Skip to main content
Erschienen in: Arthritis Research & Therapy 1/2017

Open Access 01.12.2017 | Research article

Inhibition of T cell-mediated inflammation in uveitis by a novel anti-CD3 antibody

verfasst von: Sunao Sugita, Jun Shimizu, Kenichi Makabe, Hiroshi Keino, Takeshi Watanabe, Masayo Takahashi

Erschienen in: Arthritis Research & Therapy | Ausgabe 1/2017

Abstract

Background

A novel anti-mouse CD3ε antibody, Dow2, recognizes mouse CD3ε without activating T cells and suppresses T-cell activation. The purpose of this study was to determine whether Dow2 can inhibit T cells in uveitis.

Methods

Experimental autoimmune uveitis (EAU) was induced in mice by immunization with retinal peptides, followed by administration of Dow2. Inflammation was evaluated by color fundus photography, optical coherence tomography, fluorescein angiography, and histology. Intraocular cells from EAU mice were used to examine the effect of Dow2 on retinal antigen-specific T cells. The effects of Dow2, conventional CD3ε antibodies, and isotype control immunoglobulin G (IgG) on splenic T cells were compared by assessing cell proliferation by the mixed lymphocyte reaction assay, inflammatory cytokine production by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, and gene expression by quantitative reverse-transcription polymerase chain reaction (RT-PCR). T-cell subpopulations were characterized by flow cytometry to evaluate the expression of CD4, CD8, CD44, CD62L, and Foxp3.

Results

Dow2 significantly reduced T-cell activation and counteracted activation associated with anti-CD3ε antibodies. Unlike conventional CD3ε antibodies, Dow2 treatment did not upregulate T helper (Th)1-/Th17-associated gene expression and cytokine production in splenic T cells. Interferon (IFN)-γ production by retinal antigen-specific T cells was also significantly reduced. Ocular inflammation was significantly reduced in Dow2-treated EAU mice compared to control EAU mice, with fewer T cells infiltrating into the retinas of Dow2-treated EAU mice. In immunohistochemistry, Th1 and Th17 cells invaded the retina in control EAU mice but not Dow2-treated EAU mice. No effects on peripheral T-cell numbers were observed following systemic administration of Dow2.

Conclusion

The novel anti-CD3 antibody Dow2 can inhibit T cell-mediated inflammation in uveitis models. Thus, inhibition of T-cell activation by anti-CD3 therapy with this new antibody may protect uveitis patients from severe ocular inflammation.
Abkürzungen
Ab
Antibody
CFSE
Carboxyfluorescein succinimidyl ester
EAU
Experimental autoimmune uveitis
ELISA
Enzyme-linked immunosorbent assay
FA
Fluorescein angiography
IFN
Interferon
IgG
Immunoglobulin G
IL
Interleukin
IRBP
Interphotoreceptor retinoid-binding protein
MLR
Mixed lymphocyte reaction
OCT
Optical coherence tomography
PBS
Phosphate-buffered saline
qRT-PCR
Quantitative reverse-transcription polymerase chain reaction
TCR
T-cell receptor
Th
T helper
TNF
Tumor necrosis factor
Treg
Regulatory T cell

Background

Under severe inflammatory conditions, immune privilege in the eye may degrade and permit the infiltration of proinflammatory immune cells. These immune cells include T cells, B cells, macrophages/monocytes, microglia, neutrophils, natural killer (NK)/NKT cells, and dendritic cells, which may invade the retina, choroid, vitreous, and anterior chambers of the eye. Thus, intraocular inflammatory cells—especially T cells—play a significant role in the immune response involved in ocular inflammatory disorders.
Experimental autoimmune uveitis (EAU) models have been developed to investigate severe ocular inflammation. EAU models represent a T cell-mediated and T cell-specific form of autoimmune disease characterized by the infiltration of T cells and other immune cells into the retina [17]. Initiation of the major pathological events in EAU mouse models occurs through immunization with retinal antigens, which activates retinal antigen-specific T cells [7]. Over time, these activated T cells produce inflammatory cytokines, particularly T helper (Th)1 cytokines such as interferon (IFN)-γ and interleukin (IL)-2, which recruit inflammatory cells such as B cells, macrophages, and retinal microglia that can then cause retinal tissue damage. In addition, Th17 cells are also involved in ocular inflammation in human uveitis [8, 9] and EAU models [10, 11]. Thus, activated T cells are present in the retina as intraocular inflammation develops.
OKT3, an anti-human CD3 antibody (Ab), was the first monoclonal Ab to be used clinically [1214]. OKT3 binds and interacts with the T-cell receptor (TCR) on T cells, temporarily activating and eventually inactivating T cells through anergy or apoptosis. However, within 24 h of treatment with OKT3, patients often experience an inflammatory cytokine storm involving such proinflammatory cytokines as IFN-γ, tumor necrosis factor (TNF)-α, and IL-2 as a consequence of initial T-cell activation [15, 16].
We recently established two novel anti-CD3 monoclonal Abs, anti-mouse Dow2 and anti-human 20-2b2, which downregulate TCR/CD3 in T cells [17, 18]. Dow2 recognizes mouse CD3ε without activating T cells [17], while 20-2b2 binds and modulates TCR on human T cells [18]. In contrast to OKT3, T cells are minimally activated following treatment with these Abs, TCR expression is downregulated in T cells, and there is neither T-cell proliferation nor a cytokine storm. Despite these promising observations, there have been no reports on whether these Abs can inhibit localized inflammation in conditions such as ocular inflammation.
Therefore, the purpose of this study was to determine whether the novel anti-mouse CD3 Ab Dow2 could inhibit T cells in EAU models.

Methods

Mice

Splenocytes were obtained from adult C57BL/6JJcl and BALB/c mice (CLEA Japan, Inc.). We induced EAU in 6- to 8-week-old female C57BL/6JJcl mice. The care and maintenance of the mice conformed to the Association for Research in Vision and Ophthalmology’s Statement for the Use of Animals in Ophthalmic and Vision Research, as well as to the guidelines for animal experiments at the RIKEN Center for Developmental Biology.

Induction of EAU and administration of Dow2

To induce EAU, mice were subcutaneously immunized in the neck region with an emulsion containing 200 μg of interphotoreceptor retinoid-binding protein peptide (IRBP1–20; Eurofins Genomics) and Mycobacterium tuberculosis strain H37Ra (Difco) in complete Freund’s adjuvant (Difco), and intraperitoneally injected with 100 ng of pertussis toxin (Sigma) as an additional adjuvant [6]. Seven days after immunization, EAU mice were intraperitoneally injected with 2 μg of Dow2 or rat immunoglobulin G (rat IgG2a, κ isotype control; BD).
Inflammation was evaluated by color fundus imaging, optical coherence tomography (OCT), fluorescein angiography (FA), and histology. Funduscopic and OCT examinations were conducted on days 7, 14, and 21 postimmunization, and histological and FA examinations were conducted on day 21. Clinical scores [4] and OCT scores [19] were calculated as previously described. Splenocytes were harvested from EAU mice for flow cytometry analyses or to evaluate IRBP-induced cytokine production by retinal antigen-specific T cells in vitro. The supernatants of cultured splenocytes from EAU mice immunized with or without IRBP peptides were collected and mouse IFN-γ levels quantified by enzyme-linked immunosorbent assay (ELISA; R&D Systems).

Preparation of splenocytes and assessment of the mixed lymphocyte reaction (MLR)

Splenocytes from C57BL/6JJcl and BALB/c mice were pressed through a 100-μm cell strainer to produce a single-cell suspension. Allogeneic immune responses in splenocytes were assessed by the MLR assay, with cell proliferation quantified by measuring carboxyfluorescein succinimidyl ester (CFSE; Molecular Probes). In brief, CFSE-labeled C57BL/6JJcl splenocytes (2 × 106 cells/well) and irradiated (20 Gy) BALB/c splenocytes (2 × 105 cells/well) were cocultured in 24-well plates with 1 μg/ml of Dow2, a control anti-mouse CD3ε Ab (clone 17A2; BioLegend), or an isotype control (rat IgG). After 96-h incubation, CFSE-labeled splenocytes were washed and proliferation analyzed by flow cytometry.

Preparation of purified T cells and measurements of cytokines produced by T cells

Mouse pan-T cells were isolated using a pan-T cell isolation kit (MACS systems, Miltenyi Biotec). More than 95% of these cells were determined to be CD3+ by flow cytometry. C57BL/6JJcl splenocytes (2 × 106 cells/well) were cultured with 1 μg/ml of the previously mentioned Abs (Dow2, 17A2, or rat IgG) in 24-well plates for 48 h. After incubation, the supernatants were collected and mouse IFN-γ or mouse IL-17 levels quantified by ELISA (R&D Systems). The cells were harvested for analysis of gene expression by quantitative reverse-transcription polymerase chain reaction (qRT-PCR).

qRT-PCR

Total RNA from splenocytes cultured for 48 h in the presence of Dow2 was extracted using an RNA isolation kit (Roche Diagnostics) and reverse transcribed to generate cDNA (Transcriptor First Strand cDNA Synthesis kit, Roche Diagnostics). For qPCR, cDNA was amplified with a LightCycler 480 system (Roche Diagnostics) using a qRT-PCR master mix (Roche Diagnostics), Universal Probe Library primers, and probes (Roche Diagnostics). The primers and probes were as follows: T-bet, forward primer, 5′-caaccagcaccagacagaga-3′, reverse primer, 5′-acaaacatcctgtaatggcttg-3′, probe #19; IFN-γ, forward primer, 5′-atctggaggaactggcaaaa-3′, reverse primer, 5′-ttcaagacttcaaagagtctgaggta-3′, probe #21; IL-, forward primer, 5′-ttggttaaatgacctgcaaca-3′, reverse primer, 5′-gagcgctcacgaacagttg-3′, probe #52; IL-2, forward primer, 5′-gctgttgatggacctacagga-3, reverse primer, 5′-ttcaattctgtggcctgctt-3′, probe #15; IL-17, forward primer, 5′-cagggagagcttcatctgtgt-3′, reverse primer, 5′-gctgagctttgagggatgat-3′, probe #74; IL-10, forward primer, 5′-cagagccacatgctcctaga-3′, reverse primer, 5′-tgtccagctggtcctttgtt-3′, probe #41; Foxp3, forward primer, 5′-agaagctgggagctatgcag-3′, reverse primer, 5′-gctacgatgcagcaagagc-3′, probe #20; GAPDH, forward primer, 5′-agcttgtcatcaacgggaag-3′, reverse primer, 5′-tttgatgttagtggggtctcg-3′, probe #9. The relative expression of each gene of interest was calculated from triplicate samples using the comparative threshold cycle number and normalized to the GAPDH internal control.

Flow cytometry analysis

Mouse pan-T cells isolated from C57BL/6JJcl donors were incubated with 1 μg/ml of Dow2 or a control anti-mouse CD3 Ab (clone 17A2 or clone 145-2C11; BD Biosciences) at 4 °C for 30 min. After primary Ab incubation, cells were washed and incubated with a secondary Ab (Alexa Fluor 488-conjugated anti-rat or anti-hamster; Invitrogen-Life Technologies) at 4 °C for 30 min. Dow2-pretreated pan-T cells that were incubated with 145-2C11 were also incubated with the secondary Alexa Fluor 488 Ab.
The expression of CD4 and CD8 on splenocytes from normal control mice and Dow2- or rat IgG-treated EAU mice was assessed by flow cytometry. The expression of CD44, CD62L, and Foxp3 on splenocytes from EAU mice was also evaluated. After blocking mouse Fc receptors (cells were treated with anti-mouse CD16/CD32 Abs at 4 °C for 15 min; BD PharMingen), the cells were incubated with anti-mouse CD4 (BD Pharmingen), CD8 (BioLegend), CD44 (BioLegend), CD62L (BioLegend), or isotype control (rat IgG) at 4 °C for 30 min. For the evaluation of intracellular Foxp3 expression, harvested T cells were permeabilized and incubated with anti-mouse Foxp3 (eBioscience). For permeabilization, these cells were treated with an intracellular staining material (BD Cytofix/Cytoperm Kits; BD PharMingen) to detect Foxp3 molecules. For detection of Th1/Th17 cells in spleens, we collected splenocytes from EAU mice, Dow2-, or rat IgG-treated EAU mice, and stained these cells with anti-mouse CD4, IFN-γ (R&D Systems), or IL-17 Abs (R&D Systems) after permeabilization. PE-conjugated mouse IgG (R&D Systems) was used as the isotype control. Cells (1 × 106) were stained for 30 min at room temperature in the dark. All samples were analyzed on a FACSCanto II flow cytometer (BD). Data were analyzed with FlowJo software (version 9.3.1).

Immunohistochemistry

Eyes from EAU mice were collected 21 days after immunization, fixed, and embedded in paraffin (Sigma-Aldrich). A series of five sequential paraffin-embedded sections (10-μm/section) were collected with an auto-slide preparation system (Kurabo).
For immunohistochemistry staining, the sections were blocked with 5% goat serum in phosphate-buffered saline (PBS) for 1 h at room temperature, and then incubated with primary rabbit Abs against mouse CD3 (Abcam), mouse CD4 (Abcam/BD PharMingen), mouse IFN-γ (Novus Biologicals), and mouse IL-17 (Abcam) at 4 °C overnight. After washing three times with PBS/Tween 20, sections were incubated with secondary Abs (Alexa Fluor 546-conjugated anti-rabbit) for 1 h at room temperature and counterstained with DAPI (Thermo Fisher Scientific). Images were acquired with a confocal microscope (LSM700, Zeiss).

Statistical evaluation

Each experiment was repeated at least twice with similar results. Parametric data were analyzed by Student’s t test. Nonparametric data were analyzed by the Mann-Whitney U test. Values were considered statistically significant at P < 0.05.

Results

Novel anti-mouse CD3 Ab Dow2 suppresses T-cell proliferation and activation and does not stimulate T cells in vitro

Using flow cytometry, we first determined whether Dow2 can bind CD3 on mouse T cells by comparing its staining profile with two control anti-mouse CD3 Abs, 17A2 and 145-2C11. T cells stained with Dow2 demonstrated a clear separation from the control T-cell population, comparable to the separation observed for T cells stained with 17A2 or 145-2C11 (Fig. 1a). Interestingly, T cells preincubated with Dow2 had reduced binding with 145-2C11 (Fig. 1b), suggesting that Dow2 is similarly able to bind mouse CD3ε.
We next determined whether Dow2 can suppress lymphocyte proliferation in vitro with the MLR assay. CFSE-labeled C57BL/6JJcl splenocytes cocultured with irradiated BALB/c splenocytes were incubated with Dow2, 17A2, or isotype control. Compared with the control, 17A2 treatment greatly enhanced proliferation (Fig. 2a). In contrast, Dow2 did not promote a proliferative response.
We also examined whether Dow2 could suppress T-cell activation in vitro. Purified mouse T cells were incubated with Dow2, 17A2, both Dow2 and 17A2, or rat IgG isotype control. Incubation with Dow2 alone or rat IgG did not stimulate T cells to produce detectable IFN-γ (Fig. 2b, left panel) or IL-17 (Fig. 2c, left panel). In contrast, T cells incubated with 17A2 produced increased levels of cytokines which were significantly reduced in T cells incubated with both Dow2 and 17A2. T cells incubated with increasing concentrations of Dow2 (0–1000 ng/ml) consistently produced no detectable IFN-γ, whereas T cells incubated with 17A2 demonstrated a clear dose-response relationship between 17A2 (0–1000 ng/ml) and production of IFN-γ/IL-17 (Fig. 2b and c, right panel). However, T cells incubated with both Abs produced less IFN-γ/IL-17 compared to T cells incubated with 17A2 only. These results suggest that Dow2 could suppress T cell activation in vitro.
To further characterize Dow2, we next examined whether Dow2 can suppress the expression of genes associated with T-cell activation, particularly regulatory T cell (Treg)-, Th1-, or Th17-associated genes. To quantify the expression of IL-, IL-2, IFN-γ, T-bet, IL-17, IL-10, and Foxp3, we performed qRT-PCR on total RNA extracted from mouse splenocytes incubated with Dow2, 17A2, or rat IgG. As expected, cells incubated with Dow2 did not have increased mRNA levels for these Th1 genes; furthermore, cells incubated with Dow2 had significantly reduced levels of IL-2 compared with controls (Fig. 3) (P < 0.0005). In contrast, cells incubated with 17A2 had significantly elevated mRNA levels for these Th1 genes, with the exception of IL-2, compared with controls. We obtained similar results for IL-17 (Th17-associated cytokine). Moreover, cells incubated with Dow2, but not 17A2, had significantly elevated mRNA levels for Treg-associated genes such as IL-10 and Foxp3 (P < 0.05). These results indicate that Dow2 could suppress the Th1/Th17 response in splenocytes including T cells at the level of gene expression. In addition, T cells treated with Dow2 may acquire Treg phenotype.

Dow2 can suppress T cell activation in vivo in an EAU model

To evaluate the effect of Dow2 in vivo, we investigated whether treatment with Dow2, compared to treatment with rat IgG isotype control, could suppress ocular inflammation in a mouse model of EAU. In EAU, ocular inflammation is associated with a T cell-dependent (especially Th1-type) immune response [2, 3, 5]. In rat IgG-treated control EAU mice, we detected pronounced ocular inflammation characterized by retinal exudates observable by color fundus imaging, along with retinal nodules and vitreous cell infiltration observable by OCT (Fig. 4a and b). In contrast, there was minimal to no ocular inflammation detected in Dow2-treated mice. Similarly, treatment with Dow2 significantly reduced ocular inflammation assessed by clinical and OCT scoring on days 14 and 21 postimmunization (Fig. 4c).
When FA was used to study the retinal microvasculature of EAU mice, we observed that Dow2-treated mice had retinal vessels similar to those of healthy mice, whereas retinal vessels of control mice exhibited severe inflammation (Fig. 5a). Consistent with this observation, hematoxylin and eosin (H&E)-stained retinal sections from control mice exhibited signs of inflammation together with inflammatory cell infiltration (Fig. 5b). In contrast, no retinal inflammation was observed in sections from Dow2-treated EAU mice. When retinal sections from both treatment groups were examined by immunohistochemical staining for CD3, few CD3+ T cells were observed in the retinas of Dow2-treated mice, whereas numerous CD3+ cells were observed in the retinas and vitreous spaces of control mice (Fig. 5c).
When we observed Th1/Th17 cells in Dow2-treated EAU mice, similar results were obtained in vitro. For example, numerous CD4+IFN-γ+ cells (i.e., Th1 cells) and CD4+IL-17+ cells (i.e., Th17 cells) were found in the retinas and vitreous spaces of control mice (Fig. 6a and b). In contrast, minimal Th1/Th17 cells were seen in the retinas of Dow2-treated mice (Fig. 6a and b). We also examined whether Th1/Th17 cells were included among splenocytes from Dow2-treated EAU mice. Compared with control EAU mice, CD4+IFN-γ+ Th1 and CD4+IL-17+ Th17 cell populations were decreased among splenocytes from Dow2-treated EAU mice (Fig. 6c). These results indicate that Dow2 inhibits the activation of infiltrated T cells and/or inhibits infiltration of T cells in vivo in a model of ocular inflammation.

Dow2 also suppresses retinal antigen-specific T cells in vitro

We next examined whether Dow2 can suppress retinal antigen-specific T cells in vitro by collecting splenocytes from EAU mice treated with rat IgG isotype control or Dow2 and then culturing the cells with or without IRBP retinal peptides. When cultured with retinal antigens, splenocytes from control mice secreted significantly higher levels of IFN-γ compared to cells cultured without retinal antigens (Fig. 7a) (P < 0.0005). Compared to splenocytes from control mice, splenocytes from Dow2-treated mice secreted less IFN-γ when cultured with retinal antigens.
Intraocular cells collected from EAU mice that were untreated with Abs also produced IFN-γ when cultured with IRBP retinal antigens (Fig. 7b). The IRBP-stimulated production of IFN-γ was significantly reduced when EAU ocular cells were incubated with Dow2 (P < 0.05). In contrast, IRBP-stimulated production of IFN-γ was significantly enhanced in ocular cells incubated with 17A2 (P < 0.005). These results indicate that, unlike a conventional anti-mouse CD3 antibody, Dow2 can suppress the activation of retinal antigen-specific T cells such as primed T cells.

Effect of Dow2 administration on peripheral T cells in EAU mice

To gain further understanding of the systemic effects of Dow2, we examined peripheral T cells collected from the spleens of EAU mice treated with Dow2 or rat IgG isotype control. First, we examined the ratio of CD44+ effector memory T cells to CD62L+ naive T cells. Compared with normal mice, the ratio of memory T cells to naive T cells increased in control EAU mice (Fig. 8a). Compared with control EAU mice, both memory and naive T cells were decreased in Dow2-treated EAU mice. Interestingly, the number of CD4+Foxp3+ T cells was increased in Dow2-treated EAU mice compared with normal or control EAU mice (Fig. 8b).
Finally, we quantified the number of CD4+ and CD8+ splenic T cells. We observed similar numbers of these splenic T-cell populations for normal and Dow2-treated EAU mice in contrast to greater numbers of CD4+ and CD8+ T cells for control EAU mice (Fig. 8c). Thus, we observed no effect of systemic administration of Dow2 on peripheral T-cell numbers.
Taken together, our results indicate that Dow2 can bind CD3 on effector T cells and effectively suppress T-cell activation in inflammatory conditions.

Discussion

In this study, we showed that treatment with a novel rat IgG2a anti-mouse CD3ε Ab, Dow2, significantly reduced ocular inflammation in EAU models of noninfectious human uveitis. Previously, it was not well understood whether an anti-CD3 Ab could affect inflammation in the eye. Using an in vivo EAU model, we demonstrated that Dow2 could inhibit T cell-mediated ocular inflammation. Using in vitro models, we observed that Dow2 greatly suppressed T-cell activation, as indicated by the MLR assay. Importantly, Dow2 does not stimulate T cells. In contrast to conventional anti-mouse CD3ε antibodies, Dow2 downregulated the expression of Th1-/Th17-associated cytokine genes (IFN-γ, IL-2, T-bet, IL-17, and IL-) in mouse splenic T cells. In contrast, Dow2 upregulated the expression of Treg-associated cytokine genes such as IL-10 and Foxp3. Furthermore, the production of inflammatory cytokines (IFN-γ/IL-17) by retinal antigen-specific T cells was reduced in Dow2-treated cells compared with controls. More importantly, we observed no effects in vivo on peripheral T-cell numbers after systemic administration of Dow2, suggesting that Dow2 treatment would not deplete T cells. In addition, when we examined the ratio of effector memory T cells (CD44+CD62L) to naive T cells (CD44CD62L+), the ratio of memory T cells to naive T cells increased in control EAU mice. Conversely, compared with control EAU mice, both memory and naive T cells were decreased in Dow2-treated EAU mice, indicating that Dow2 alters specific subpopulations of peripheral T cells. Because the number of memory effector T cells was decreased in Dow2-treated EAU mice, such T cells would be unlikely to infiltrate the eye. Furthermore, the relative decrease in naive T cells in Dow2-treated EAU mice compared with that in normal mice may indicate that Dow2 can bind to T cells and counteract stimulation.
Recently, we established that the anti-mouse CD3ε Ab Dow2 functionally downregulates the expression of TCR/CD3 on murine T cells [17]. Unlike conventional anti-mouse CD3ε Abs (e.g., 145–2C11), Dow2 does not activate T cells and can induce T-cell anergy. In our previous study, we found that administration of Dow2 in vivo effectively prolonged the survival of cardiac allografts [17]. In addition, target recognition or the determinant recognized by Dow2 is close to but differs from that recognized by anti-mouse CD3ε Abs 145–2C11. The immunosuppression induced by Dow2 is more effective than that induced by 145–2C11 in terms of delaying rejection in a mouse heart transplantation model, e.g., an intravenous injection of 145–2C11 to BALB/c mice strongly induced the release of IL-2. In contrast, these cytokine levels produced by Dow2-treated mice were markedly reduced. Furthermore, we observed that Dow2 appeared to upregulate Treg suppressive activity while having no effect on Treg induction [17]. As shown in our current study, the number of CD4+Foxp3+ T cells in Dow2-treated EAU mice was increased compared with normal or control EAU mice. These results suggest that Dow2 may provide a new means for reducing the inflammatory response and inducing immunosuppression by modulating Treg activity.
In contrast, T cells are temporarily activated and eventually inactivated following clinical treatment with the anti-human CD3 antibody OKT3 [1214]. This T-cell activation increases the risk for an inflammatory cytokine storm and related adverse effects such as fever, muscular pain, and headache [15, 16]. In addition, some patients treated with OKT3 suffered from infections or cancer, possibly due to the depletion of T cells. Thus, while OKT3 was the first monoclonal Ab to be used clinically, modern use of OKT3 in transplantation medicine has decreased due to its adverse effects. Studies in vivo examining the 145-2C11 agonistic anti-mouse CD3ε antibody found that it induced IL-2 production and promoted T-cell proliferation. In contrast, much less IL-2 was secreted in vivo following treatment with Dow2 [17]. Consistent with this previous observation, we found that mouse splenocytes incubated with Dow2 had significantly reduced IL-2 mRNA levels compared with rat IgG-treated control cells (Fig. 3), suggesting that Dow2 may further reduce production of inflammatory cytokines. Although the mechanisms by which T cells are suppressed during Dow2 treatment are still unknown, our previous study suggests that, concerning signaling mechanisms, LAT and PLCγ1 phosphorylation was significantly impaired in Dow2-induced anergic T cells [17].
Ke et al. previously reported that both systemic and local injection of anti-mouse CD3 monoclonal Abs in EAU mice greatly reduced ocular inflammation [20]. Similar to our results, they showed that anti-CD3 treatment increased the percentage of CD4+Foxp3+ Treg cells. Furthermore, when T cells collected from IRBP-immunized, anti-CD3-treated mice were stimulated with IRBP in the presence of antigen-presenting cells, supernatants from these T-cell cultures contained significantly higher levels of IL-10 and transforming growth factor (TGF)-β1 compared with control cultures [20], suggesting that anti-CD3 monoclonal Ab treatment ameliorates EAU by inducing Treg cells. In addition to CD3, other studies have investigated whether anti-mouse monoclonal Ab to cytokines and cytokine receptors can mitigate autoimmune uveitis. For instance, anti-TNF-α therapy was observed to suppress ocular inflammation in vivo [21] and in vitro [22], and anti-IL-6R therapy suppressed ocular inflammation in EAU models [23, 24]. Both anti-TNF-α and anti-IL-6R therapies can induce Treg cells and inhibit Th1-/Th17-type inflammatory T cells. Because these two therapies presumably act through different suppressive mechanisms, they represent potential avenues to increase treatment options for severe uveitis in patients. To further improve treatment options, we are now investigating whether a novel anti-human CD3 monoclonal antibody, 20-2b2 [18], can suppress ocular inflammation in an autoimmune uveitis monkey model [25].
Treating EAU as early as in this study does not represent the true condition of patients with uveitis, who have active retinitis at the time of therapy. Therefore whether Dow2 can suppress a well-established disease should be evaluated. However, as shown in this study, Dow2 likely suppresses the onset of disease because the timing of antibody injections was during the induction phase of immunization for EAU. To verify that Dow2 actually suppresses uveitis, we must first confirm all mice have uveitis, as scored by fundus examination, and then administer Dow2. For clinical application of Dow2, timing and route of administration must be determined for patients with uveitis.

Conclusions

The novel anti-CD3 Ab Dow2 is able to suppress T-cell activation in vitro and in vivo. T cells treated with Dow2 failed to acquire effector T-cell functionality, as indicated by a lack of inflammatory Th1-/Th17-associated cytokine production. Importantly, administration of Dow2 greatly reduced ocular inflammation in a mouse model of autoimmune uveitis. Thus, suppression of effector T cells by anti-CD3 therapy may protect uveitis patients from severe ocular inflammation.

Acknowledgements

We appreciate the expert technical assistance of Y. Iwasaki, N. Hayashi, K. Iseki, S. Fujino, T. Hashiguchi, and C. Yamada (Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe).

Funding

This work was supported by a grant for Scientific Research (B, 25293357) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Availability of data and materials

Not applicable.

Authors’ information

Not applicable.

Ethics approval

All animal experiments were conducted with the approval of the RIKEN Center for Developmental Biology Ethical Committee.
All authors have read and approved the manuscript for publication.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Caspi RR, Grubbs BG, Chan CC, Chader GJ, Wiggert B. Genetic control of susceptibility to experimental autoimmune uveoretinitis in the mouse model. Concomitant regulation by MHC and non-MHC genes. J Immunol. 1992;148(8):2384–9.PubMed Caspi RR, Grubbs BG, Chan CC, Chader GJ, Wiggert B. Genetic control of susceptibility to experimental autoimmune uveoretinitis in the mouse model. Concomitant regulation by MHC and non-MHC genes. J Immunol. 1992;148(8):2384–9.PubMed
2.
Zurück zum Zitat Saoudi A, Kuhn J, Huygen K, de Kozak Y, Velu T, Goldman M, Druet P, Bellon B. TH2 activated cells prevent experimental autoimmune uveoretinitis, a TH1-dependent autoimmune disease. Eur J Immunol. 1993;23(12):3096–103.CrossRefPubMed Saoudi A, Kuhn J, Huygen K, de Kozak Y, Velu T, Goldman M, Druet P, Bellon B. TH2 activated cells prevent experimental autoimmune uveoretinitis, a TH1-dependent autoimmune disease. Eur J Immunol. 1993;23(12):3096–103.CrossRefPubMed
3.
Zurück zum Zitat Caspi RR, Sun B, Agarwal RK, Silver PB, Rizzo LV, Chan CC, Wiggert B, Wilder RL. T cell mechanisms in experimental autoimmune uveoretinitis: susceptibility is a function of the cytokine response profile. Eye (Lond). 1997;11(Pt 2):209–12.CrossRef Caspi RR, Sun B, Agarwal RK, Silver PB, Rizzo LV, Chan CC, Wiggert B, Wilder RL. T cell mechanisms in experimental autoimmune uveoretinitis: susceptibility is a function of the cytokine response profile. Eye (Lond). 1997;11(Pt 2):209–12.CrossRef
4.
Zurück zum Zitat Thurau SR, Chan CC, Nussenblatt RB, Caspi RR. Oral tolerance in a murine model of relapsing experimental autoimmune uveoretinitis (EAU): induction of protective tolerance in primed animals. Clin Exp Immunol. 1997;109(2):370–6.CrossRefPubMedPubMedCentral Thurau SR, Chan CC, Nussenblatt RB, Caspi RR. Oral tolerance in a murine model of relapsing experimental autoimmune uveoretinitis (EAU): induction of protective tolerance in primed animals. Clin Exp Immunol. 1997;109(2):370–6.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Tarrant TK, Silver PB, Wahlsten JL, Rizzo LV, Chan CC, Wiggert B, Caspi RR. Interleukin 12 protects from a T helper type 1-mediated autoimmune disease, experimental autoimmune uveitis, through a mechanism involving interferon gamma, nitric oxide, and apoptosis. J Exp Med. 1999;189(2):219–30.CrossRefPubMedPubMedCentral Tarrant TK, Silver PB, Wahlsten JL, Rizzo LV, Chan CC, Wiggert B, Caspi RR. Interleukin 12 protects from a T helper type 1-mediated autoimmune disease, experimental autoimmune uveitis, through a mechanism involving interferon gamma, nitric oxide, and apoptosis. J Exp Med. 1999;189(2):219–30.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Avichezer D, Silver PB, Chan CC, Wiggert B, Caspi RR. Identification of a new epitope of human IRBP that induces autoimmune uveoretinitis in mice of the H-2b haplotype. Invest Ophthalmol Vis Sci. 2000;41(1):127–31.PubMed Avichezer D, Silver PB, Chan CC, Wiggert B, Caspi RR. Identification of a new epitope of human IRBP that induces autoimmune uveoretinitis in mice of the H-2b haplotype. Invest Ophthalmol Vis Sci. 2000;41(1):127–31.PubMed
7.
Zurück zum Zitat Dullforce PA, Seitz GW, Garman KL, Michael JA, Crespo SM, Fleischman RJ, Planck SR, Parker DC, Rosenbaum JT. Antigen-specific accumulation of naive, memory and effector CD4 T cells during anterior uveitis monitored by intravital microscopy. Cell Immunol. 2006;239(1):49–60.CrossRefPubMed Dullforce PA, Seitz GW, Garman KL, Michael JA, Crespo SM, Fleischman RJ, Planck SR, Parker DC, Rosenbaum JT. Antigen-specific accumulation of naive, memory and effector CD4 T cells during anterior uveitis monitored by intravital microscopy. Cell Immunol. 2006;239(1):49–60.CrossRefPubMed
8.
Zurück zum Zitat Chi W, Yang P, Li B, Wu C, Jin H, Zhu X, Chen L, Zhou H, Huang X, Kijlstra A. IL-23 promotes CD4+ T cells to produce IL-17 in Vogt-Koyanagi-Harada disease. J Allergy Clin Immunol. 2007;119(5):1218–24.CrossRefPubMed Chi W, Yang P, Li B, Wu C, Jin H, Zhu X, Chen L, Zhou H, Huang X, Kijlstra A. IL-23 promotes CD4+ T cells to produce IL-17 in Vogt-Koyanagi-Harada disease. J Allergy Clin Immunol. 2007;119(5):1218–24.CrossRefPubMed
9.
Zurück zum Zitat Hamzaoui K, Hamzaoui A, Guemira F, Bessioud M, Hamza M, Ayed K. Cytokine profile in Behcet’s disease patients. Relationship with disease activity. Scand J Rheumatol. 2002;31(4):205–10.CrossRefPubMed Hamzaoui K, Hamzaoui A, Guemira F, Bessioud M, Hamza M, Ayed K. Cytokine profile in Behcet’s disease patients. Relationship with disease activity. Scand J Rheumatol. 2002;31(4):205–10.CrossRefPubMed
10.
Zurück zum Zitat Yoshimura T, Sonoda KH, Miyazaki Y, Iwakura Y, Ishibashi T, Yoshimura A, Yoshida H. Differential roles for IFN-gamma and IL-17 in experimental autoimmune uveoretinitis. Int Immunol. 2008;20(2):209–14.CrossRefPubMed Yoshimura T, Sonoda KH, Miyazaki Y, Iwakura Y, Ishibashi T, Yoshimura A, Yoshida H. Differential roles for IFN-gamma and IL-17 in experimental autoimmune uveoretinitis. Int Immunol. 2008;20(2):209–14.CrossRefPubMed
11.
Zurück zum Zitat Yoshimura T, Sonoda KH, Ohguro N, Ohsugi Y, Ishibashi T, Cua DJ, Kobayashi T, Yoshida H, Yoshimura A. Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis. Rheumatology (Oxford). 2009;48(4):347–54.CrossRef Yoshimura T, Sonoda KH, Ohguro N, Ohsugi Y, Ishibashi T, Cua DJ, Kobayashi T, Yoshida H, Yoshimura A. Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis. Rheumatology (Oxford). 2009;48(4):347–54.CrossRef
12.
Zurück zum Zitat Vigeral P, Chkoff N, Chatenoud L, Campos H, Lacombe M, Droz D, Goldstein G, Bach JF, Kreis H. Prophylactic use of OKT3 monoclonal antibody in cadaver kidney recipients. Utilization of OKT3 as the sole immunosuppressive agent. Transplantation. 1986;41(6):730–3.CrossRefPubMed Vigeral P, Chkoff N, Chatenoud L, Campos H, Lacombe M, Droz D, Goldstein G, Bach JF, Kreis H. Prophylactic use of OKT3 monoclonal antibody in cadaver kidney recipients. Utilization of OKT3 as the sole immunosuppressive agent. Transplantation. 1986;41(6):730–3.CrossRefPubMed
13.
Zurück zum Zitat Cosimi AB, Colvin RB, Burton RC, Rubin RH, Goldstein G, Kung PC, Hansen WP, Delmonico FL, Russell PS. Use of monoclonal antibodies to T-cell subsets for immunologic monitoring and treatment in recipients of renal allografts. N Engl J Med. 1981;305(6):308–14.CrossRefPubMed Cosimi AB, Colvin RB, Burton RC, Rubin RH, Goldstein G, Kung PC, Hansen WP, Delmonico FL, Russell PS. Use of monoclonal antibodies to T-cell subsets for immunologic monitoring and treatment in recipients of renal allografts. N Engl J Med. 1981;305(6):308–14.CrossRefPubMed
14.
Zurück zum Zitat Cosimi AB, Burton RC, Colvin RB, Goldstein G, Delmonico FL, LaQuaglia MP, Tolkoff-Rubin N, Rubin RH, Herrin JT, Russell PS. Treatment of acute renal allograft rejection with OKT3 monoclonal antibody. Transplantation. 1981;32(6):535–9.CrossRefPubMed Cosimi AB, Burton RC, Colvin RB, Goldstein G, Delmonico FL, LaQuaglia MP, Tolkoff-Rubin N, Rubin RH, Herrin JT, Russell PS. Treatment of acute renal allograft rejection with OKT3 monoclonal antibody. Transplantation. 1981;32(6):535–9.CrossRefPubMed
15.
Zurück zum Zitat Chatenoud L, Ferran C, Reuter A, Legendre C, Gevaert Y, Kreis H, Franchimont P, Bach JF. Systemic reaction to the anti-T-cell monoclonal antibody OKT3 in relation to serum levels of tumor necrosis factor and interferon-gamma [corrected]. N Engl J Med. 1989;320(21):1420–1.CrossRefPubMed Chatenoud L, Ferran C, Reuter A, Legendre C, Gevaert Y, Kreis H, Franchimont P, Bach JF. Systemic reaction to the anti-T-cell monoclonal antibody OKT3 in relation to serum levels of tumor necrosis factor and interferon-gamma [corrected]. N Engl J Med. 1989;320(21):1420–1.CrossRefPubMed
16.
Zurück zum Zitat Abramowicz D, Schandene L, Goldman M, Crusiaux A, Vereerstraeten P, De Pauw L, Wybran J, Kinnaert P, Dupont E, Toussaint C. Release of tumor necrosis factor, interleukin-2, and gamma-interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation. 1989;47(4):606–8.CrossRefPubMed Abramowicz D, Schandene L, Goldman M, Crusiaux A, Vereerstraeten P, De Pauw L, Wybran J, Kinnaert P, Dupont E, Toussaint C. Release of tumor necrosis factor, interleukin-2, and gamma-interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation. 1989;47(4):606–8.CrossRefPubMed
17.
Zurück zum Zitat Shiheido H, Aoyama T, Takahashi H, Hanaoka K, Abe T, Nishida E, Chen C, Koga O, Hikida M, Shibagaki Y, et al. Novel CD3-specific antibody induces immunosuppression via impaired phosphorylation of LAT and PLCgamma1 following T-cell stimulation. Eur J Immunol. 2014;44(6):1770–80.CrossRefPubMed Shiheido H, Aoyama T, Takahashi H, Hanaoka K, Abe T, Nishida E, Chen C, Koga O, Hikida M, Shibagaki Y, et al. Novel CD3-specific antibody induces immunosuppression via impaired phosphorylation of LAT and PLCgamma1 following T-cell stimulation. Eur J Immunol. 2014;44(6):1770–80.CrossRefPubMed
18.
Zurück zum Zitat Shiheido H, Chen C, Hikida M, Watanabe T, Shimizu J. Modulation of the human T cell response by a novel non-mitogenic anti-CD3 antibody. PLoS One. 2014;9(4):e94324.CrossRefPubMedPubMedCentral Shiheido H, Chen C, Hikida M, Watanabe T, Shimizu J. Modulation of the human T cell response by a novel non-mitogenic anti-CD3 antibody. PLoS One. 2014;9(4):e94324.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Harimoto K, Ito M, Karasawa Y, Sakurai Y, Takeuchi M. Evaluation of mouse experimental autoimmune uveoretinitis by spectral domain optical coherence tomography. Br J Ophthalmol. 2014;98(6):808–12.CrossRefPubMed Harimoto K, Ito M, Karasawa Y, Sakurai Y, Takeuchi M. Evaluation of mouse experimental autoimmune uveoretinitis by spectral domain optical coherence tomography. Br J Ophthalmol. 2014;98(6):808–12.CrossRefPubMed
20.
Zurück zum Zitat Ke Y, Jiang G, Sun D, Kaplan HJ, Shao H. Anti-CD3 antibody ameliorates experimental autoimmune uveitis by inducing both IL-10 and TGF-beta dependent regulatory T cells. Clin Immunol. 2011;138(3):311–20.CrossRefPubMedPubMedCentral Ke Y, Jiang G, Sun D, Kaplan HJ, Shao H. Anti-CD3 antibody ameliorates experimental autoimmune uveitis by inducing both IL-10 and TGF-beta dependent regulatory T cells. Clin Immunol. 2011;138(3):311–20.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Sartani G, Silver PB, Rizzo LV, Chan CC, Wiggert B, Mastorakos G, Caspi RR. Anti-tumor necrosis factor alpha therapy suppresses the induction of experimental autoimmune uveoretinitis in mice by inhibiting antigen priming. Invest Ophthalmol Vis Sci. 1996;37(11):2211–8.PubMed Sartani G, Silver PB, Rizzo LV, Chan CC, Wiggert B, Mastorakos G, Caspi RR. Anti-tumor necrosis factor alpha therapy suppresses the induction of experimental autoimmune uveoretinitis in mice by inhibiting antigen priming. Invest Ophthalmol Vis Sci. 1996;37(11):2211–8.PubMed
22.
Zurück zum Zitat Sugita S, Kawazoe Y, Imai A, Yamada Y, Horie S, Mochizuki M. Inhibition of Th17 differentiation by anti-TNF-alpha therapy in uveitis patients with Behcet’s disease. Arthritis Res Ther. 2012;14(3):R99.CrossRefPubMedPubMedCentral Sugita S, Kawazoe Y, Imai A, Yamada Y, Horie S, Mochizuki M. Inhibition of Th17 differentiation by anti-TNF-alpha therapy in uveitis patients with Behcet’s disease. Arthritis Res Ther. 2012;14(3):R99.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Hohki S, Ohguro N, Haruta H, Nakai K, Terabe F, Serada S, Fujimoto M, Nomura S, Kawahata H, Kishimoto T, et al. Blockade of interleukin-6 signaling suppresses experimental autoimmune uveoretinitis by the inhibition of inflammatory Th17 responses. Exp Eye Res. 2010;91(2):162–70.CrossRefPubMed Hohki S, Ohguro N, Haruta H, Nakai K, Terabe F, Serada S, Fujimoto M, Nomura S, Kawahata H, Kishimoto T, et al. Blockade of interleukin-6 signaling suppresses experimental autoimmune uveoretinitis by the inhibition of inflammatory Th17 responses. Exp Eye Res. 2010;91(2):162–70.CrossRefPubMed
24.
Zurück zum Zitat Haruta H, Ohguro N, Fujimoto M, Hohki S, Terabe F, Serada S, Nomura S, Nishida K, Kishimoto T, Naka T. Blockade of interleukin-6 signaling suppresses not only th17 but also interphotoreceptor retinoid binding protein-specific Th1 by promoting regulatory T cells in experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 2011;52(6):3264–71.CrossRefPubMed Haruta H, Ohguro N, Fujimoto M, Hohki S, Terabe F, Serada S, Nomura S, Nishida K, Kishimoto T, Naka T. Blockade of interleukin-6 signaling suppresses not only th17 but also interphotoreceptor retinoid binding protein-specific Th1 by promoting regulatory T cells in experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 2011;52(6):3264–71.CrossRefPubMed
25.
Zurück zum Zitat Hirose S, Kuwabara T, Nussenblatt RB, Wiggert B, Redmond TM, Gery I. Uveitis induced in primates by interphotoreceptor retinoid-binding protein. Arch Ophthalmol. 1986;104(11):1698–702.CrossRefPubMed Hirose S, Kuwabara T, Nussenblatt RB, Wiggert B, Redmond TM, Gery I. Uveitis induced in primates by interphotoreceptor retinoid-binding protein. Arch Ophthalmol. 1986;104(11):1698–702.CrossRefPubMed
Metadaten
Titel
Inhibition of T cell-mediated inflammation in uveitis by a novel anti-CD3 antibody
verfasst von
Sunao Sugita
Jun Shimizu
Kenichi Makabe
Hiroshi Keino
Takeshi Watanabe
Masayo Takahashi
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Arthritis Research & Therapy / Ausgabe 1/2017
Elektronische ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-017-1379-9

Weitere Artikel der Ausgabe 1/2017

Arthritis Research & Therapy 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.