation 8: 162.CrossRefPubMedCentralPubMed
48.
Zurück zum Zitat Chen, S.F., H.J. Tsai, T.H. Hung, C.C. Chen, C.Y. Lee, C.H. Wu, P.Y. Wang, and N.C. Liao. 2012. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS One 7: e45763.CrossRefPubMedCentralPubMed Chen, S.F., H.J. Tsai, T.H. Hung, C.C. Chen, C.Y. Lee, C.H. Wu, P.Y. Wang, and N.C. Liao. 2012. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS One 7: e45763.CrossRefPubMedCentralPubMed
Metadaten
Titel
Inhibition of Complement Drives Increase in Early Growth Response Proteins and Neuroprotection Mediated by Salidroside After Cerebral Ischemia
verfasst von
Wenfang Lai
XiuLi Xie
Xiaoqin Zhang
Yingzheng Wang
Kedan Chu
John Brown
Lidian Chen
Guizhu Hong
Publikationsdatum
02.12.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0701-7

Weitere Artikel der Ausgabe 2/2018

Inflammation 2/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.