Skip to main content
Erschienen in: Investigational New Drugs 1/2013

01.02.2013 | PRECLINICAL STUDIES

Inhibitors of cathepsins B and L induce autophagy and cell death in neuroblastoma cells

verfasst von: Donna M. Cartledge, Rita Colella, Lisa Glazewski, Guizhen Lu, Robert W. Mason

Erschienen in: Investigational New Drugs | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Summary

This study was designed to test the hypothesis that specific inhibition of cathepsins B and L will cause death of neuroblastoma cells. Five compounds that differ in mode and rate of inhibition of these two enzymes were all shown to cause neuroblastoma cell death. Efficacy of the different compounds was related to their ability to inhibit the activity of the isolated enzymes. A dose- and time-response for induction of cell death was demonstrated for each compound. A proteomic study showed that inhibitor treatment caused an increase of markers of cell stress, including induction of levels of the autophagy marker, LC-3-II. Levels of this marker protein were highest at cytotoxic inhibitor concentrations, implicating autophagy in the cell death process. An in vivo mouse model showed that one of these inhibitors markedly impaired tumor growth. It is concluded that development of drugs to target these two proteases may provide a novel approach to treating neuroblastoma.
Literatur
2.
Zurück zum Zitat van Noesel MM, Versteeg R (2004) Pediatric neuroblastomas: genetic and epigenetic ‘danse macabre’. Gene 325:1–15PubMedCrossRef van Noesel MM, Versteeg R (2004) Pediatric neuroblastomas: genetic and epigenetic ‘danse macabre’. Gene 325:1–15PubMedCrossRef
3.
Zurück zum Zitat Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H, Black CT, Brodeur GM, Gerbing RB, Reynolds CP (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med 341(16):1165–1173. doi:10.1056/NEJM199910143411601 PubMedCrossRef Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H, Black CT, Brodeur GM, Gerbing RB, Reynolds CP (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med 341(16):1165–1173. doi:10.​1056/​NEJM199910143411​601 PubMedCrossRef
4.
Zurück zum Zitat Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224(4653):1121–1124PubMedCrossRef Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224(4653):1121–1124PubMedCrossRef
5.
Zurück zum Zitat Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, Laquaglia MJ, Sennett R, Lynch JE, Perri P, Laureys G, Speleman F, Kim C, Hou C, Hakonarson H, Torkamani A, Schork NJ, Brodeur GM, Tonini GP, Rappaport E, Devoto M, Maris JM (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455(7215):930–935. doi:10.1038/nature07261 PubMedCrossRef Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, Laquaglia MJ, Sennett R, Lynch JE, Perri P, Laureys G, Speleman F, Kim C, Hou C, Hakonarson H, Torkamani A, Schork NJ, Brodeur GM, Tonini GP, Rappaport E, Devoto M, Maris JM (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455(7215):930–935. doi:10.​1038/​nature07261 PubMedCrossRef
6.
Zurück zum Zitat Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK, Shimada H, Grupp SA, Seeger R, Reynolds CP, Buxton A, Reisfeld RA, Gillies SD, Cohn SL, Maris JM, Sondel PM, Children’s Oncology G (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363(14):1324–1334. doi:10.1056/NEJMoa0911123 PubMedCrossRef Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK, Shimada H, Grupp SA, Seeger R, Reynolds CP, Buxton A, Reisfeld RA, Gillies SD, Cohn SL, Maris JM, Sondel PM, Children’s Oncology G (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363(14):1324–1334. doi:10.​1056/​NEJMoa0911123 PubMedCrossRef
7.
Zurück zum Zitat Felbor U, Kessler B, Mothes W, Goebel HH, Ploegh HL, Bronson RT, Olsen BR (2002) Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci U S A 99(12):7883–7888. doi:10.1073/pnas.112632299 PubMedCrossRef Felbor U, Kessler B, Mothes W, Goebel HH, Ploegh HL, Bronson RT, Olsen BR (2002) Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci U S A 99(12):7883–7888. doi:10.​1073/​pnas.​112632299 PubMedCrossRef
8.
Zurück zum Zitat Ambroso JL, Harris C (1994) In vitro embryotoxicity of the cysteine proteinase inhibitors benzyloxycarbonyl-phenylalanine-alanine-diazomethane (Z-Phe-Ala-CHN2) and benzyloxycarbonyl-phenylalanine-phenylalanine-diazomethane (Z-Phe-Phe-CHN2). Teratology 50(3):214–228. doi:10.1002/tera.1420500307 PubMedCrossRef Ambroso JL, Harris C (1994) In vitro embryotoxicity of the cysteine proteinase inhibitors benzyloxycarbonyl-phenylalanine-alanine-diazomethane (Z-Phe-Ala-CHN2) and benzyloxycarbonyl-phenylalanine-phenylalanine-diazomethane (Z-Phe-Phe-CHN2). Teratology 50(3):214–228. doi:10.​1002/​tera.​1420500307 PubMedCrossRef
9.
11.
Zurück zum Zitat Falgueyret JP, Desmarais S, Oballa R, Black WC, Cromlish W, Khougaz K, Lamontagne S, Masse F, Riendeau D, Toulmond S, Percival MD (2005) Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against off-target cathepsins and reduced functional selectivity. J Med Chem 48(24):7535–7543. doi:10.1021/jm0504961 PubMedCrossRef Falgueyret JP, Desmarais S, Oballa R, Black WC, Cromlish W, Khougaz K, Lamontagne S, Masse F, Riendeau D, Toulmond S, Percival MD (2005) Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against off-target cathepsins and reduced functional selectivity. J Med Chem 48(24):7535–7543. doi:10.​1021/​jm0504961 PubMedCrossRef
12.
Zurück zum Zitat Desmarais S, Black WC, Oballa R, Lamontagne S, Riendeau D, Tawa P, le Duong T, Pickarski M, Percival MD (2008) Effect of cathepsin k inhibitor basicity on in vivo off-target activities. Mol Pharmacol 73(1):147–156. doi:10.1124/mol.107.039511 PubMedCrossRef Desmarais S, Black WC, Oballa R, Lamontagne S, Riendeau D, Tawa P, le Duong T, Pickarski M, Percival MD (2008) Effect of cathepsin k inhibitor basicity on in vivo off-target activities. Mol Pharmacol 73(1):147–156. doi:10.​1124/​mol.​107.​039511 PubMedCrossRef
13.
Zurück zum Zitat Anagli J, Abounit K, Stemmer P, Han Y, Allred L, Weinsheimer S, Movsisyan A, Seyfried D (2008) Effects of cathepsins B and L inhibition on postischemic protein alterations in the brain. Biochem Biophys Res Commun 366(1):86–91. doi:10.1016/j.bbrc.2007.11.104 PubMedCrossRef Anagli J, Abounit K, Stemmer P, Han Y, Allred L, Weinsheimer S, Movsisyan A, Seyfried D (2008) Effects of cathepsins B and L inhibition on postischemic protein alterations in the brain. Biochem Biophys Res Commun 366(1):86–91. doi:10.​1016/​j.​bbrc.​2007.​11.​104 PubMedCrossRef
14.
Zurück zum Zitat Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Heal Perspect 108(Suppl 3):511–533 Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Heal Perspect 108(Suppl 3):511–533
15.
Zurück zum Zitat Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105(1):7–17PubMedCrossRef Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105(1):7–17PubMedCrossRef
17.
Zurück zum Zitat Crawford C, Mason RW, Wikstrom P, Shaw E (1988) The design of peptidyldiazomethane inhibitors to distinguish between the cysteine proteinases calpain-Ii, cathepsin-L and cathepsin-B. Biochem J 253(3):751–758PubMed Crawford C, Mason RW, Wikstrom P, Shaw E (1988) The design of peptidyldiazomethane inhibitors to distinguish between the cysteine proteinases calpain-Ii, cathepsin-L and cathepsin-B. Biochem J 253(3):751–758PubMed
18.
Zurück zum Zitat Xing R, Mason RW (1998) Design of a transferrin-proteinase inhibitor conjugate to probe for active cysteine proteinases in endosomes. Biochem J 336(Pt 3):667–673PubMed Xing R, Mason RW (1998) Design of a transferrin-proteinase inhibitor conjugate to probe for active cysteine proteinases in endosomes. Biochem J 336(Pt 3):667–673PubMed
20.
Zurück zum Zitat Mason RW, Green GDJ, Barrett AJ (1985) Human-liver cathepsin-L. Biochem J 226(1):233–241PubMed Mason RW, Green GDJ, Barrett AJ (1985) Human-liver cathepsin-L. Biochem J 226(1):233–241PubMed
21.
24.
Zurück zum Zitat Palmer JT, Bryant C, Wang DX, Davis DE, Setti EL, Rydzewski RM, Venkatraman S, Tian ZQ, Burrill LC, Mendonca RV, Springman E, McCarter J, Chung T, Cheung H, Janc JW, McGrath M, Somoza JR, Enriquez P, Yu ZW, Strickley RM, Liu L, Venuti MC, Percival MD, Falgueyret JP, Prasit P, Oballa R, Riendeau D, Young RN, Wesolowski G, Rodan SB, Johnson C, Kimmel DB, Rodan G (2005) Design and synthesis of tri-ring P3 benzamide-containing aminonitriles as potent, selective, orally effective inhibitors of cathepsin K. J Med Chem 48(24):7520–7534. doi:10.1021/jm058198r PubMedCrossRef Palmer JT, Bryant C, Wang DX, Davis DE, Setti EL, Rydzewski RM, Venkatraman S, Tian ZQ, Burrill LC, Mendonca RV, Springman E, McCarter J, Chung T, Cheung H, Janc JW, McGrath M, Somoza JR, Enriquez P, Yu ZW, Strickley RM, Liu L, Venuti MC, Percival MD, Falgueyret JP, Prasit P, Oballa R, Riendeau D, Young RN, Wesolowski G, Rodan SB, Johnson C, Kimmel DB, Rodan G (2005) Design and synthesis of tri-ring P3 benzamide-containing aminonitriles as potent, selective, orally effective inhibitors of cathepsin K. J Med Chem 48(24):7520–7534. doi:10.​1021/​jm058198r PubMedCrossRef
25.
Zurück zum Zitat Xing R, Addington AK, Mason RW (1998) Quantification of cathepsins B and L in cells. Biochem J 332(Pt 2):499–505PubMed Xing R, Addington AK, Mason RW (1998) Quantification of cathepsins B and L in cells. Biochem J 332(Pt 2):499–505PubMed
26.
Zurück zum Zitat Yorimitsu T, Klionsky DJ (2007) Eating the endoplasmic reticulum: quality control by autophagy. Trends Cell Biol 17(6):279–285PubMedCrossRef Yorimitsu T, Klionsky DJ (2007) Eating the endoplasmic reticulum: quality control by autophagy. Trends Cell Biol 17(6):279–285PubMedCrossRef
27.
Zurück zum Zitat Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728. doi:10.1093/emboj/19.21.5720 PubMedCrossRef Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728. doi:10.​1093/​emboj/​19.​21.​5720 PubMedCrossRef
28.
Zurück zum Zitat Boya P, Gonzalez-Polo RA, Poncet D, Andreau K, Vieira HL, Roumier T, Perfettini JL, Kroemer G (2003) Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22(25):3927–3936PubMedCrossRef Boya P, Gonzalez-Polo RA, Poncet D, Andreau K, Vieira HL, Roumier T, Perfettini JL, Kroemer G (2003) Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22(25):3927–3936PubMedCrossRef
29.
Zurück zum Zitat Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27(50):6434–6451PubMedCrossRef Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27(50):6434–6451PubMedCrossRef
31.
Zurück zum Zitat Xing RY, Wu F, Mason RW (1998) Control of breast tumor cell growth using a targeted cysteine protease inhibitor. Cancer Res 58(5):904–909PubMed Xing RY, Wu F, Mason RW (1998) Control of breast tumor cell growth using a targeted cysteine protease inhibitor. Cancer Res 58(5):904–909PubMed
32.
Zurück zum Zitat Tu C, Ortega-Cava CF, Chen G, Fernandes ND, Cavallo-Medved D, Sloane BF, Band V, Band H (2008) Lysosomal cathepsin B participates in the podosome-mediated extracellular matrix degradation and invasion via secreted lysosomes in v-Src fibroblasts. Cancer Res 68(22):9147–9156PubMedCrossRef Tu C, Ortega-Cava CF, Chen G, Fernandes ND, Cavallo-Medved D, Sloane BF, Band V, Band H (2008) Lysosomal cathepsin B participates in the podosome-mediated extracellular matrix degradation and invasion via secreted lysosomes in v-Src fibroblasts. Cancer Res 68(22):9147–9156PubMedCrossRef
33.
Zurück zum Zitat Chang SH, Kanasaki K, Gocheva V, Blum G, Harper J, Moses MA, Shih SC, Nagy JA, Joyce J, Bogyo M, Kalluri R, Dvorak HF (2009) VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation. Cancer Res 69(10):4537–4544. doi:10.1158/0008-5472.CAN-08-4539 PubMedCrossRef Chang SH, Kanasaki K, Gocheva V, Blum G, Harper J, Moses MA, Shih SC, Nagy JA, Joyce J, Bogyo M, Kalluri R, Dvorak HF (2009) VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation. Cancer Res 69(10):4537–4544. doi:10.​1158/​0008-5472.​CAN-08-4539 PubMedCrossRef
34.
Zurück zum Zitat Burden RE, Gormley JA, Jaquin TJ, Small DM, Quinn DJ, Hegarty SM, Ward C, Walker B, Johnston JA, Olwill SA, Scott CJ (2009) Antibody-mediated inhibition of cathepsin S blocks colorectal tumor invasion and angiogenesis. Clin Cancer Res 15(19):6042–6051. doi:10.1158/1078-0432.CCR-09-1262 PubMedCrossRef Burden RE, Gormley JA, Jaquin TJ, Small DM, Quinn DJ, Hegarty SM, Ward C, Walker B, Johnston JA, Olwill SA, Scott CJ (2009) Antibody-mediated inhibition of cathepsin S blocks colorectal tumor invasion and angiogenesis. Clin Cancer Res 15(19):6042–6051. doi:10.​1158/​1078-0432.​CCR-09-1262 PubMedCrossRef
35.
Zurück zum Zitat Perez-Castrillon JL, Pinacho F, De Luis D, Lopez-Menendez M, Duenas Laita A (2010) Odanacatib, a new drug for the treatment of osteoporosis: review of the results in postmenopausal women. J Osteoporos 2010. doi:10.4061/2010/401581 Perez-Castrillon JL, Pinacho F, De Luis D, Lopez-Menendez M, Duenas Laita A (2010) Odanacatib, a new drug for the treatment of osteoporosis: review of the results in postmenopausal women. J Osteoporos 2010. doi:10.​4061/​2010/​401581
36.
Zurück zum Zitat Doyle PS, Zhou YM, Engel JC, McKerrow JH (2007) A cysteine protease inhibitor cures Chagas’ disease in an immunodeficient-mouse model of infection. Antimicrob Agents Chemother 51(11):3932–3939. doi:10.1128/AAC.00436-07 PubMedCrossRef Doyle PS, Zhou YM, Engel JC, McKerrow JH (2007) A cysteine protease inhibitor cures Chagas’ disease in an immunodeficient-mouse model of infection. Antimicrob Agents Chemother 51(11):3932–3939. doi:10.​1128/​AAC.​00436-07 PubMedCrossRef
Metadaten
Titel
Inhibitors of cathepsins B and L induce autophagy and cell death in neuroblastoma cells
verfasst von
Donna M. Cartledge
Rita Colella
Lisa Glazewski
Guizhen Lu
Robert W. Mason
Publikationsdatum
01.02.2013
Verlag
Springer US
Erschienen in
Investigational New Drugs / Ausgabe 1/2013
Print ISSN: 0167-6997
Elektronische ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-012-9826-6

Weitere Artikel der Ausgabe 1/2013

Investigational New Drugs 1/2013 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.