Skip to main content
Erschienen in: Cardiovascular Toxicology 5/2019

27.04.2019 | Antidepressant Drugs

Inhibitory Effect of Tricyclic Antidepressant Doxepin on Voltage-Dependent K+ Channels in Rabbit Coronary Arterial Smooth Muscle Cells

verfasst von: Hongliang Li, Hojung Kang, Jin Ryeol An, Mi Seon Seo, Won-Kyo Jung, Dae-Sung Lee, Grace Choi, Mi-Jin Yim, Jeong Min Lee, Young Min Bae, Youn Kyoung Son, Il-Whan Choi, Won Sun Park

Erschienen in: Cardiovascular Toxicology | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Doxepin, tricyclic antidepressant, is widely used for the treatment of depressive disorders. Our present study determined the inhibitory effect of doxepin on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using a whole-cell patch clamp technique. Vascular Kv currents were inhibited by doxepin in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC50) value of 6.52 ± 1.35 μM and a Hill coefficient of 0.72 ± 0.03. Doxepin did not change the steady-state activation curve or inactivation curve, suggesting that doxepin does not alter the gating properties of Kv channels. Application of train pulses (1 or 2 Hz) slightly reduced the amplitude of Kv currents. However, the inhibition of Kv channels by train pulses were not changed in the presence of doxepin. Pretreatment with Kv1.5 inhibitor, DPO-1, effectively reduced the doxepin-induced inhibition of the Kv current. However, pretreatment with Kv2.1 inhibitor (guangxitoxin) or Kv7 inhibitor (linopirdine) did not change the inhibitory effect of doxepin on Kv currents. Inhibition of Kv channels by doxepin caused vasoconstriction and membrane depolarization. Therefore, our present study suggests that doxepin inhibits Kv channels in a concentration-dependent, but not use-, and state-dependent manners, irrespective of its own function.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Smith, K. (2014). Mental health: A world of depression. Nature, 515, 181.PubMed Smith, K. (2014). Mental health: A world of depression. Nature, 515, 181.PubMed
2.
Zurück zum Zitat Linde, K., Kriston, L., Rücker, G., Jamil, S., Schumann, I., Meissner, K., et al. (2015). Efficacy and acceptability of pharmacological treatments for depressive disorders in primary care: Systematic review and network meta-analysis. Annals of Family Medicine, 13, 69–79.CrossRefPubMedPubMedCentral Linde, K., Kriston, L., Rücker, G., Jamil, S., Schumann, I., Meissner, K., et al. (2015). Efficacy and acceptability of pharmacological treatments for depressive disorders in primary care: Systematic review and network meta-analysis. Annals of Family Medicine, 13, 69–79.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat von Wolff, A., Hölzel, L. P., Westphal, A., Härter, M., & Kriston, L. (2013). Selective serotonin reuptake inhibitors and tricyclic antidepressants in the acute treatment of chronic depression and dysthymia: A systematic review and meta-analysis. Journal of Affective Disorders, 144, 7–15.CrossRef von Wolff, A., Hölzel, L. P., Westphal, A., Härter, M., & Kriston, L. (2013). Selective serotonin reuptake inhibitors and tricyclic antidepressants in the acute treatment of chronic depression and dysthymia: A systematic review and meta-analysis. Journal of Affective Disorders, 144, 7–15.CrossRef
4.
Zurück zum Zitat Pinder, R. M., Brogden, R. N., Speight, T. M., & Avery, G. S. (1977). Doxepin up-to-date: A review of its pharmacological properties and therapeutic efficacy with particular reference to depression. Drugs, 13, 161–218.CrossRefPubMed Pinder, R. M., Brogden, R. N., Speight, T. M., & Avery, G. S. (1977). Doxepin up-to-date: A review of its pharmacological properties and therapeutic efficacy with particular reference to depression. Drugs, 13, 161–218.CrossRefPubMed
5.
Zurück zum Zitat Lodge, G. J., & Freeman, H. L. (1986). Clovoxamine and doxepin in major depressive disorder: A double-blind controlled trial. British Journal of Psychiatry, 148, 718–721.CrossRefPubMed Lodge, G. J., & Freeman, H. L. (1986). Clovoxamine and doxepin in major depressive disorder: A double-blind controlled trial. British Journal of Psychiatry, 148, 718–721.CrossRefPubMed
6.
Zurück zum Zitat Zychowska, M., Rojewska, E., Makuch, W., Przewiocka, B., & Mika, J. (2015). The influence of microglia activation on the efficacy of amitriptyline, doxepin, milnacipran, venlafaxine and fluoxetine in a rat model of neuropathic pain. European Journal of Pharmacology, 749, 115–123.CrossRefPubMed Zychowska, M., Rojewska, E., Makuch, W., Przewiocka, B., & Mika, J. (2015). The influence of microglia activation on the efficacy of amitriptyline, doxepin, milnacipran, venlafaxine and fluoxetine in a rat model of neuropathic pain. European Journal of Pharmacology, 749, 115–123.CrossRefPubMed
7.
Zurück zum Zitat Rios Romenets, S., Creti, L., Fichten, C., Bailes, S., Libman, E., Pelletier, A., et al. (2013). Doxepin and cognitive behavioural therapy for insomnia in patients with Parkinson’s disease—A randomized study. Parkinsonism & Related Disorders, 19, 670–675.CrossRef Rios Romenets, S., Creti, L., Fichten, C., Bailes, S., Libman, E., Pelletier, A., et al. (2013). Doxepin and cognitive behavioural therapy for insomnia in patients with Parkinson’s disease—A randomized study. Parkinsonism & Related Disorders, 19, 670–675.CrossRef
8.
Zurück zum Zitat Yeung, W. F., Chung, K. F., Yung, K. P., & Ng, T. H. (2015). Doxepin for insomnia: A systematic review of randomized placebo-controlled trials. Sleep Medicine Reviews, 19, 75–83.CrossRefPubMed Yeung, W. F., Chung, K. F., Yung, K. P., & Ng, T. H. (2015). Doxepin for insomnia: A systematic review of randomized placebo-controlled trials. Sleep Medicine Reviews, 19, 75–83.CrossRefPubMed
9.
Zurück zum Zitat Roose, S. P., Dalack, G. W., Glassman, A. H., Woodring, S., Walsh, B. T., & Giardina, E. G. (1991). Is doxepin a safer tricyclic for the heart. Journal of Clinical Psychiatry, 52, 338–341.PubMed Roose, S. P., Dalack, G. W., Glassman, A. H., Woodring, S., Walsh, B. T., & Giardina, E. G. (1991). Is doxepin a safer tricyclic for the heart. Journal of Clinical Psychiatry, 52, 338–341.PubMed
10.
Zurück zum Zitat Neshkes, R. E., Gemer, R., Jarvik, L. F., Mintz, J., Joseph, J., Linde, S., et al. (1985). Orthostatic effect of imipramine and doxepin in depressed geriatric outpatients. Journal of Clinical Psychopharmacology, 5, 102–106.CrossRefPubMed Neshkes, R. E., Gemer, R., Jarvik, L. F., Mintz, J., Joseph, J., Linde, S., et al. (1985). Orthostatic effect of imipramine and doxepin in depressed geriatric outpatients. Journal of Clinical Psychopharmacology, 5, 102–106.CrossRefPubMed
11.
Zurück zum Zitat Lankford, A., Rogowski, R., Essink, B., Ludington, E., Heith Durrence, H., & Roth, T. (2012). Efficacy and safety of doxepin 6 mg in a four-week outpatient trial of elderly adults with chronic primary insomnia. Sleep Medicine, 13, 133–138.CrossRefPubMed Lankford, A., Rogowski, R., Essink, B., Ludington, E., Heith Durrence, H., & Roth, T. (2012). Efficacy and safety of doxepin 6 mg in a four-week outpatient trial of elderly adults with chronic primary insomnia. Sleep Medicine, 13, 133–138.CrossRefPubMed
12.
Zurück zum Zitat Duncan, R. S., McPate, M. J., Ridley, J. M., Gao, Z., James, A. F., Leishaman, D. J., et al. (2007). Inhibition of the HERG potassium channel by the tricyclic antidepressant doxepin. Biochemical Pharmacology, 74, 425–437.CrossRefPubMedPubMedCentral Duncan, R. S., McPate, M. J., Ridley, J. M., Gao, Z., James, A. F., Leishaman, D. J., et al. (2007). Inhibition of the HERG potassium channel by the tricyclic antidepressant doxepin. Biochemical Pharmacology, 74, 425–437.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Pancrazio, J. J., Kamatchi, G. L., Roscoe, A. K., & Lynch, C., 3rd. (1998). Inhibition of neuronal Na+ channels by antidepressant drugs. Journal of Pharmacology and Experimental Therapeutics, 284, 208–214.PubMed Pancrazio, J. J., Kamatchi, G. L., Roscoe, A. K., & Lynch, C., 3rd. (1998). Inhibition of neuronal Na+ channels by antidepressant drugs. Journal of Pharmacology and Experimental Therapeutics, 284, 208–214.PubMed
14.
Zurück zum Zitat Lu, T., Chou, C. T., Liang, W. Z., Yu, C. C., Chang, H. T., Kuo, C. C., et al. (2015). Effect of antidepressant doxepin on Ca2+ homeostasis and viability in PC3 human prostate cancer cells. Chinese Journal of Physiology, 58, 178–187.PubMed Lu, T., Chou, C. T., Liang, W. Z., Yu, C. C., Chang, H. T., Kuo, C. C., et al. (2015). Effect of antidepressant doxepin on Ca2+ homeostasis and viability in PC3 human prostate cancer cells. Chinese Journal of Physiology, 58, 178–187.PubMed
15.
Zurück zum Zitat Nelson, M. T., & Quayle, J. M. (1995). Physiological roles and properties of potassium channels in arterial smooth muscle. American Journal of Physiology, 268, 799–822.CrossRef Nelson, M. T., & Quayle, J. M. (1995). Physiological roles and properties of potassium channels in arterial smooth muscle. American Journal of Physiology, 268, 799–822.CrossRef
16.
Zurück zum Zitat Tykocki, N. R., Boerman, E. M., & Jackson, W. F. (2017). Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Comprehensive Physiology, 7, 485–581.CrossRefPubMedPubMedCentral Tykocki, N. R., Boerman, E. M., & Jackson, W. F. (2017). Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Comprehensive Physiology, 7, 485–581.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Clapp, L. H., & Gurney, A. M. (1992). ATP-sensitive K+ channels regulate resting potential of pulmonary arterial smooth muscle cells. American Journal of Physiology, 262, 916–920.CrossRef Clapp, L. H., & Gurney, A. M. (1992). ATP-sensitive K+ channels regulate resting potential of pulmonary arterial smooth muscle cells. American Journal of Physiology, 262, 916–920.CrossRef
18.
Zurück zum Zitat Jackson, W. F. (2018). Kv channels and the regulation of vascular smooth muscle tone. Microcirculation, 25, e12421.CrossRef Jackson, W. F. (2018). Kv channels and the regulation of vascular smooth muscle tone. Microcirculation, 25, e12421.CrossRef
19.
Zurück zum Zitat Yuan, X. J. (1995). Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes. Circulation Research, 77, 370–378.CrossRefPubMed Yuan, X. J. (1995). Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes. Circulation Research, 77, 370–378.CrossRefPubMed
20.
Zurück zum Zitat Bae, Y. M., Kim, A., Kim, J., Park, S. W., Kim, T. K., Lee, Y. R., et al. (2006). Serotonin depolarizes the membrane potential in rat mesenteric artery myocytes by decreasing voltage-gated K+ currents. Biochemical and Biophysical Research Communications, 347, 468–476.CrossRefPubMed Bae, Y. M., Kim, A., Kim, J., Park, S. W., Kim, T. K., Lee, Y. R., et al. (2006). Serotonin depolarizes the membrane potential in rat mesenteric artery myocytes by decreasing voltage-gated K+ currents. Biochemical and Biophysical Research Communications, 347, 468–476.CrossRefPubMed
21.
Zurück zum Zitat Ko, E. A., Han, J., Jung, I. D., & Park, W. S. (2008). Physiological roles of K+ channels in vascular smooth muscle cells. Journal of Smooth Muscle Research, 44, 65–81.CrossRefPubMed Ko, E. A., Han, J., Jung, I. D., & Park, W. S. (2008). Physiological roles of K+ channels in vascular smooth muscle cells. Journal of Smooth Muscle Research, 44, 65–81.CrossRefPubMed
22.
Zurück zum Zitat Cox, R. H., Folander, K., & Swanson, R. (2001). Differential expression of voltage-gated K+ channel genes in arteries from spontaneously hypertensive and Wistar-Kyoto rats. Hypertension, 37, 1315–1322.CrossRefPubMed Cox, R. H., Folander, K., & Swanson, R. (2001). Differential expression of voltage-gated K+ channel genes in arteries from spontaneously hypertensive and Wistar-Kyoto rats. Hypertension, 37, 1315–1322.CrossRefPubMed
23.
Zurück zum Zitat Liu, Y., Terata, K., Rusch, N. J., & Gutterman, D. D. (2001). High glucose impairs voltage-gated K+ channel current in rat small coronary arteries. Circulation Research, 89, 146–152.CrossRefPubMed Liu, Y., Terata, K., Rusch, N. J., & Gutterman, D. D. (2001). High glucose impairs voltage-gated K+ channel current in rat small coronary arteries. Circulation Research, 89, 146–152.CrossRefPubMed
24.
Zurück zum Zitat Li, H., Kim, H. S., Kim, H. W., Shin, S. E., Jung, W. K., Ha, K. S., et al. (2016). The class III anti-arrhythmic agent, amiodarone, inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Naunyn-Schmiedebergs Archives of Pharmacology, 389, 713–721.CrossRef Li, H., Kim, H. S., Kim, H. W., Shin, S. E., Jung, W. K., Ha, K. S., et al. (2016). The class III anti-arrhythmic agent, amiodarone, inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Naunyn-Schmiedebergs Archives of Pharmacology, 389, 713–721.CrossRef
25.
Zurück zum Zitat Park, W. S., Ko, J. H., Kim, N., Son, Y. K., Kang, S. H., Warda, M., et al. (2007). Increased inhibition of inward rectifier K+ channels by angiotensin II in small-diameter coronary artery of isoproterenol-induced hypertrophied model. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 1768–1775.CrossRefPubMed Park, W. S., Ko, J. H., Kim, N., Son, Y. K., Kang, S. H., Warda, M., et al. (2007). Increased inhibition of inward rectifier K+ channels by angiotensin II in small-diameter coronary artery of isoproterenol-induced hypertrophied model. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 1768–1775.CrossRefPubMed
26.
Zurück zum Zitat Li, H., Shin, S. E., Seo, M. S., An, J. R., Ha, K. S., Han, E. T., et al. (2018). Inhibitory effect of the tricyclic antidepressant amitriptyline on voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Clinical and Experimental Pharmacology and Physiology, 45, 205–212.CrossRefPubMed Li, H., Shin, S. E., Seo, M. S., An, J. R., Ha, K. S., Han, E. T., et al. (2018). Inhibitory effect of the tricyclic antidepressant amitriptyline on voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Clinical and Experimental Pharmacology and Physiology, 45, 205–212.CrossRefPubMed
27.
Zurück zum Zitat Lingjaerde, O. (1976). Effect of doxepin on uptake and efflux of serotonin human blood platelets in vitro. Psychopharmacologia, 47, 183–186.CrossRefPubMed Lingjaerde, O. (1976). Effect of doxepin on uptake and efflux of serotonin human blood platelets in vitro. Psychopharmacologia, 47, 183–186.CrossRefPubMed
28.
Zurück zum Zitat Watts, S. W. (2005). 5-HT in systemic hypertension: Foe, friend or fantasy. Clinical Science, 108, 399–412.CrossRefPubMed Watts, S. W. (2005). 5-HT in systemic hypertension: Foe, friend or fantasy. Clinical Science, 108, 399–412.CrossRefPubMed
29.
Zurück zum Zitat Vieweg, W. V., & Wood, M. A. (2004). Tricyclic antidepressants, QT interval prolongation, and torsade de pointes. Psychosomatics, 45, 371–377.CrossRefPubMed Vieweg, W. V., & Wood, M. A. (2004). Tricyclic antidepressants, QT interval prolongation, and torsade de pointes. Psychosomatics, 45, 371–377.CrossRefPubMed
30.
Zurück zum Zitat Ji, B. S., Ji, H., & Liu, G. Q. (2004). Doxepin protects cultured neurons against oxidative stress-induced injury. Acta Pharmacologica Sinica, 25, 297–300.PubMed Ji, B. S., Ji, H., & Liu, G. Q. (2004). Doxepin protects cultured neurons against oxidative stress-induced injury. Acta Pharmacologica Sinica, 25, 297–300.PubMed
31.
Zurück zum Zitat Kitamura, Y., Arima, T., Kitayama, Y., & Nomura, Y. (1996). Regulation of [Ca2+]i rise activated by doxepin-sensitive H1-histamine receptors in Jurkat cells, cloned human T lymphocytes. General Pharmacology, 27, 285–291.CrossRefPubMed Kitamura, Y., Arima, T., Kitayama, Y., & Nomura, Y. (1996). Regulation of [Ca2+]i rise activated by doxepin-sensitive H1-histamine receptors in Jurkat cells, cloned human T lymphocytes. General Pharmacology, 27, 285–291.CrossRefPubMed
32.
Zurück zum Zitat Shin, S. E., Li, H., Kim, H. S., Kim, H. W., Seo, M. S., Ha, K. S., et al. (2017). Nortriptyline, a tricyclic antidepressant, inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells. Korean Journal of Physiology & Pharmacology, 21, 225–232.CrossRef Shin, S. E., Li, H., Kim, H. S., Kim, H. W., Seo, M. S., Ha, K. S., et al. (2017). Nortriptyline, a tricyclic antidepressant, inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells. Korean Journal of Physiology & Pharmacology, 21, 225–232.CrossRef
33.
Zurück zum Zitat Kim, H. S., Li, H., Kim, H. W., Shin, S. E., Choi, I. W., Firth, A. L., et al. (2016). Selective serotonin reuptake inhibitor sertraline inhibits voltage-dependent K+ channel in rabbit coronary arterial smooth muscle cells. Journal of Biosciences, 41, 659–666.CrossRefPubMed Kim, H. S., Li, H., Kim, H. W., Shin, S. E., Choi, I. W., Firth, A. L., et al. (2016). Selective serotonin reuptake inhibitor sertraline inhibits voltage-dependent K+ channel in rabbit coronary arterial smooth muscle cells. Journal of Biosciences, 41, 659–666.CrossRefPubMed
34.
Zurück zum Zitat Kim, H. S., Li, H., Kim, H. W., Shin, S. E., Jung, W. K., Ha, K. S., et al. (2017). The selective serotonin reuptake inhibitor dapoxetine inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Clinical and Experimental Pharmacology and Physiology, 44, 480–487.CrossRefPubMed Kim, H. S., Li, H., Kim, H. W., Shin, S. E., Jung, W. K., Ha, K. S., et al. (2017). The selective serotonin reuptake inhibitor dapoxetine inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Clinical and Experimental Pharmacology and Physiology, 44, 480–487.CrossRefPubMed
35.
Zurück zum Zitat Kim, H. S., Li, H., Kim, H. W., Shin, S. E., Seo, M. S., An, J. R., et al. (2017). Escitalopram, a selective serotonin reuptake inhibitor, inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells. Korean Journal of Physiology & Pharmacology, 21, 415–421.CrossRef Kim, H. S., Li, H., Kim, H. W., Shin, S. E., Seo, M. S., An, J. R., et al. (2017). Escitalopram, a selective serotonin reuptake inhibitor, inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells. Korean Journal of Physiology & Pharmacology, 21, 415–421.CrossRef
36.
Zurück zum Zitat Meyer-Banrner, M., Meineke, I., Schreeb, K. H., & Gleiter, C. H. (2002). Pharmacokinetics of doxepin and desmethyldoxepin: An evaluation with the population approach. European Journal of Clinical Pharmacology, 58, 253–257.CrossRef Meyer-Banrner, M., Meineke, I., Schreeb, K. H., & Gleiter, C. H. (2002). Pharmacokinetics of doxepin and desmethyldoxepin: An evaluation with the population approach. European Journal of Clinical Pharmacology, 58, 253–257.CrossRef
37.
Zurück zum Zitat Park, W. S., Son, Y. K., Han, J., Kim, N., Ko, J. H., Bae, Y. M., et al. (2005). Staurosporine inhibits voltage-dependent K+ current through a PKC-independent mechanism in isolated coronary arterial smooth muscle cells. Journal of Cardiovascular Pharmacology, 45, 260–269.CrossRefPubMed Park, W. S., Son, Y. K., Han, J., Kim, N., Ko, J. H., Bae, Y. M., et al. (2005). Staurosporine inhibits voltage-dependent K+ current through a PKC-independent mechanism in isolated coronary arterial smooth muscle cells. Journal of Cardiovascular Pharmacology, 45, 260–269.CrossRefPubMed
38.
Zurück zum Zitat Armstrong, C. M. (1971). Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. Journal of General Physiology, 58, 413–437.CrossRefPubMed Armstrong, C. M. (1971). Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. Journal of General Physiology, 58, 413–437.CrossRefPubMed
39.
Zurück zum Zitat Hille, B. (1992). Ionic channels of excitable membranes (2nd ed.). Sunderland, MA: Sinauer Associate. Hille, B. (1992). Ionic channels of excitable membranes (2nd ed.). Sunderland, MA: Sinauer Associate.
40.
Zurück zum Zitat Son, Y. K., Hong, D. H., Li, H., Kim, D. J., Na, S. H., Park, H., et al. (2014). The Ca2+ channel inhibitor NNC 55-0396 inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Journal of Pharmacological Sciences, 125, 312–319.CrossRefPubMed Son, Y. K., Hong, D. H., Li, H., Kim, D. J., Na, S. H., Park, H., et al. (2014). The Ca2+ channel inhibitor NNC 55-0396 inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Journal of Pharmacological Sciences, 125, 312–319.CrossRefPubMed
41.
Zurück zum Zitat Li, H., Shin, S. E., Kim, H. W., Kim, H. S., Jung, W. K., Ha, K. S., et al. (2016). Y-27632, a Rho-associated protein kinase inhibitor, inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Pharmacology, 98, 220–227.CrossRefPubMed Li, H., Shin, S. E., Kim, H. W., Kim, H. S., Jung, W. K., Ha, K. S., et al. (2016). Y-27632, a Rho-associated protein kinase inhibitor, inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Pharmacology, 98, 220–227.CrossRefPubMed
Metadaten
Titel
Inhibitory Effect of Tricyclic Antidepressant Doxepin on Voltage-Dependent K+ Channels in Rabbit Coronary Arterial Smooth Muscle Cells
verfasst von
Hongliang Li
Hojung Kang
Jin Ryeol An
Mi Seon Seo
Won-Kyo Jung
Dae-Sung Lee
Grace Choi
Mi-Jin Yim
Jeong Min Lee
Young Min Bae
Youn Kyoung Son
Il-Whan Choi
Won Sun Park
Publikationsdatum
27.04.2019
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 5/2019
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09519-8

Weitere Artikel der Ausgabe 5/2019

Cardiovascular Toxicology 5/2019 Zur Ausgabe