Skip to main content
Erschienen in: Tumor Biology 2/2016

01.12.2015 | Review

Inhibitory effects of Arhgap6 on cervical carcinoma cells

verfasst von: Junping Li, Yang Liu, Yihua Yin

Erschienen in: Tumor Biology | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

Ras homology GTPase activation protein 6 (Arhgap6), as a member of the rhoGAP family of proteins, performs vital functions on the regulation of actin polymerization at the plasma membrane during several cellular processes. The role of Arhgap6 in the progression and development of cancer remains nearly unknown. This study aimed at exploring the effects of Arhgap6 on cervical carcinoma. Human cervical cancer cells HeLa and SiHa were transduced with a lentivirus targeting Arhgap6 (Arhgap6+), while CaSki and C4-1 cells were transfected with miRNA. Cell proliferation was identified by Cell Counting Kit-8 (CCK-8). Cell cycle distribution and cell apoptosis were identified by flow cytometry. The capacity of cell migration, invasion, and adhesion were detected by Transwell assay. Further, quantitative real-time PCR (qRT-PCR) and western blot were used to analyze the expression levels of Arhgap6 and several tumor-related genes. Co-immunoprecipitation assay was performed to validate the interaction between Arhgap6 and Rac3 (Ras-related C3 botulinum toxin substrate 3). Results showed that Arhgap6 inhibited cell proliferation, migration, invasion, and adhesion of cervical carcinoma, induced cell apoptosis, and caused cell cycle arrest in the G0/G1 phase (n = 3, p < 0.05). Expression of the tumor suppressor genes and oncogenes were up- and down-regulated respectively by Arhgap6, and Rac3 was proved to be the target of Arhgap6. Besides, in in vivo assays, tumor size and weight were destructed in Arhgap6+ athymic nude mouse. This study indicated that Arhgap6 may play a role in the treatment of cervical cancer as a tumor supressor.
Literatur
1.
2.
Zurück zum Zitat Jiménez-Wences H, Peralta-Zaragoza O, Fernández-Tilapa G. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review). Oncol Rep. 2014;31:2467–76.PubMedPubMedCentral Jiménez-Wences H, Peralta-Zaragoza O, Fernández-Tilapa G. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review). Oncol Rep. 2014;31:2467–76.PubMedPubMedCentral
3.
Zurück zum Zitat World Cancer Report 2014. World Health Organization. 2014;Chapter 5.12, pp. World Cancer Report 2014. World Health Organization. 2014;Chapter 5.12, pp.
4.
Zurück zum Zitat Newmann SJ, Garner EO. Social inequities along the cervical cancercontinuum: a structured review. Cancer Causes Control. 2005;16:63–70.CrossRefPubMed Newmann SJ, Garner EO. Social inequities along the cervical cancercontinuum: a structured review. Cancer Causes Control. 2005;16:63–70.CrossRefPubMed
5.
Zurück zum Zitat Egile C, Rouiller I, Xu XP, et al. Mechanism of filament nucleation and branch stability revealed by the structure of the Arp2/3 complex at actin branch junctions. PLoS Biol. 2005;3(11), e383.CrossRefPubMedPubMedCentral Egile C, Rouiller I, Xu XP, et al. Mechanism of filament nucleation and branch stability revealed by the structure of the Arp2/3 complex at actin branch junctions. PLoS Biol. 2005;3(11), e383.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Ridley AJ. Rho-related proteins: actin cytoskeleton and cell cycle. Curr Opin Genet Dev. 1995;5:24–30.CrossRefPubMed Ridley AJ. Rho-related proteins: actin cytoskeleton and cell cycle. Curr Opin Genet Dev. 1995;5:24–30.CrossRefPubMed
7.
Zurück zum Zitat Schaefer L, Prakash S, Zoghbi HY. Cloning and characterization of an rho-type GTPase-activating protein gene (ARHGAP6) from the critical region for microphthalmia with linear skin defects. Genomics. 1997;46(2):268–77.CrossRefPubMed Schaefer L, Prakash S, Zoghbi HY. Cloning and characterization of an rho-type GTPase-activating protein gene (ARHGAP6) from the critical region for microphthalmia with linear skin defects. Genomics. 1997;46(2):268–77.CrossRefPubMed
8.
Zurück zum Zitat Tribioli C, Droetto S, Bione S, Cesareni G, Torrisi MR, Lotti LV, et al. An X chromosome-linked gene encoding a protein with characteristics of a rhoGAP predominantly expressed in hematopoietic cells. Proc Natl Acad Sci U S A. 1996;93(2):695–9.CrossRefPubMedPubMedCentral Tribioli C, Droetto S, Bione S, Cesareni G, Torrisi MR, Lotti LV, et al. An X chromosome-linked gene encoding a protein with characteristics of a rhoGAP predominantly expressed in hematopoietic cells. Proc Natl Acad Sci U S A. 1996;93(2):695–9.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Prakash SK, Paylor R, Jenna S, et al. Functional analysis of ARHGAP6, a novel GTPase-activating protein for RhoA. Hum Mol Genet. 2000;9(4):477–88.CrossRefPubMed Prakash SK, Paylor R, Jenna S, et al. Functional analysis of ARHGAP6, a novel GTPase-activating protein for RhoA. Hum Mol Genet. 2000;9(4):477–88.CrossRefPubMed
10.
Zurück zum Zitat Guo F, Liu Y, Huang J, et al. Identification of Rho GTP ase activating protein 6 isoform 1 variant as a new molecular marker in human colorectal tumors. Pathol Oncol Res. 2010;6(3):319–26.CrossRef Guo F, Liu Y, Huang J, et al. Identification of Rho GTP ase activating protein 6 isoform 1 variant as a new molecular marker in human colorectal tumors. Pathol Oncol Res. 2010;6(3):319–26.CrossRef
11.
Zurück zum Zitat Ochocka AM, Grden M, Sakowicz-Burkiewicz M, et al. Regulation of phospholipase C-delta1 by ARGHAP6, a GTPase-activating protein for RhoA: possible role for enhanced activity of phospholipase C in hypertension. Int J Biochem Cell Biol. 2008;40(10):2264–73.CrossRefPubMed Ochocka AM, Grden M, Sakowicz-Burkiewicz M, et al. Regulation of phospholipase C-delta1 by ARGHAP6, a GTPase-activating protein for RhoA: possible role for enhanced activity of phospholipase C in hypertension. Int J Biochem Cell Biol. 2008;40(10):2264–73.CrossRefPubMed
12.
Zurück zum Zitat Davies S, Dai D, Pickett G, et al. Effects of bevacizumab in mouse model of endometrial cancer: defining the molecular basis for resistance. Oncol Rep. 2011;25(3):855–62.PubMedPubMedCentral Davies S, Dai D, Pickett G, et al. Effects of bevacizumab in mouse model of endometrial cancer: defining the molecular basis for resistance. Oncol Rep. 2011;25(3):855–62.PubMedPubMedCentral
13.
Zurück zum Zitat Hu JC, Chan HC, Simmer SG, et al. Amelogenesis imperfecta in two families with defined AMELX delections in ARHGAP6. PLoS ONE. 2012;7(12), e52052.CrossRefPubMedPubMedCentral Hu JC, Chan HC, Simmer SG, et al. Amelogenesis imperfecta in two families with defined AMELX delections in ARHGAP6. PLoS ONE. 2012;7(12), e52052.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Etienne MS, Hall A. Rho GTPases in cell biology. Nature. 2002;420(6916):629–35.CrossRef Etienne MS, Hall A. Rho GTPases in cell biology. Nature. 2002;420(6916):629–35.CrossRef
15.
Zurück zum Zitat Cameron NJ, Sergi CB, Laura MC, et al. ARHGAP8 is a novel member of the RHOGAP family related to ARHGAP1/CAA42GAP/p50RHOGAP: mutation and expression analyses in colorectal and breast cancers. Gene. 2004;336:59–71.CrossRef Cameron NJ, Sergi CB, Laura MC, et al. ARHGAP8 is a novel member of the RHOGAP family related to ARHGAP1/CAA42GAP/p50RHOGAP: mutation and expression analyses in colorectal and breast cancers. Gene. 2004;336:59–71.CrossRef
16.
Zurück zum Zitat Ching YP, Wong CM, Chan SF, et al. Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is under expressed in hepatocellular carcinoma. J Biol Chem. 2003;278:10824–30.CrossRefPubMed Ching YP, Wong CM, Chan SF, et al. Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is under expressed in hepatocellular carcinoma. J Biol Chem. 2003;278:10824–30.CrossRefPubMed
17.
Zurück zum Zitat Liao YC, Lo SH. Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver. Int J Biochem Cell Biol. 2008;40:843–7.CrossRefPubMed Liao YC, Lo SH. Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver. Int J Biochem Cell Biol. 2008;40:843–7.CrossRefPubMed
18.
Zurück zum Zitat Furukawa Y, Kawasoe T, Daigo Y, et al. Isolation of a novel human gene, ARHGAP9, encoding a rho-GTPase activating protein. Biochem Biophys Res Commun. 2001;284(3):643–9.CrossRefPubMed Furukawa Y, Kawasoe T, Daigo Y, et al. Isolation of a novel human gene, ARHGAP9, encoding a rho-GTPase activating protein. Biochem Biophys Res Commun. 2001;284(3):643–9.CrossRefPubMed
19.
Zurück zum Zitat Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2[−Delta DeltaC(T)] method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2[−Delta DeltaC(T)] method. Methods. 2001;25:402–8.CrossRefPubMed
20.
Zurück zum Zitat Healy KD, Hodgson L, Kim T, et al. DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. Mol Carcinog. 2008;47(5):326–37.CrossRefPubMedPubMedCentral Healy KD, Hodgson L, Kim T, et al. DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. Mol Carcinog. 2008;47(5):326–37.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Kandpal RP. Rho GTPase activating proteins in cancer phenotypes. Curr Protein Pept Sci. 2006;7:355–65.CrossRefPubMed Kandpal RP. Rho GTPase activating proteins in cancer phenotypes. Curr Protein Pept Sci. 2006;7:355–65.CrossRefPubMed
22.
Zurück zum Zitat Leve F, Morgado-Díaz JA. Rho GTPase signaling in the development of colorectal cancer. J Cell Biochem. 2012;113(8):2549–59.CrossRefPubMed Leve F, Morgado-Díaz JA. Rho GTPase signaling in the development of colorectal cancer. J Cell Biochem. 2012;113(8):2549–59.CrossRefPubMed
23.
Zurück zum Zitat Xu J, Zhou X, Wang J, et al. RhoGAPs attenuate cell proliferation by direct interaction with p53 Tetramerization domain. Cell Rep. 2013;3:1526–38.CrossRefPubMed Xu J, Zhou X, Wang J, et al. RhoGAPs attenuate cell proliferation by direct interaction with p53 Tetramerization domain. Cell Rep. 2013;3:1526–38.CrossRefPubMed
24.
Zurück zum Zitat Nagaraja GM, Kandpal RP. Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins. Biochem Biopys Res Commun. 2004;313(3):654–65.CrossRef Nagaraja GM, Kandpal RP. Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins. Biochem Biopys Res Commun. 2004;313(3):654–65.CrossRef
25.
Zurück zum Zitat Wong CM, Yam JW, Ching YP, et al. Rho GTPase-activating protein deleted in liver cancer suppressor cell proliferation and invasion in hepatocellular carcinoma. Cancer Res. 2005;65(19):8861–8.CrossRefPubMed Wong CM, Yam JW, Ching YP, et al. Rho GTPase-activating protein deleted in liver cancer suppressor cell proliferation and invasion in hepatocellular carcinoma. Cancer Res. 2005;65(19):8861–8.CrossRefPubMed
26.
27.
Zurück zum Zitat Jaffe AB, Hall A. RHO GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.CrossRefPubMed Jaffe AB, Hall A. RHO GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.CrossRefPubMed
29.
Zurück zum Zitat Xie J, Bai J, Sheng X et al.: Inhibition of proliferation of human cervical cancer HeLa cells by casticin in vitro. China Oncol. Xie J, Bai J, Sheng X et al.: Inhibition of proliferation of human cervical cancer HeLa cells by casticin in vitro. China Oncol.
30.
Zurück zum Zitat Yuan J, Yan R, Krämer A, et al. Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells. Oncogene. 2004;23(24):5843–52.CrossRefPubMed Yuan J, Yan R, Krämer A, et al. Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells. Oncogene. 2004;23(24):5843–52.CrossRefPubMed
31.
Zurück zum Zitat Yuan J, Krämer A, Matthess Y, et al. Stable gene silencing of cyclin B1 in tumor cells increases susceptibility to taxol and leads to growth arrest in vivo. Oncogene. 2006;25(12):1753–62.CrossRefPubMed Yuan J, Krämer A, Matthess Y, et al. Stable gene silencing of cyclin B1 in tumor cells increases susceptibility to taxol and leads to growth arrest in vivo. Oncogene. 2006;25(12):1753–62.CrossRefPubMed
32.
Zurück zum Zitat Tiwari N. EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol. 2012;22:194–207.CrossRefPubMed Tiwari N. EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol. 2012;22:194–207.CrossRefPubMed
33.
Zurück zum Zitat Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1–2):15–33.CrossRefPubMed Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1–2):15–33.CrossRefPubMed
34.
Zurück zum Zitat Ansieau S. Failsafe program escape and EMT: a deleterious partnership. Semin Cancer Biol. 2011;21:392–6.PubMed Ansieau S. Failsafe program escape and EMT: a deleterious partnership. Semin Cancer Biol. 2011;21:392–6.PubMed
35.
Zurück zum Zitat Julien S, Puig I, Caretti E, et al. Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene. 2007;26(53):7445–56.CrossRefPubMed Julien S, Puig I, Caretti E, et al. Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene. 2007;26(53):7445–56.CrossRefPubMed
36.
Zurück zum Zitat Kyo S, Sakaguchi J, Ohno S, et al. High Twist expression is involved in infiltrative endometrial cancer and affects patient survival. Hum Pathol. 2006;37(4):43–438.CrossRef Kyo S, Sakaguchi J, Ohno S, et al. High Twist expression is involved in infiltrative endometrial cancer and affects patient survival. Hum Pathol. 2006;37(4):43–438.CrossRef
37.
Zurück zum Zitat Peña C, García JM, Larriba MJ, et al. SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue. Oncogene. 2009;28:4375–85.CrossRefPubMed Peña C, García JM, Larriba MJ, et al. SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue. Oncogene. 2009;28:4375–85.CrossRefPubMed
38.
Zurück zum Zitat Olmeda D, Jorda M, Peinado H, et al. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene. 2007;26(13):1862–74.CrossRefPubMed Olmeda D, Jorda M, Peinado H, et al. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene. 2007;26(13):1862–74.CrossRefPubMed
39.
Zurück zum Zitat Stodden GR, Lindberg ME, King ML, et al. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene. 2015;34:2471–82.CrossRefPubMed Stodden GR, Lindberg ME, King ML, et al. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene. 2015;34:2471–82.CrossRefPubMed
40.
Zurück zum Zitat Van Aken E, De Wever O, Correiada Rocha AS, et al. Defective E-cadherin/catenin complexes in human cancer. Virchows Arch. 2001;439(6):725–51.CrossRefPubMed Van Aken E, De Wever O, Correiada Rocha AS, et al. Defective E-cadherin/catenin complexes in human cancer. Virchows Arch. 2001;439(6):725–51.CrossRefPubMed
Metadaten
Titel
Inhibitory effects of Arhgap6 on cervical carcinoma cells
verfasst von
Junping Li
Yang Liu
Yihua Yin
Publikationsdatum
01.12.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 2/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4502-z

Weitere Artikel der Ausgabe 2/2016

Tumor Biology 2/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.